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Abstract—The effectiveness of model predictive control (MPC) in dealing
with input and state constraints during transient operations is well known.
However, in contrast with several linear control techniques, closed-loop fre-
quency-domain properties such as sensitivities and robustness to small per-
turbations are usually not taken into account in the MPC design. This tech-
nical note considers the problem of tuning an MPC controller that behaves
as a given linear controller when the constraints are not active (e.g., for
perturbations around the equilibrium that remain within the given input
and state bounds), therefore inheriting the small-signal properties of the
linear control design, and that still optimally deals with constraints during
transients. We provide two methods for selecting the MPC weight matrices
so that the resulting MPC controller behaves as the given linear controller,
therefore solving the posed inverse problem of controller matching, and is
globally asymptotically stable.

Index Terms—Constrained linear systems, controller tuning, inverse op-
timality, model predictive control.

I. INTRODUCTION

Classical methods for controller synthesis usually provide closed-
loop stability and a certain degree of robustness and performance, but in
general they do not easily account for constraints. Some modifications
can be introduced to properly handle constraints, such as anti-windup
schemes for input saturation [1]. However these usually work only for
a restricted class of constraints, are complicated to design (especially
for multivariable systems), and may yield to reduced closed-loop per-
formance. A more systematic way of handling constraints is to resort
to model predictive control (MPC) strategies [2], [3]. At every control
cycle, MPC uses the current state information to predict the evolution
of the system over a given future horizon. Accordingly, MPC selects the
input sequence that results in the best performance among the ones that
satisfy the constraints. However, as discussed in [2], the stability, ro-
bustness, and frequency-domain properties of MPC are sensibly more
difficult to characterize with respect to linear feedback controllers. This
reduces the transfer of the MPC technology to applications [3].

In this technical note we address the following inverse problem: How
to select the performance index (in particular, the weighting matrices)
of a linear MPC controller so that it behaves as a given favorite linear
controller when the constraints are not active. Hence, for perturbations
around an equilibrium point in the interior of the admissible ranges for
input and state variables, the closed-loop properties of the MPC con-
troller match those of the original linear controller. The exact region of
the state space where the matching occurs (i.e., where the constraints
are inactive) can be easily computed from the Karush-Kuhn-Tucker
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conditions of optimality of the quadratic programming problem asso-
ciated with MPC, see e.g., [4]. The advantage is that, contrary to the
linear controller, the resulting MPC controller is able to properly handle
the constraints during transient operations, and that global stability of
the closed-loop system in the presence of constraints can be enforced.

A related problem has been recently studied in [5], where the au-
thors prove constructively, yet not computationally, that every contin-
uous nonlinear control system can be obtained by parametric convex
programming, and identify MPC as a possible beneficiary. The results
presented in the next sections provide computationally feasible proce-
dures to locally solve such a problem for linear control laws within
the domain of linear MPC, hence enabling an existing linear control
design to handle constraints. We also briefly analyze the inverse opti-
mality problem in the MPC framework [5].

The technical note is structured as follows. In Section II we for-
mulate the MPC matching problem, where the weight matrices in the
cost function must be tuned so that, when the constraints are not ac-
tive, the synthesized MPC feedback law is equivalent to a given linear
state-feedback controller. In Sections III and IV we propose the general
solution, based on a bilinear matrix inequality (BMI), and introduce a
parameterization of the problem that leads to a linear matrix inequality
(LMI) formulation. The method introduced in Section III is less con-
servative, but generates an LMI whose size is proportional to the length
of the prediction horizon, while the method in Section IV is more con-
servative, but the size of the LMI is independent on the horizon length.
In Section V we extend the design to dynamic compensators. Some ex-
amples are provided in Section VI.

Notation

Relational operators between non-symmetric matrices and vectors
are intended componentwise, while for a symmetric matrix � � �� �
���, the notation � � � (� � �) denotes positive (semi)definite-

ness. , �, and �� are the set of real, positive real, and nonnegative
real numbers, respectively, , � and ��, the set of integers, posi-
tive integers, and nonnegative integers, respectively. ����� denotes the
set �� � � � � � � ��. For a given vector �, we indicate by
���� its �th component. �� denotes the identity matrix of order 	, and
���� � ��� denotes a matrix entirely composed of zeros (subscripts
will be dropped when clear from the context). We denote the interior
of a set � by ���	� 
, and the origin of a vector space by �. Given the
dynamical system 
	�� �
 � �	
	�

, a set � is positively invariant
(PI) for �	�
 if for all 
 � � , �	

 � � .

II. CONTROLLER MATCHING PROBLEM

Model predictive control is based on solving at every control cycle
� � � �     the finite-horizon optimal control problem
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where � � � is the state vector, � � � is the input vector, � is the
prediction horizon, ���� � �������� � � � ���� � ������ � �� is the
vector to be optimized 1, and � 	 � � is the value function. The
performance criterion to be optimized is defined by (1a). Since now on,
even if not stated explicitly, we assume that matrices ��� � ���,
	 � ��� satisfy the conditions � � �� � �, � � � � � �,
	 � 	� 
 �. Equation (1b) defines the prediction model, which is
assumed to be completely reachable, and (1c), (1d) define state and
input constraints, respectively.

Given the current state ����, the finite horizon optimal control
problem (1) can be reformulated as the following quadratic program
(QP) with respect to ����


��
����

�
���������  ����������� (2a)

�� ����� �� ����� (2b)

In (2), � � ����, � � ���, and � � � define the problem
constraints, while the cost function is defined by

� � �� 	 �
	�� � � � �
	 (3)

where � 
 �, 	 is the � -steps state reachability matrix, � is the
� -steps free evolution matrix
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and 
 � �����,� � ����� are block-diagonal matrices
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We denote by ����� the optimizer of problem (2)2. Given �����, the
�th constraint is called active at optimality if ��� ������ � �� 
�������, � � �����. If no constraint is active, the optimizer of (2)
is the unconstrained solution

�
���� �

�������
...

���� � ������

� ����
�
�
���� (4)

In this case, the MPC command at step � is

���	������ � �
������ � �����

�
�
���� (5)

where matrix � � � �� � � � � � � extracts the first move actually
applied to the process from the optimal sequence �����. For given
system dynamics and prediction horizon (i.e., for fixed 	 and � ), the
matrix ����� � obtained by ��, �	, and �� is the same as the one ob-
tained by � ��, � �	, and � �� , where � � 
 is an arbitrary positive
scaling factor. Thus, for numerical reasons and since 	 
 �, it is not
restrictive to require 	 � �� , where � � 
 is a (small) positive con-
stant.

1The results can be extended to the case of a shorter control horizon� � � ,
������ � � ��� � ����, � � � � � � � � � � �, where � is a given control
law.

2The reformulation of (1a) results also in a constant term 	 � ���� �
 �
� 
� ����� which is not included in (2a), since it does not affect � ���.

In industrial practice MPC strategies are often used more for their
capability to handle constraints than for performance optimization,
meaning that there are several unexploited degrees of freedom in
choosing the weight matrices �, 	, � . On the other hand, these affect
the robustness properties and the frequency-domain response for small
signals of MPC [2], [3], which are very difficult to shape by design. In
this technical note we propose to choose �, 	, and � , that is to tune
the MPC cost function, by solving the following problem:

Problem 1 (MPC Matching): For a pre-assigned “favorite con-
troller”

������ � ������ � � ��� (6)

define the cost function (1a) such that the unconstrained MPC con-
troller (5) based on (1) is equal to the favorite controller (6), that is
������ � ������ �����.

In general the MPC behavior will be different from the favorite con-
troller during transients, when active constraints are dealt with, but
when the constraints are inactive, the MPC will behave as the favorite
controller, hence it will inherit properties such as robustness, sensi-
tivity, and stability. The set of states ���� where the matching occurs
is the polyhedron � � � � � 	 ������� ��� � ��, where
the unconstrained optimizer ������ satisfies the constraints of the
QP problem (2).

A direct approach to solve the posed controller matching problem
based on the reformulation of MPC problem (1) as a tracking problem
is given in [6]. Even though the approach in [6] results in a simple de-
sign, global stability is hard to guarantee a priori, due to the tracking
formulation with time-varying references. In the next sections we solve
Problem 1 by inverse matching, namely by selecting appropriate weight
matrices in (1a) so that the unconstrained behavior of the resulting MPC
controller “matches” the one of the favorite controller. Global asymp-
totic stability in the set of feasible initial conditions can be enforced for
the proposed approaches.

III. INVERSE MATCHING BASED ON QP MATRICES

Problem 1 is immediately solved if one can find weight matrices �,
	, � in (1) such that

�����
�
�
���� � ����� (7)

Unfortunately (7) is not trivial to solve, due to the non-invertibility of
matrix � and the way ��� depends on �, 	, � . To solve Problem 1,
we remove � in (7) setting

�
��
�
�
���� � �

�

��
...

����

���� (8)

where we fix � � � , while �� � ���, � � �������, are free
matrices. In (8) we account for the whole optimal input sequence of
(1), but we enforce the match with the favorite controller only for the
first control action, according to the receding horizon mechanism of
MPC.

Lemma 1: Let � ��� ��� �	� �� � be any feasible solution of the following
problem


��
��	�
��

���� ��	� � � (9a)

�� � � �� � � �� 	 � �� (9b)

�� 	 �
	��  	 �
� � � (9c)

� � � (9d)
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where � � ���� � � � ������
�, and � � ���� � ��� � ��� �

��� � is an (arbitrary) objective function. Then, the MPC strategy
based on the optimal control problem (1) where we set� � ��,� � �� ,
� � ��, solves Problem 1.

Proof: Equality (9c) represents (8) after multiplying both sides
by � , which is invertible. Constraint (9d) enforces the equality be-
tween the MPC command (5) and the favorite controller (6). Finally,
(9b) ensures that the obtained matrices define a valid cost function for
the MPC problem (1). Any solution satisfying (9b), (9c), (9d) results
in (7) when constraints in (1) are not active.

Due to the bilinear constraint (9c), (9) is a nonconvex mathematical
program. Regarding the choice of function � , although Problem 1 is
solved by any feasible solution of (9) one should notice that the re-
sulting optimal triplet ����� � � affects the behavior of the MPC con-
troller when the constraints are active. A possible choice for � is to
specify a triplet � 	�� 	�� 	� � of desired weights and set

���� ���� � � � ��� 	��
 ����� 	��
 �� �� � 	�� (10)

where ��� �� � �� and � � � is any matrix norm.
The following lemma is immediate to prove and covers the case in

which it is not possible to find matrices �, � and � that exactly solve
Problem 1.

Lemma 2: Consider the problem

��
���������

��
 	 � �	
 � (11a)

�
�
 � � �� � � ��

� � ��� �� �  (11b)

	�
 	 � �	� � � (11c)

let �� be the optimum and ���� ��� ��� � �� 	 �� be any optimizer.3 If
�� � �, Problem 1 is exactly solved. Otherwise, ��, ��, � � provide
the closest approximation � � ��	 �� � of  in the matrix norm
� � �.

Note that because of (11a), 	 � ��� and (11a) equals �� �
������ ���.

Due to the bilinear terms in (11c), (11) is nonconvex. Even though
nowadays solvers exist for bilinear problems, the convergence to a so-
lution is not guaranteed. In order to formulate (9) as a convex problem
with linear matrix inequality (LMI) constraints, one can fix the whole
vector

� � 	�



	��
...

	����

(12)

where 	�	, � � �������, are pre-assigned gains. This obviously further
constrains the design problem. In order to recover additional degrees
of freedom in solving Problem 1 we may allow a time-varying cost
function in (9) by setting

	 �

�� � � � � � �
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...

...
. . .

...
...

� � � � � ���� �

� � � � � � �

�

3Due to the non-convexity of (11) multiple global optima and optimizers may
exist.

� �

�� � � � � �
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...
. . .

...
� � � � � ����

where �	 � ��	 � �, �	 � ��	 � �� , for all � � �������. Since
����� is fixed in (1), the optimizer does not depend on the weight ��,
which is therefore ignored since now on.

Lemma 3: Let

	� �



�� 
��
...

��
�����

(13)

and consider the following convex problem with LMI constraints

�
� � ��

���
���
 � �	�� 	� 
 � �	
 � (14a)

�
�
 � � �� �	 � ��� � � �� � � � � � � � (14b)

�	 � �� � � �� � � � � � � �
 (14c)

in the variables �	, � � �������, �	, � � �������, and � . If the
optimum of (14) is �� � �, the MPC controller with cost function
���� ��� ���� ��
 ���

	�� ��������	 ����� 
 ��������	 �����,
where � �, ��	 , ��	 , � � ������� are the optimizer of (14), behaves as
the favorite controller (6) when the constraints are not active.

By imposing (13) one requires that the controller (6) is applied along
the entire prediction horizon. This is more stringent than what is re-
quired to solve Problem 1.

If the optimum of (14) is not 0, an exact solution to Problem 1 is
not found. Instead, when constraints are not active the MPC controller
synthesized from (14) when �� �� � best approximates (6) according to
the selected norm ���weighted by� � �. This in turn implies that the
desired closed-loop state evolution is also matched in an approximated
way. In fact, let � � ��	 �� �	�
 be the approximating controller
obtained by solving (14), and the norm in (14a) be an induced matrix
norm. When the constraints are not active the difference between the
desired and attained state update is ����
���	�����
��
���� �
��� ���� ��� for any � � �. In this technical note we focus on
the study of the exact solutions of Problem 1, and we defer the complete
analysis of the approximated solutions to future research.

A. Global Closed-Loop Stability

If perfect matching occurs and the favorite controller is stabilizing,
local stability of the MPC closed-loop also follows immediately. How-
ever, as for general MPC [2], global stability is more complicated to
guarantee, especially because here we want to maintain local equiv-
alence with the favorite controller (6). The approach described in [2]
based on terminal cost and terminal set can be specialized for this pur-
pose.

Theorem 1: Let �
 � � be a polyhedral positively invariant set
for (1a) in closed loop with (6) such that � � ����
 � and�
 � �� �
� � ��� � � � ���� ��� � � � ����, and add constraint

��� �� � �
 to (1). Let �, �, � be computed either by (9), or by
(14) under the restriction �	 � �, �	 � �, for all � � �������. In
(9), or (14), add the LMI constraint

��
���� ��
�� 

�
� 
�� � � �
 (15)

Denote by ����� �
� the set of states � � � such that (1) is feasible

when ���� � �, then, (i) the resulting closed-loop MPC dynamics are
asymptotically stable and remain in �����, for all ���� � �����; (ii)
if either (9) is solved, or (14) is solved with zero optimum ��� � ��,
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there exists a set ��� � �� such that the MPC behaves as the favorite
controller (6) for all � � ��� ; (iii) if � � �, ��� is reached in a finite
time �������, for all ���� � ����� and, if in addition����� is bounded,
there exists a finite �� � ��������� �����.

Proof:
(i) By using the terminal set and terminal constraint approach of [2],

it is possible to show that ���� is a Lyapunov function in �����,
by taking �� as the terminal set, � as the terminal cost matrix,
� as the auxiliary controller that is feasible in �� , and the cost
function as in (1a) (details are omitted here for brevity and can
be found in [2]).

(ii) Consider �� such that����� � �� . Since�� is positively invariant
for �� 	 ��� and 	 � �� satisfies the constraints in �� ,


������� � ���������� � � � ����	�����	�������� is feasible
for (1). Since the optimum of (1) with �, �, � computed by
(9) (or by (14) with �� � �, �� � �, for all � � 
����	�,
resulting in � � �) is achieved for 	�� � 	�� , 

������� is
optimal. Hence, for all � � �� the MPC behaves as the favorite
controller. Since �� is positively invariant for dynamics ��� 	
�� � ��	�������, for all � � ��, ���� � �� , and hence for
all � � ��, 	�������� � 	��������.

(iii) By the results of [2], �������� ����� 	 ��� � ����������,
� � �. Since �� is compact and � � ������ �, there exists
� � � such that ���� � � for all � �� �� . Assume by
contradiction that ���� �� �� , for all � � . Then ������� �
������� � ��, and hence ������ �������� � ��, which
contradicts ���� � �, for all � � �. Hence, there must exist
a finite ������� such that ���������� � �� . By (ii), it follows
that ���� � �� , for all � � �������. If in addition ����� is
bounded, then there exists �� � ��������� �������, and
hence ������� � �� � ��, for all ���� � �����. By setting
�� � ���� the result follows.

The set �� can be for instance the maximum positively invariant
set, computed as in [7], while the set ����� can be analyzed by the
techniques in [4].

IV. MATCHING BASED ON INVERSE LQR

In this section we propose a computationally simpler alternative to
solve Problem 1. Instead of solving (7), we use the following theorem
(see [4]).

Theorem 2: Given �� � ���, �� � �, and �� � 	�	, �� � �,
let �� � ���, �� � � be the solution of the Riccati equation

�� � �� ��� ��� ������ ��� 	 ����	�� ���	 ��� (16)

Set � � ��, � � ��, and � � �� in (1a). For any prediction horizon
� � �� �� � � �, when the constraints are not active, the MPC com-
mand (5) obtained by solving (1) is 	�������� � ��������, where
���� � ���� ���	 ����	�� ��� is the LQR gain obtained from (16).

Under the hypothesis of Theorem 2, the MPC controller that has no
(active) constraints behaves as the linear state feedback gain that op-
timizes ���
�	�

�

��� ����
������ 	 	�����	��� for the linear dy-

namics ���	 �� � ����� 	�	���. For solving Problem 1, we look
for weights �, � and � such that the favorite controller (6) is the cor-
responding LQR gain. In this way when constraints are not active, by
Theorem 2 the MPC behaves as the LQR for any horizon� � �� �� � � �,
hence also as the favorite controller (6).

Corollary 1: Consider the convex optimization problem with LMI
constraints

���
����

����� � � (17a)

���� � � �� � � ��� � � � (17b)

� � ���� 	 ����� 	� (17c)

���� � ������ 	��� (17d)

where  � ��� 	 	�	 	 ��� 
 is convex (e.g., as in (10))
and (17b), (17c), (17d) are linear matrix (in)equalities. Let 
�, 
�, 
� be
any feasible solution (not necessarily the optimal one) of (17). Then
the MPC strategy based on the optimal control problem (1) where we
set � � 
�, � � 
� , � � 
�, solves Problem 1.

Proof: Equalities (17c), (17d), and constraint (17b) enforce� and
� to be the solution of the Riccati equation and the corresponding LQR
gain, respectively, and �, �, to be the corresponding weights. Thus,
given any 
�, 
�, 
� that are a feasible solution of (17), � is the LQR
gain that optimizes the LQR cost, where � � 
�, � � 
�. Theorem 2
guarantees that the optimal control problem (1) where we set � � 
�,
� � 
�, � � 
� results in an MPC command (5) equal to the one that
would be issued by the LQR, and hence also by the favorite controller
(6) whenever the constraints in the MPC quadratic program (2) are not
active.

Working with LQR gains introduces additional constraints, since an
infinite-horizon inverse-optimal cost function is sought. In fact, The-
orem 2 and Lemma 3 ensure that whenever a solution of (17) exists, a
solution of (14) with � � � exists. The opposite is not guaranteed.
However, (17) involves a simpler LMI than (14), especially when the
horizon � is large, because the number of variables in the LMI is in-
dependent of � .

The additional requirement of (6) being an LQR gain implies that
the feasibility of (17) cannot be guaranteed, because there exists � �
��	 that are not LQR gain for any quadratic cost function. The

problem of checking whether a given controller is optimal with respect
to some performance criterion (inverse optimality problem) was first
introduced by Kalman [8]. The inverse LQ design problem has been
studied in [9], where the conditions for a linear state-feedback con-
troller to be an LQR gain were analyzed. The works [8]–[10] focused
on continuous-time systems, and provided algebraic conditions for a
given linear state feedback law to be an LQR. The inverse LQR design
for discrete-time systems can be solved by convex optimization using
(17). Formulations based on (17) that provide approximate solutions
of Problem 1 when � is not an LQR gain can be simply obtained, and
will not be discussed here.

Global stability in the set of feasible initial conditions in the pres-
ence of constraints can be achieved by choosing � large enough [2],
[4], which does not increase the complexity of (17), since (17) is inde-
pendent of � . Also, Theorem 1 can be applied using the Riccati matrix
� as the terminal weight and the associated ���� � � as the auxil-
iary controller, since � computed from (17) satisfies (15).

V. EXTENSION TO DYNAMIC CONTROLLERS

Although the MPC tuning techniques presented in the previous sec-
tions were developed for static state-feedback favorite controllers, they
can be easily extended to dynamic output-feedback favorite controllers.
For the simplicity of notation, we consider a SISO favorite dynamic
controller 
��� � ����� ��� with strictly proper transfer function
���� � ��������� that can be expressed by the difference equation

	��� �

�

���

����� � �� 	

�

��	

��	��� ��� (18)

The state-space model (1b) of the process, together with an output
equation ���� � �����, can be formulated as the transfer
function � ��� � ����
���, where ���� � ��������� �
���� � ���	�, and hence as the difference equation ���� �

�

��	 ��	�� � �� 	 �

��	  ���� � ��. Let !� � ����!��� !��,
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�� � �������� ���, and define the state vector ���� �
� ��� � �� 	 	 	 ��� � ��� ��� � �� 	 	 	��� � ��� 


�. The process
dynamics are described by the (possibly non-minimal 4) state-space
realization

��� � �� �

�� 	 	 	 �� �� 	 	 	 ��
	� �

� 	 	 	 � � 	 	 	 �

� 	�

����

�

�

�� ����

�

�� ����

����

���� � � �� 	 	 	 �� �� 	 	 	 �� 
 ���� (19)

where �� � � for all 
 � �� ���� �, �� � � for all 
 � �� ���� �,
and 	� � � ���� ������ 
 � �����. For this choice
of the state vector, the favorite controller is ���� � �����,
�� � � � ��� � � � � � ��� �� � ��� � � � �� � ��� 
,
where � � � for all 
 � �� ���� 
, and �� � � for all 
 � �� ���� 
.
Thus, the techniques of the previous sections can be applied immedi-
ately to the case of dynamic output-feedback.

When the constraints are active, the MPC command can be different
from the one of the favorite controller. Thus the dynamics of (18) will
be different from the desired one. However, as soon as the constraints
become inactive, the functional form (18) of the controller is enforced,
even though the sequence of previous inputs and outputs was different
from the one that would have been generated by the system in closed-
loop with the favorite controller.

VI. EXAMPLES

Example 1 (Matching Based on QP Matrices): Consider the un-
stable linear system ��� � �� � ����� � �����, where

� �

���� ����� �����

������ ����� ������

���� ���� ����

�

� �

���

�

�

� � � �
� � �

and the favorite controller ��� � ��, where � �
������� ����� ����� 
 is designed by pole-placement
so that ���� has eigenvalues ������ ������ �����. Assume that the
input constraints ���� � � � ��� are present. We solve (14) where
we have set � � �, � � ����, �� as in (13), and we have imposed
�� � � � �, �� � � � �� , for all 
 � �������. The solution has
optimal cost �� � �, and optimizer matrices

�
� �

����� ������ ������

������ ����� �����

������ ����� ����

� �
� � �����

�
� �

����� ����� �����

����� ����� �����

����� ����� �����

�

Thus, by setting � � ��, � � ��, � � � � in (1), whenever the
constraints are not active, �	
� � ��� . Let ��������	� be the closed-
loop state trajectory obtained by MPC along 20 steps, where ���� �

4In general, the process state-space realization (19) is not minimal, but as
discussed in [11] it is completely reachable if the polynomials ����, ���� are
coprime.

Fig. 1. Example 1, MPC matching based on QP matrices. (a), � �
������� ��	
� ������ � (solid) and � (dashed with circle markers).
(b), � � �����������. Closed-loop trajectory generated by MPC (solid) and
by favorite controller (dashed with circle markers).

�� � �
�. The applied MPC command �	
������� together with the
hypothetical (not applied) favorite controller command ��������� are
shown in Fig. 1(a). For this example the LMI (17) is infeasible. In fact
the approach of Section III requires matching (and optimality) along
a finite horizon, and is less conservative than the one in Section IV,
requiring matching along an infinite horizon.

If the favorite controller is changed to � � ����� �� ���� 

an exact solution to the matching problem is not found. The op-
timal solution to (14) has cost �� � ����� and the MPC whose
cost is based on the new resulting matrices ��, ��, � � is
�	
� � ������� ����� ����� 
 � in the absence of con-
straints. However, as shown in Fig. 1(b), the closed-loop trajectories
��������	� with MPC and ����������	� with the favorite controller,
with same initial condition ������ � ����, are very close (note that in
this simulation the input constraints are never active).

Example 2 (Matching Based on Inverse LQR): Consider the linear
system ���� � ������� ��� ������� ��� ���� �� with sampling
time �
 � �, constrained input ��� � � � ��, and output constraint
� � ��. Consider the favorite discrete-time PID controller

��������� � � ��	��� ��� ����

�
�

�

������ ��� � ��� �

	��� � 	�� � �� � �
���� (20)
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Fig. 2. Example 2, MPC matching of a PID controller based on inverse LQR.
(a) upper plot, output trajectory generated by MPC, lower plot, � (solid) and
� (dashed with circle markers). (b), output trajectory (upper plot) and control
input (lower plot) of MPC (solid) and saturated favorite controller (dashed with
circle markers).

where �� � �����, �� � �����, �� � �����. As shown in Sec-
tion V, we obtain the state-space representation �	� 
 �� � ��	�� 

��	��, where

�	�� �

�	� � ��

�	� � ��

�	� � ��

�	� � ��

	

� �

��� ��� � �

� � � �

�� ��� � �

� � � �

	 � �

�

�

�

�

and the PID (20) is expressed as ��� � ��, where � �
� ���
�� 
 ������� ������� �� ���� �, ���� � �� 

���� 
 ��
�� . The inverse LQR-based matching problem (17)
where � � ����, and with objective function (10), where � � ��� ,
�� � �, �	 � �, �� � � returns the optimal matrices

� �

���� ���� ������ �����

���� ��� ���� �����

������ ���� ��� ������

����� ����� ������ ����

	 �� � �	

� � �

����� ����� ����� �����

����� ����� ����� �����

����� ����� ����� ����

����� ����� ���� ���

�

The MPC strategy (1) with � � � and  � �, � � ��, � � � �

is implemented so that ���� � ��� whenever the constraints are not
active. Note that the approach of Section IV is independent of� , hence
the prediction horizon can be changed without recomputing the weight
matrices. The upper plot of Fig. 2(a) shows the MPC closed-loop output
trajectory ��	�����
	� starting from �	�� � � � � � � �� and the
lower plot shows the input commands issued by the MPC and the (hy-
pothetical) ones issued by the favorite controller from the same state.
When the input and output constraints become inactive, ���� � ��� .
Fig. 2(b) compares the closed-loop output trajectory of the MPC con-
troller ��	�����
	� with the closed-loop output trajectory ����	�����
	�
resulting by applying the favorite controller subject to input saturation.
The saturated favorite controller cannot enforce the output constraint,
and it becomes unstable due to input constraints.

VII. CONCLUSION

In this technical note we have provided constructive techniques for
designing an MPC controller that, for signals not activating the con-
straints, inherits the frequency-domain and other linear properties of a
given linear controller and that, at the same time, is able to optimally
handle constraints on (possibly multiple) inputs and outputs, and to
guarantee global closed-loop stability. The design procedures are based
on tuning the MPC cost function using the solution of convex opti-
mization problems. The approach can also be interpreted as technique
to automatically synthesize an anti-windup scheme, which has a piece-
wise-affine form [4].
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