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Robust Explicit MPC Based on Approximate
Multiparametric Convex Programming

D. Muñoz de la Peña, Alberto Bemporad, and Carlo Filippi

Abstract—Many robust model predictive control (MPC) schemes require
the online solution of a computationally demanding convex program. For
deterministic MPC schemes, multiparametric programming was success-
fully applied to move offline most of the computation. In this paper, we
adopt a general approximate multiparametric algorithm recently suggested
for convex problems and propose to apply it to a classical robust MPC
scheme. This approach enables one to implement a robust MPC controller
in real time for systems with polytopic uncertainty, ensuring robust con-
straint satisfaction and robust convergence to a given bounded set.

Index Terms—Model predictive control (MPC), multiparametric pro-
gramming, robust control, uncertain systems.

I. INTRODUCTION

Model predictive control (MPC) is a control technique that is able to
cope in a direct way with multivariable systems, constraints, and uncer-
tainty. At each sampling time, a finite horizon optimal control problem
is solved based on a given model of the system. One of the main draw-
backs of MPC is the time needed to evaluate the solution of the posed
optimization problem. For linear systems, when no uncertainty is taken
into account, MPC requires the solution of a quadratic or a linear pro-
gramming problem. These are well known problems and efficient tools
are available for solving them. Also, multiparametric programming has
been applied with success to solve offline such optimization problems
in order to obtain an explicit description of the control law (see [1]–[4]).
Multiparametric programming considers optimization problems where
the data depends on one or more parameters. The parameter space is
systematically subdivided into characteristic regions where the optimal
value and an optimizer are given as explicit functions of the parameters.

One approach used in robust MPC is to minimize the objective func-
tion for the worst possible realization of the uncertainty. This strategy is
known as min–max and was originally proposed in [5] in the context of
robust optimal control. In robust MPC the problem was first tackled in
[6]. Several different robust MPC schemes have been proposed in the
literature. All of them have in common a high computational burden
(see [7]–[12] and the references therein). However, the optimization
problem associated with those schemes can often be posed as a convex
programming problem.

For linear cost functions, robust MPC controllers have been obtained
in explicit form (see [13] and [14]). The piecewise affine nature of the
solution for quadratic cost functions for the open-loop formulation with
additive uncertainties has been proved in [15]. Also, an efficient offline
algorithm for parametric uncertainties was given in [16].
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Recently, approximate multiparametric convex programming
solvers have been proposed in [17] and [18]. The latter is based on a
general approach that obtains a suboptimal explicit solution for a given
convex problem with a guaranteed bound on the error. In this paper we
apply the technique of [18] to a classic MPC robust scheme, namely
the controller proposed by Kothare et al. in [7]. We first obtain an
explicit easy-to-implement piecewise affine description of the control
law with an arbitrary degree of accuracy, and then prove that, for any
chosen degree of accuracy, constraints are handled robustly and the
system converges to a bounded set.

II. PROBLEM FORMULATION

Consider the uncertain linear time-varying (LTV) system with poly-
topic uncertainty

xk+1 = Akxk +Bkuk yk = Cxk; [AkBk] 2 
 (1)

where uk 2 Rn is the control input, xk 2 Rn is the state vector,
yk 2 Rn is the output, and 
 is the convex hull of given matrices
[A1B1]; . . . ; [ALBL].

System (1) is required to satisfy the input and output constraints

jeTr ukj � ur;max; k � 0;

r = 1; 2; . . . ; nu

jeTr ykj � yr;max; k > 0;

r = 1; 2; . . . ; ny (2)

where er is the rth column of the identity matrix of appropriate
dimension.

The controller proposed in [7], that will be referred to as “Kothare’s
controller” from now on, minimizes an upper bound of the worst case
infinite time cost function

J1(x) = max
[A B ]2
;k�0

1

k=0

x
T
kQcxk + u

T
kRcuk

s:t:(1); (2) andx0 = x 8[AkBk] 2 


with Qc and Rc positive definite.
Assume that a state feedback law uk = Fxk is used, and that there

exists a quadratic, strictly convex function xTPx that satisfies the fol-
lowing constraint for all [AkBk] 2 
:

x
T
k+1Pxk+1 � x

T
k Pxk � �x

T
kQcxk � u

T
kRcuk: (3)

By summing (3) for all k � 0 and requiring that xk ! 0 as k ! 1,
we obtain the upper bound J1(x) � xTPx.

Kothare’s controller is based on the following result.
Property 1 (cf. [7, Th. 2]): For (1), let 
; Q; Y; Z , and X satisfy the

LMI constraints for the state x

1 xT

x Q
� 0; Q > 0

Q QAjT + Y TBjT QQc Y TRc

AjQ+BjY Q 0 0

Qc Q 0 
I 0

Rc Y 0 0 
I

� 0;

j = 1; 2; . . . ; L

X Y

Y T Q
� 0; withXrr � u

2
r;max;

r = 1; 2; . . . ; nu
Z C(AjQ+BjY )

(AjQ+BjY )TCT Q
� 0

withZrr � y
2
r;max;

r = 1; 2; . . . ; ny; j = 1; 2; . . . ; L (4)
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where Mrr = eTr Mer . Let F Y Q�1 and P 
Q�1. Then 
 �
xTPx and the constraints (2) and (3) are satisfied for the feedback
matrix F and the matrix P .

To evaluate the control input for a given state x, Kothare’s control
algorithm solves the following SDP problem:

V
�(x) = min


;Q;Y;X;Z



s:t: (4) for state x: (5)

From the optimizers 
�(x); Q�(x), and Y �(x), the feedback gain
F �(x) = Y �(x)Q�(x)�1 is obtained. The applied control input is
u = F �(x)x, which robustly drives the system to the origin.

From the optimization problem one also gets matrix P �(x) =

�(x)Q�(x)�1 which defines an upper bound on the worst case
infinite-time cost function for the given feedback law, that is

J1(x) � x
T
P
�(x)x � V

�(x):

The following property will be used in the sequel.
Property 2 ([7, Lemma 2]): Any quintuple (Y;Q; 
; Z; X) satis-

fying (4) at time k for xk also satisfies (4) at time k + 1 if uk =
Y Q�1xk is applied.

Problem (5) is an SDP problem and efficient tools exist for solving
it. However, the computational burden may still be too high in many
real applications. An efficient suboptimal offline implementation was
presented recently in [16] and is based on the computation of invariant
ellipsoids. Here we take a different route and propose to use multipara-
metric techniques to implement in an efficient way an approximation of
this control law. More precisely, we consider the algorithm suggested
in [18].

III. MULTIPARAMETRIC CONVEX PROGRAMMING

In this section, the multiparametric algorithm suggested in [18] is
reviewed. This algorithm obtains, in explicit piecewise affine form, a
suboptimal solution of a multiparametric convex optimization problem
of the form

W
�(�) = min

z
fW (z; �) : gi(z; �) � 0; (i = 1; 2; . . . ; p)g

(6)

where z 2 Rn are the decision variables, � 2 Rn are the parame-
ters, andW and gi are jointly convex functions of the optimization vari-
ables and the parameters, so thatW � is a convex function (see [19] and
[20]). The multiparametric approach of [18] consists of an algorithm for
defining a suboptimal solution ẑ(�) that is a piecewise affine function
of the parameters. The solution is defined for a given full dimensional
polyhedron S = f� 2 Rn jA� � bg of parameters for which (6) is
feasible. The suboptimal solution is a piecewise affine function defined
over a partition of S made out of nr critical simplices CSi

ẑ(�) = ẑ
i(�) = H

i
z� + h

i
z ; 8� 2 CSi; i = 1; 2; . . . ; nr:

The algorithm proposed in [18] is divided in two phases. In the first
phase, the polyhedral region S to be characterized is triangulated into
a minimal set of simplices. In the second phase, the simplices are sub-
divided into smaller ones until an upper bound on the maximum error
inside each simplex is smaller than a given accuracy threshold �. Be-
cause of the recursive nature of the algorithm and of the method for sub-
dividing each simplex, the explicit suboptimizer is a piecewise linear
function of the parameters that is organized in a tree structure for eval-
uation (see [18] for details). Hence, the online computational burden
depends only on the maximum tree depth Td and on the dimension of
the parameter vector n� . The maximum number of linear inequalities
that must be evaluated in order to find the solution is linear in the state
dimension and the maximum depth of the tree (n�Td).

Property 3 ([18]): For all state vectors inside S, the suboptimal
solution ẑ(�), obtained by applying the approximate multiparametric

convex programming algorithm of [18] to solve (6) with a fixed � > 0,
satisfies

gi(ẑ(�); �) � 0; (i = 1; 2; . . . ; p) (7a)

W
�(�) �W (ẑ(�); �) �W

�(�) + �: (7b)

IV. MULTIPARAMETRIC APPROACH TO KOTHARE’S CONTROLLER

Kothare’s controller is evaluated at each time step by solving the
SDP problem (5) that depends on the current state x. the multipara-
metric technique reviewed in the previous section can also be applied
to SDPs [18]. In particular, let

• the parameter vector � be defined as the state vector x;
• the optimizer vector consist of the free variables z =
f
;Q; Y;X; Zg of (5);

• the objective function be linear, W (z; �) = 
 = cT z;
• the constraints gi(z; �) be defined by (4).

The approximate multiparametric convex programming algorithm de-
fines a piecewise affine function for the suboptimizer of Problem (5)
with a fixed error bound �. The following piecewise affine functions of
interest are obtained


(x) = 

i(x) = H

i

x+ h

i

 8x 2 CSi

Q(x) = Q
i(x) = H

i
Qx+ h

i
Q 8x 2 CSi

Y (x) = Y
i(x) = H

i
Y x + h

i
Y 8x 2 CSi;

i = 1; 2; . . . ; nr (8)

where nr is the number of critical simplices. Note that matrices X and
Z are not used for defining the multiparametric control law, so in the
following they will not be taken into account.

Using the previous piecewise affine suboptimizers of the SDP
problem, an approximate control law can be efficiently implemented.
In the following section, the proposed approach and the main proper-
ties are analyzed.

A. Properties of the Proposed Approach

The following lemmas will be used in the proof of the main theorem.
Lemma 1: i) The suboptimizers 
(x); Q(x); Y (x) are feasible for

(5); ii) F (x) = Y (x)Q(x)�1 and P (x) = 
(x)Q(x)�1 satisfy (2)
and (3); iii) the following inequalities hold:

V
�(x) � x

T
P (x)x � V

�(x) + �: (9)

Proof: i) Follows from (7a) (Property 3) because the constraints
gi(z; �) are defined by (4): ii) follows from Property 1; iii) following
(7b) (Property 3), V �(x) � 
(x) � V �(x) + � as 
(x) is the upper
bound of V �(x) obtained applying the multiparametric algorithm for a
bound on the error � (what in Section III was denoted as W (ẑ(�); �)).
On the other hand, as the suboptimizers are feasible for (5), it holds
xTP (x)x � 
(x).

Lemma 2: Consider a system of the form (1) and the feedback gain
given by F (x) = Y (x)Q(x)�1, where 
(x); Q(x), and Y (x) are
taken from a suboptimizer of (5) over a set S with a given bound on
the error � > 0. For all states xk 2 S, if uk = F (xk)xk the following
inequality holds

V
�(xk+1)� V

�(xk) � �xTkQcxk + � 8[Ak Bk] 2 
:

(10)

Proof: For each xk 2 S the multiparametric convex program-
ming algorithm provides a suboptimizer 
(xk); Q(xk); Y (xk) of (5)
such that (3) and (9) hold for F (xk) and P (xk) = 
(xk)Q(xk)

�1

(Lemma 1). By Property 2, 
(xk); Q(xk); Y (xk) is also a fea-
sible solution of (5) for all possible xk+1, so that V �(xk+1) �
xTk+1P (xk)xk+1. As Rc > 0, by replacing xTk P (xk)xk with
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V �(xk) + � and xTk+1P (xk)xk+1 with V �(xk+1) in (3), we obtain
inequality (10).

The proposed control law and its convergence and robustness prop-
erties are stated in the following theorem.

Theorem 1: Consider the control law

uk = F̂ (xk)xk

[F̂ (xk)P̂ (xk)] =
[F (xk)P (xk)]; if xk 2 S

[F̂ (xk�1)P̂ (xk�1)]; otherwise
(11)

where S is a full dimensional polyhedron containing the origin in its
interior, F (x) = Y (x)Q(x)�1 and P (x) = 
(x)Q(x)�1 where

(x); Q(x); Y (x) is a suboptimizer of (5) over S with an error bound
� > 0 for xk . Then, if x0 2 S, the controller defined by (11) ro-
bustly regulates the system to a bounded set 
� of the state–space
while satisfying (2) for all possible uncertainties, where 
� = fx 2
Rn jV �(x) � �g; � = maxx2� fV �(x) + � � xTQcxg, and �� =
fx 2 Sj xTQcx � �g.

Proof: In order to prove that the closed-loop system is ultimately
bounded we will first prove convergence to�� by Lyapunov arguments.
Then, we will show that once the state lands in this set, even if it may
leave it again, in no case it will go outside the set
�, from which it will
return again to ��. In this way, 
� is an invariant set for the system.

Let xk 62 ��. By Lemma 2, if xk 2 S, then V �(xk+1) < V �(xk),
for all [Ak Bk] 2 
. If xk 2 S for all k � 0 then clearly the system
converges to �� because V �(x) acts as a Lyapunov function. Suppose
instead there exists k such that xk 2 S and xk+1 62 S. For all h � 1
such that xk+j 62 S (j = 1; 2; . . . ; h), by (11) we have F̂ (xk+h) =
F̂ (xk) and P̂ (xk+h) = P̂ (xk). Since F̂ (xk) and P̂ (xk) are defined
by the suboptimizer of (5) for x = xk , taking into account Property 2
and (3), the following inequality holds:

x
T
k+h+1P̂ (xk)xk+h+1 < x

T
k+hP̂ (xk)xk+h 8[Ak Bk] 2 
:

This means that xTk+hP̂ (xk)xk+h keeps decreasing while xk+h 62
S. As S contains a ball centered in the origin, using Lyapunov argu-
ments it is easy to see that there exists a finite �h such that xk+�h 2 S.
Then either xk+�h 2 �� or not. In the latter case, in order to prove con-
vergence to �� using Lyapunov arguments, V �(xk+�h) must be lower
than V �(xk). Again, taking into account that F̂ (xk) and P̂ (xk) are
defined by a suboptimizer of (5) for x = xk , which is also feasible
for all xk+j with j � �h, using Property 2, (9), and (3), the following
inequalities can be stated for all j � �h:

V
�(xk+j) � x

T
k+j P̂ (xk)xk+j � x

T
k P̂ (xk)xk � x

T
kQcxk

� V
�(xk) + � � x

T
kQcxk: (12)

By taking into account thatxk 62 ��, it can be seen thatV �(xk+�h) <
V �(xk). As V �(x) is a convex function, �� � 
� because � �
maxx2� V �(x). Hence, it is also proved convergence to 
�. Now,
we will prove that once in ��, the state will remain inside 
�.

As�� � S, Lemma 2 holds for all xk 2 �� so V �(xk+1) � �. This
means that if xk 2 �� then xk+1 2 
�. Following the previous ideas,
using (9) and (12), it is easy to see that if xk 2 �� and xk+1 62 �� the
system will enter again �� without leaving 
�.

Robust satisfaction of the constraints is assured because, by (11) and
Property 2, at each time step a feedback gain obtained from a feasible
solution of (5) is applied.

B. Complexity

The complexity of the controller is measured by both the number of
regions and the evaluation time. In general it is not possible to bound
a priori the number of regions of a multiparametric solution given
by the proposed approach (see [18] for a discussion). Because of the

TABLE I
NUMERICAL RESULTS FOR SYSTEMS OF DIFFERENT ORDERS.

S = fx : kxk � bnd g; T IS THE TREE DEPTH, n IS THE

NUMBER OF REGIONS, T (S) IS THE AVERAGE TIME FOR SOLVING

THE LMI (5), T (S) THE TIME FOR EVALUATING THE PIECEWISE

AFFINE LAW AND V IS THE MAXIMUM VALUE OF V (x) IN S

recursive triangulation, the complexity of the solution usually grows
exponentially with the dimension of the parameter vector. It also de-
pends greatly on the gradient of the optimal cost function V �(x) that
is approximated.

Numerical results1 for three systems (omitted for brevity) are re-
ported in Table I. These systems are unstable and unconstrained. The
weighting matrices are equal to the identity matrix of appropriate di-
mension. The approximated control law has been obtained for different
regions of the state–space S = fx : kxk1 � bndxg. Table I shows
that the parameter bndx affects greatly the number of regions of the
controller. This is due to the fact that, not only the region to be ex-
plored is greater, but also that the gradient of V �(x) increases as x is
farther from the origin. For each region S, the maximum value of V (x)
is given in entry Vmax to show this issue. Despite the high number of
regions, it is apparent that the average time TLMI for solving the SDP
(5) is sensibly larger than the time Tmp for evaluating the piecewise
affine function. This is due to the fact that the maximum number of
linear inequalities that must be evaluated in order to find the solution
is linear in the state dimension and in the maximum depth of the tree
(nxTd).

C. Modified Error Bound

This section presents an alternative approach, based on modifying
the multiparametric algorithm to enforce that the error inside each sim-
plex is small enough to guarantee that the optimal cost function de-
creases at each time step.

Proposition 1: Consider controller (11) based on an approximate
solution (8) of the multiparametric convex program (5) on S, where
S is a full dimensional polyhedron containing the origin in its inte-
rior, such that the error inside each simplex CSi is less than �QSi =
minx2CS xTQcx. If x0 2 S then (11) robustly stabilizes system (1).

Proof: For any state vector inside CSi � S Lemma 2 holds,
and therefore if xTkQcxk > �QSi , then V �(xk+1) � V �(xk) <

0;8[Ak Bk] 2 
. Following the same ideas as in the proof of The-
orem 1, it is easy to see that if the state leaves the set S, the controller
assures that it will enter again with a lower value of V �(x). Following
Lyapunov arguments, as S contains a ball centered in the origin, it
is immediate to prove that the closed-loop system is regulated to the
origin. Robust satisfaction of the constraints is assured because, by
(11) and Property 2, at each time step a feedback gain obtained from a
feasible solution of (5) is applied.

The approximate multiparametric convex programming algorithm
can be modified to enforce the error bound �QSi by modifying the stop-
ping criterion of the second phase of the algorithm: A given simplex
is then subdivided if the upper bound on the error is greater than or

1Numerical results obtained in a AMD Athlom(tm) XP 2800+ using
MATLAB.
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Fig. 1. (a) Optimal cost function V (x). (b) Control input u (x) = F (x)x.

equal to �QSi, which can be evaluated solving a quadratic programming
problem. The state space partition obtained is more complex around
the origin (where �QSi ' 0). In fact, to obtain a finite partition, an ad-
ditional subdivision criterion must be added to deal with the simplex
that contains the origin. In this work, a minimum volume criterion is
adopted.

V. NUMERICAL EXAMPLES

In this section, we exemplify the ideas developed above on the fol-
lowing simple LTV second-order uncertain system:

A
1 =

0:9 0:9

0 0:9
A
2 =

0:9 0:5

0 0:5

B
1;2 =

0

1
(13)

with kxk1 � 2; kuk1 � 1; Qc = I , and Rc = 1.
For this system, Fig. 1(a) and (b), respectively, show the optimal

upper bound V �(x) defined by Kothare’s controller and the corre-
sponding optimal control law u�(x). Note that the value of V �(x) goes

TABLE II
NUMBER OF REGIONS n OF THE STATE PARTITION FOR DIFFERENT VALUES

OF THE ERROR BOUND � FOR SYSTEM (13)

Fig. 2. State–space partition corresponding to (a) the approximate solution
with absolute error bound � = 1 and to (b) the stabilizing criterion described in
Section IV-C.

up to 30. Table II shows the number of regions in the state partition for
different values of �. Fig. 2(a) shows the state partition obtained for
the absolute error bound � = 0:1. The state partition is more complex
near the boundary of the feasible region. This is due to the fact that to-
wards the boundaries the optimal cost function to be approximated has
a larger gradient. Fig. 2(b) shows the state partition of a suboptimizer
which assures a bound on the error on each simplex lower than �QSi as
in Section IV-C. It can be noticed how the partition is rather complex
around the origin (where V �(x) ' 0) but less towards the boundary.
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VI. CONCLUSION

Multiparametric quadratic and linear programming theory has been
applied with success for implementing deterministic MPC controllers.
In this note, we have proposed to apply the approximate multipara-
metric convex programming solver of [18] to the robust MPC control
scheme proposed in [7]. An explicit description of the control law is
obtained for ease of implementation of robust MPC. The control law
assures robust constraint handling and robust convergence to a given
bounded set. Also, an alternative approach has been given in order to
assure convergence to the origin.
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Comments on “On the Global Stability of
Delayed Neural Networks”

Chuandong Li and Xiaofeng Liao

Abstract—In this note, we show that the theorem and its corollary given
in the above paper are not correctly stated. In addition, a revised version is
proposed in the light of the original idea.

Index Terms—Asymptotical stability, equilibrium point, neural net-
works, time delay.

I. INTRODUCTION

Consider the delayed neural network given in [1]

_ui(t) = �ciui(t) +

n

j=1

aijfj (uj(t))

+

n

j=1

bijgj (uj(t� �j)) + Ii; i = 1; 2; . . . ; n: (1)

Assume that u� = (u�1; . . . u
�

n)
T is an equilibrium point of system

(1), the transformation x(t) = u(t) � u� puts (1) into the following
form:

_xi(t) = �cixi(t) +

n

j=1

aij�j (xj(t))

+

n

j=1

bij j (xj(t� �j)) ; i = 1; 2; . . . ; n: (2)

The main theorem presented in [1] is restated as follows.
Theorem 1: The equilibrium u� of (1) is globally asymptotically

stable if there exist constants pk > 0(k = 1; 2; . . . ; L1), qk > 0(k =
1; 2; . . . ; L2), 
j > 0, �ij , ��ij , �ij , ��ij , �ij , ��ij , �ij , ��ij 2 R, i; j =
1; 2; . . . ; n such that

n

j=1

L

k=1

pkjaij j m
r�

j +

j


i
m

r�

i jajij
r�

+

L

k=1

qkjbij j n
r�

j +

j


i
n
r�

i jbjij
r�

< rci (3)

holds for each i = 1; 2; . . . ; n, in which L1�ij + ��ij = 1, L1�ij +
��ij = 1, L2�ij + ��ij = 1, L2�ij + ��ij = 1 for all i; j = 1; 2; . . . ; n

and r � 1 = L

k=1
pk = L

k=1
qk .

Two errors appear in the proof of Theorem 1 when the authors
attempt to obtain (7) by using [1, eq. (5)]. Concisely, the following
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