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Min–Max Control of Constrained Uncertain Discrete-Time
Linear Systems

Alberto Bemporad, Francesco Borrelli, and Manfred Morari

Abstract—For discrete-time uncertain linear systems with constraints
on inputs and states, we develop an approach to determine state feedback
controllers based on a min–max control formulation. Robustness is
achieved against additive norm-bounded input disturbances and/or
polyhedral parametric uncertainties in the state-space matrices. We show
that the finite-horizon robust optimal control law is a continuous piecewise
affine function of the state vector and can be calculated by solving a
sequence of multiparametric linear programs. When the optimal control
law is implemented in a receding horizon scheme, only a piecewise affine
function needs to be evaluated on line at each time step. The technique
computes the robust optimal feedback controller for a rather general class
of systems with modest computational effort without needing to resort to
gridding of the state–space.

Index Terms—Constraints, multiparametric programming, optimal con-
trol, receding horizon control (RHC), robustness.

I. INTRODUCTION

A control system is robust when stability is preserved and the
performance specifications are met for a specified range of model
variations and a class of noise signals (uncertainty range). Although
a rich theory has been developed for the robust control oflinear
systems, very little is known about the robust control oflinear
systems with constraints. This type of problem has been addressed
in the context of constrained optimal control, and, in particular, in
the context of robust receding horizon control (RHC) and robust
model predictive control (MPC); see, e.g., [1] and [2]. A typical
robust RHC/MPC strategy consists of solving a min–max problem to
optimize robust performance (the minimum over the control input of
the maximum over the disturbance) while enforcing input and state
constraints for all possible disturbances. Min–max robust RHC was
originally proposed by Witsenhausen [3]. In the context of robust MPC,
the problem was tackled by Campo and Morari [4], and further
developed in [5] for multiple-input–multiple-output finite-impulse
response plants. Kothareet al. [6] optimize robust performance for
polytopic/multimodel and linear fractional uncertainty, Scokaert and
Mayne [7] for additive disturbances, and Lee and Yu [8] for linear
time-varying and time-invariant state-space models depending on a
vector of parameters� 2 �, where� is either an ellipsoid or a
polyhedron. In all cases, the resulting min–max problems turn out
to be computationally demanding, a serious drawback for online
receding horizon implementation.

In this note we show how state feedback solutions to min–max
robust constrained control problems based on a linear performance
index can be computed offline for systems affected by additive
norm-bounded exogenous disturbances and/or polyhedral parametric
uncertainty. We show that the resulting optimal state feedback control
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law is piecewise affine so that the online computation involves a
simple function evaluation. Earlier results have appeared in [9], and
very recently [10] presented various approaches to characterize the
solution of the open loop min–max problem with a quadratic objective
function. The approach of this note relies on multiparametric solvers,
and follows the ideas proposed earlier in [11]–[13] for the optimal
control of linear systems and hybrid systems without uncertainty.
More details on multiparametric programming can be found in [14],
[15] for linear programs, in [16] for nonlinear programs, and in
[11], [17], and [18] for quadratic programs.

II. PROBLEM STATEMENT

Consider the following discrete-time linear uncertain system:

x(t+ 1) = A(w(t))x(t) +B(w(t))u(t) + Ev(t) (1)

subject to the constraints

Fx(t) +Gu(t) � f (2)

wherex(t) 2 n andu(t) 2 n are the state and input vector, re-
spectively. Vectorsv(t) 2 n andw(t) 2 n are unknown ex-
ogenous disturbances and parametric uncertainties, respectively, and
we assume that only bounds onv(t) andw(t) are known, namely that
v(t) 2 V , whereV � n is a given polytope containing the origin,
V = fv: Lv � `g, and thatw(t) 2 W = fw:Mw � mg, whereW
is a polytope in n . We also assume thatA(w); B(w) are affine func-
tions ofw;A(w) = A0 +

n

i=1
Aiw

i; B(w) = B0 +
n

i=1
Biw

i, a
rather general time-domain description of uncertainty, which includes
uncertain FIR models [4]. A typical example is a polytopic uncertainty
set given as the convex hull ofnw matrices (cf. [6]), namelyW =
fw: � wi � 0; n

i=1
wi � 1;� n

i=1
wi � �1g; A0 = 0; B0 = 0.

The following min–max control problem will be referred to as
open-loop constrained robust optimal control (OL-CROC) problem

J
�

N (x0)
4

=

min
u ;...;u

J(x0; U) (3)

subj: to

Fxk +Guk � f

xk+1 = A(wk)xk +B(wk)uk +Evk

xN 2 X f

k = 0; . . . ; N � 1

8vk 2 V; wk 2 W

8k = 0; . . . ; N � 1 (4)

J(x0; U)
4

=

max
v0; . . . ; vN�1
w0; . . . ; wN�1

N�1

k=0

(kQxkkp + kRukkp)

+ kPxNkp (5)

subj: to

xk+1 = A(wk)xk +B(wk)uk +Evk

vk 2 V

wk 2 W

k = 0; . . . ; N � 1

(6)

wherexk denotes the state vector at timek, obtained by starting from
the statex0

4

= x(0) and applying to model (1) the input sequence

U
4

= fu0; . . . ; uN�1g and the sequencesV
4

= fv0; . . . ; vN�1g;W
4

=
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fw0; . . . ; wN�1g; p = 1 or p = +1; kxk1 andkxk1 are the stan-
dard1-norm and one-norm in n (i.e., kxk1 = maxj=1;...;n jx

j j
andkxk1 = jx1j + � � � + jxnj, wherexj is thejth component ofx),
Q 2 n�n; R 2 n �n are nonsingular matrices,P 2 m�n, and
the constraintxN 2 X f forces the final statexN to belong to the poly-
hedral set

X f 4= fx 2 n: FNx � fNg: (7)

The choice ofX f is typically dictated by stability and feasibility re-
quirements when (3)–(6) is implemented in a receding horizon fashion.
Receding horizon implementations will be discussed in Section IV.
Problem (5)–(6) looks for the worst valueJ(x0; U) of the performance
index and the corresponding worst sequencesV;W as a function ofx0
andU , while problem (3)–(4) minimizes the worst performance subject
to the constraint that the input sequence must be feasiblefor all pos-
sible disturbance realizations. In other words, worst-case performance
is minimized under constraint fulfillment against all possible realiza-
tions ofV;W .

In the sequel, we denote byU� = fu�0; . . . ; u
�
N�1g the optimal

solution to (3)–(6), whereu�j :
n ! n ; j = 0; . . . ; N � 1, and by

X 0 the set of initial statesx0 for which (3)–(6) is feasible.
The min–max formulation (3)–(6) is based on anopen-looppredic-

tion, in contrast to theclosed-loopprediction schemes of [6]–[8], [19],
and [20]. In [19],uk = Fxk + �uk, whereF is a fixed linear feed-
back law, and�uk are new degrees of freedom optimized on line. In [6]
uk = Fxk , andF is optimized online via linear matrix inequalities.
In [20], uk = Fxk + �uk, where�uk andF are optimized on line (for
implementation,F is restricted to belong to a finite set of LQR gains).
In [7] and [8], the optimization is over general feedback laws.

The benefits of closed-loop prediction with respect to the open-loop
prediction can be understood by the following reasoning. In open-loop
prediction, it is assumed that the state will not be measured again over
the prediction horizon and a single-input sequence is to be found that
would guarantee constraint satisfaction for all disturbances; it is well
known that this could result in the nonexistence of a feasible input se-
quence and the infeasibility of (3)–(4). In closed-loop prediction, it is
assumed that the state will be measured at each sample instant over the
prediction horizon and feedback control laws are typically treated as
degrees of freedom to be optimized, rather than input sequences; this
approach is less conservative (see, e.g., [7] and [20]).

Without imposing any predefined structure on the closed-loop con-
troller, we define the following closed-loop constrained robust optimal
control (CL-CROC) problem [3], [8], [21], [22]:

J
�
j (xj)

4
=

min
u

Jj(xj ; uj) (8)

subj: to
Fxj +Guj � f

A(wj)xj +B(wj)uj +Evj 2 X
j+1

8vj 2 V; wj 2 W (9)

Jj(xj ; uj)
4
=

max
v 2V;w 2W

fkQxjkp + kRujkp

+ J
�
j+1(A(wj)xj +B(wj)uj +Evj)g (10)

for j = 0; . . . ; N � 1 and with boundary conditions

J
�
N(xN) = kPxNkp (11)

XN = X f (12)

whereX j denotes the set of statesx for which (8)–(10) is feasible

X j = fx 2 nj9u; (Fx+Gu � f; and A(w)x

+B(w)u+ Ev 2 X j+1
; 8v 2 V; w 2 W)g: (13)

(a)

(b)

(c)

Fig. 1. Polyhedral partition of the state–space corresponding to the explicit
solution of nominal (a) optimal control, (b) OL-CROC, and (c) CL-CROC.

The reason for including constraints (9) in the minimization problem
and not in the maximization problem is that in (10)vj is free to act
regardless of the state constraints. On the other hand, the inputuj has
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(a)

(b)

Fig. 2. Disturbances profiles for Example 1.

the duty of keeping the state within the constraints (9) for all possible
disturbance realizations.

We will consider different ways of solving OL-CROC and
CL-CROC problems in the following sections. First, we will briefly
review other algorithms that were proposed in the literature.

For models affected by additive norm-bounded disturbances
and parametric uncertainties on the impulse response coefficients,
Campo and Morari [4] show how to solve the OL-CROC problem
via linear programming. The idea can be summarized as follows.
First, the minimization of the objective function (3) is replaced by the
minimization of an upper-bound� on the objective function subject
to the constraint that� is indeed an upper bound for all sequences
V = fv0; . . . ; vN�1g 2 V � V � � � � � V (although� is an upper
bound, at the optimum it coincides with the optimal value of the
original problem). Then, by exploiting the convexity of the objective
function (3) with respect toV , such a continuum of constraints is
replaced by a finite number, namely one for each vertex of the set
V �V � � � ��V . As a result, for a given value of the initial statex(0),
the OL-CROC problem is recast as a linear program (LP).

A solution to the CL-CROC problem was given in [7] using a sim-
ilar convexity and vertex enumeration argument. The idea there is to
augment the number of free inputs by allowing one free sequenceUi

for each vertexi of the setV � V � � � � � V , i.e.,N � NN
V free con-

trol moves, whereNV is the number of vertices of the setV . By using
a causality argument, the number of such free control moves is de-
creased to(NN

V � 1)=(NV � 1). Again, using the minimization of
an upper-bound for all the vertices ofV �V � � � � �V , the problem is
recast as a finite dimensional convex optimization problem, which in
the case of1-norms or one-norms, can be handled via linear program-
ming as in [4] (see [23] for details). By reducing the number of degrees
of freedom in the choice of the optimal input moves, other suboptimal
CL-CROC strategies have been proposed, e.g., in [6], [19], and [20].

III. STATE FEEDBACK SOLUTION TO CROC PROBLEMS

In Section II, we have reviewed different approaches to compute nu-
merically the optimal input sequence solving the CROC problems for a
given value of the initial statex0. Here we want to find astate feedback
solution to CROC problems, namely a functionu�k:

n ! n (and an
explicit representation of it) mapping the statexk to its corresponding
optimal inputu�k;8k = 0; . . . ; N � 1.

For a very general parameterization of the uncertainty description,
in [8] the authors propose to solve CL-CROC in state feedback form

via dynamic programming by discretizing the state–space. Therefore,
the technique is limited to simple low-dimensional prediction models.
In this note we aim at finding the exact solution to CROC problems via
multiparametric programming [11], [14], [15], [24], and in addition,
for the CL-CROC problem, by using dynamic programming.

For the problems defined previously, the task of determining
the sequence of optimal control actions can be expressed as a
mathematical program with the initial state as a fixed parameter.
To determine the optimal state feedback law we consider the initial
state as a parameter which can vary over a specified domain. The
resulting problem is referred to as a multiparametric mathematical
program. In the following, we will first define and analyze various
multiparametric mathematical programs. Then we will show how
they can be used to solve the different robust control problems.
Finally, we will demonstrate the effectiveness of these tools on some
numerical examples from the literature.

A. Preliminaries on Multiparametric Programming

Consider the multiparametric program

J�(x) = minzg
0z

subj: to Cz � c+ Sx (14)

wherez 2 n is the optimization vector,x 2 n is the vector of
parameters, andg 2 n ; C 2 n �n ; c 2 n ; S 2 n �n are
constant matrices. We refer to (14) as a (right-hand side)multi-para-
metric linear program(mp-LP) [14], [15].

For a given polyhedral setX � n of parameters, solving (14)
amounts to determining the setXf � X of parameters for which (14)
is feasible, the value functionJ�:Xf ! , and the optimizer function1

z�: Xf !
n .

Theorem 1: Consider the mp-LP (14). Then, the setXf is a convex
polyhedral set, the optimizerz�: n ! n is a continuous2 and
piecewise affine function3 of x, and the optimizer functionJ�:Xf !

is a convex and continuous piecewise affine function ofx.
Proof: See [14].

The following lemma deals with the special case of a multipara-
metric program where the cost function is a convex function ofz and
x.

Lemma 1: Let J : n � n ! be a convex piecewise affine
function of(z; x). Then, the multiparametric optimization problem

J�(x)
4
= min

z
J(z; x)

subj: to Cz � c+ Sx: (15)

is an mp-LP.
Proof: AsJ is a convex piecewise affine function, it follows that

J(z; x) = maxi=1;...;sfLiz + Hix + Kig [25]. Then, it is easy to
show that (15) is equivalent to the following mp-LP:minz;" " subject
toCz � c+ Sx; Liz +Hix+Ki � "; i = 1; . . . ; s.

Lemma 2: Letf : n � n� n ! andg: n � n� n !
n be functions of(z; x; d) convex ind for each(z; x)4 . Assume

1In case of multiple solutions, we definez (x) as one of the optimizers [15].
2In case the optimizer is not unique, a continuous optimizer functionz (x)

can always be chosen; see [15, Remark 4] for details.
3We recall that, given a polyhedral setX � , a continuous function

h: X ! is piecewise affine (PWA)if there exists a partition ofX into
convex polyhedraX ; . . . ; X , andh(x) = H x+ k (H 2 ; k 2

); 8x 2 X ; i = 1; . . . ; N .
4We define a vector-valued function to be convex if all its single-valued com-

ponents are convex functions.
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that the variabled belongs to the polyhedronD with verticesf �dig
N

i=1.
Then, the min–max multiparametric problem

J
�(x) = min

z
max
d2D

f(z; x; d)

subj: to g(z; x; d) � 0 8d 2 D (16)

is equivalent to the multiparametric optimization problem

J
�(x) = min

�;z
�

subj: to � � f(z; x; �di); i = 1; . . . ; ND

g(z; x; �di) � 0; i = 1; . . . ; ND: (17)

Proof: Easily follows by the fact that the maximum of a convex
function over a convex set is attained at an extreme point of the set, cf.
also [7].

Corollary 1: If f is also convex and piecewise affine in(z; x), i.e.,
f(z; x; d) = maxi=1;...;sfLi(d)z+Hi(d)x+Ki(d)g andg is linear
in (z; x) for all d 2 D; g(z; x; d) = Kg(d) + Lg(d)x + Hg(d)z

(with Kg( � ); Lg( � );Hg( � ); Li( � );Hi( � );Ki( � ); i = 1; . . . ; s,
convex functions), then the min–max multiparametric problem (16) is
equivalent to the mp-LP problem

J
�(x) = min

�;z
�

subj: to � � Kj( �di) + Lj( �di)z +Hj( �di)x

8i = 1; . . . ; ND; 8j = 1; . . . ; s

Lg( �di)x+Hg( �di)z � �Kg( �di)

8i = 1; . . . ; ND: (18)

Remark 1: In caseg(z; x; d) = g1(z; x) + g2(d), the second
constraint in (17) can be replaced byg1(z; x) � ��g, where

�g
4
= [�g1; . . . ; �gn ]0 is a vector whoseith component is

�gi = max
d2D

g
i
2(d) (19)

and gi2(d) denotes theith component of g2(d). Similarly, if
f(z; x; d) = f1(z; x) + f2(d), the first constraint in (17) can be
replaced by� � f1(z; x) + �f , where

�f i = max
d2D

f
i
2(d): (20)

Clearly, this has the advantage of reducing the number of constraints in
the multiparametric program (17) fromNDng tong for the second con-
straint and fromNDs to s for the first constraint. Note that (19)–(20)
does not requiref2( � ); g2( � );D to be convex.

In the following sections, we propose an approach based on multi-
parametric linear programming to obtain solutions to CROC problems
in state feedback form.

B. CL-CROC

Theorem 2: By solving N mp-LPs, the solution of CL-CROC is ob-
tained in state feedback piecewise affine form

u
�
k(xk) = F

k
i xk + g

k
i ; if

xk 2 X
k
i

4
= x: T k

i x � S
k
i ; i = 1; . . . ; sk (21)

for all xk 2 X k, whereX k = [
s

i=1X
k
i is the set of statesxk for which

(8)–(10) is feasible withj = k.
Proof: Consider the first stepj = N � 1 of dynamic program-

ming applied to the CL-CROC problem (8)–(10)

J
�
N�1(xN�1)
4
= min

u
JN�1(xN�1; uN�1) (22a)

subj: to

FxN�1 +GuN�1 � f

A(wN�1)xN�1 +B(wN�1)uN�1+

EvN�1 2 X
f

8vN�1 2 V; wN�1 2 W

(22b)

JN�1(xN�1; uN�1)
4
= max

v 2V;w 2W
fkQxN�1kp

+ kRuN�1kp + kP (A(wN�1)xN�1

+B(wN�1)uN�1 +EvN�1)kpg: (22c)

The cost function in the maximization problem (22c) is piecewise
affine and convex with respect to the optimization vectorvN�1; wN�1

and the parametersuN�1; xN�1. Moreover, the constraints in the
minimization problem (22b) are linear in(uN�1; xN�1) for all
vectors vN�1; wN�1. Therefore, by Lemma 2 and Corollary 1,
J�N�1(xN�1); u

�
N�1(xN�1) and XN�1 are computable via the

mp-LP5 :

J
�
N�1(xN�1)
4
= min

�;u
� (23a)

subj: to � � kQxN�1kp + kRuN�1kp

+ kP (A( �wh)xN�1 +B( �wh)uN�1 + E�vi)kp

(23b)

FxN�1 +GuN�1 � f (23c)

A( �wh)xN�1 +B( �wh)uN�1 +E�vi 2 X
N (23d)

8i = 1; . . . ; NV 8h = 1; . . . ; NW

wheref�vig
N

i=1 andf �whg
N

h=1 are the vertices of the disturbance setsV
andW , respectively. By Theorem 1,J�N�1 is a convex and piecewise
affine function ofxN�1, the corresponding optimizeru�N�1 is piece-
wise affine and continuous, and the feasible setXN�1 is a convex poly-
hedron. Therefore, the convexity and linearity arguments still hold for
j = N � 2; . . . ; 0 and the procedure can be iterated backward in time
j, proving the theorem.

Remark 2: Letna andnb be the number of inequalities in (23b) and
(23d), respectively, for anyi andh. In case of additive disturbances only
(w(t) � 0) the total number of constraints in (23b) and (23d) for alli

andh can be reduced from(na + nb)NVNW to na + nb as shown in
Remark 1.

The following corollary is an immediate consequence of the conti-
nuity properties of the mp-LP recalled in Theorem 1, and of Theorem
2:

Corollary 2: The piecewise affine solutionu�k:
n ! n to the

CL-CROC problem is a continuous function ofxk; 8k = 0; . . . ; N�1.

C. OL-CROC

Theorem 3: The solutionU�: X 0 ! Nn to OL-CROC with
parametric uncertainties in theB matrix only(A(w) � A), is a piece-
wise affine function ofx0 2 X 0, whereX 0 is the set of initial states for
which a solution to (3)–(6) exists. It can be found by solving an mp-LP.

Proof: Sincexk = Akx0+
k�1

k=0
Ai[B(w)uk�1�i+Evk�1�i]

is a linear function of the disturbancesW;V for any givenU andx0, the
cost function in the maximization problem (5) is convex and piecewise
affine with respect to the optimization vectorsV;W and the parameters
U; x0. The constraints in (4) are linear inU andx0, for anyV andW .
Therefore, by Lemma 2 and Corollary 1, problem (3)–(6) can be solved
by solving an mp-LP through the enumeration of all the vertices of the
setsV � V � � � � � V andW �W � � � � �W .

We remark that Theorem 3 covers a rather broad class of uncertainty
descriptions, including uncertainty on the coefficients of the impulse
and step response [4]. In case of OL-CROC with additive disturbances

5In casep =1 (23a), (23b) can be rewritten as:min � +

� +� , subject to� � �P x ;8i = 1; 2; . . . ;m; � � �Q x ; 8i =
1; 2; . . . ; n; � � �R u ; 8i = 1; 2; . . . ; n , where denotes theith row.
The casep = 1 can be treated similarly.
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only (w(t) � 0) the number of constraints in (4) can be reduced as
explained in Remark 1.

The following is a corollary of the continuity properties of mp-LP
recalled in Theorem 1 and of Theorem 3:

Corollary 3: The piecewise affine solutionU�:X 0 ! Nn to the
OL-CROC problem with additive disturbances and uncertainty in the
B matrix only(A(w) � A) is a continuous function ofx0.

IV. ROBUST RHC

A robust RHC for (1) which enforces the constraints (2) at each time
t in spite of additive and parametric uncertainties can be obtained im-
mediately by setting

u(t) = u�0(x(t)) (24)

whereu�0:
n ! n is the piecewise affine solution to the OL-CROC

or CL-CROC problems developed in the previous sections. In this
way, we obtain a state feedback strategy defined at all time steps
t = 0; 1; . . ., from the associated finite time CROC problem.

While the stability of the closed-loop system (1)–(24) cannot be
guaranteed (indeed, no robust RHC schemes with a stability guarantee
are available in the literature in the case of general parametric uncer-
tainties) we demonstrate through examples that our feedback solution
performs satisfactorily.

For a discussion on stability of robust RHC we refer the reader to
previously published results, e.g., [1], [2], [23], and [26]. Also, some
stability issues are discussed in [27], which extends the ideas of this
note to the class of piecewise-affine systems.

When the optimal control law is implemented in a moving horizon
scheme, the online computation consists of a simple function evalua-
tion. However, when the number of constraints involved in the opti-
mization problem increases, the number of regions associated with the
piecewise affine control map may increase exponentially. In [28] and
[29], efficient algorithms for the online evaluation of the explicit op-
timal control law were presented, where efficiency is in terms of storage
and computational complexity.

V. EXAMPLES

In [9], we compared the state feedback solutions to nominal RHC
[12], open-loop robust RHC, and closed-loop robust RHC for the
example considered in [7], using infinity norms instead of quadratic
norms in the objective function. For closed-loop robust RHC, the
offline computation time in Matlab 5.3 on a Pentium III 800 was
about 1.3 s by using Theorem 2 (mp-LP). Below we consider another
example.

Example 1: Consider the problem of robustly regulating to the
origin the system

x(t+ 1) =
1 1

0 1
x(t) +

0

1
u(t) +

1 0

0 1
v(t):

We consider the performance measurekPxNk1+ N�1

k=0
(kQxkk1+

jRukj) where

N = 4 P = Q =
1 1

0 1
R = 1:8

andU = fu0; . . . ; u3g, subject to the input constraints�3 � uk �

3; k = 0; . . . ; 3, and the state constraints�10 � xk � 10; k =

0; . . . ; 3. The two-dimensional disturbancev is restricted to the setV =

fv : kvk1 � 1:5g.

We compare the control law (24) for the nominal case, OL-CROC,
and CL-CROC. In all cases, the closed-loop system is simulated from
the initial statex(0) = [�8; 0] with two different disturbances profiles
shown in Fig. 2.

1) Nominal Case:We ignore the disturbancev(t), and solve the re-
sulting multiparametric linear program by using the approach of [12].
The piecewise affine state feedback control law is computed in 23 s, and
the corresponding polyhedral partition (defined over 12 regions) is de-
picted in Fig. 1(a) (for lack of space, we do not report here the different
affine gains for each region). Figs. 3(a)–(b) report the corresponding
evolutions of the state vector. Note that the second disturbance profile
leads to infeasibility at step 3.

2) OL-CROC: The min–max problem is formulated as in (3)–(6)
and solved offline in 582 s. The resulting polyhedral partition (defined
over 24 regions) is depicted in Fig. 1(b). In Fig. 3(c)–(d) the closed-loop
system responses are shown.

3) CL-CROC: The min–max problem is formulated as in (8)–(10)
and solved in 53 s using the approach of Theorem 2. The resulting
polyhedral partition (defined over 21 regions) is depicted in Fig. 1(c).
In Fig. 3(e)–(f), the closed-loop system responses can be seen.

Remark 3: As shown in [23], the approach of [7] to solve
CL-CROC, requires the solution of one mp-LP where the number of
constraints is proportional to the numberNN

V of extreme points of
the setV � V � � � � � V � Nn of disturbance sequences, and the
number of optimization variables, as observed earlier, is proportional
to (NN

V � 1)=(NV � 1), whereNV is the number of vertices ofV .
Let nJ andnX be the number of the affine gains of the cost-to-go
functionJ�i and the number of constraints definingX i, respectively.
The dynamic programming approach of Theorem 2 requiresN

mp-LPs where at stepi the number of optimization variables isnu+1

and the number of constraints is equal to a quantity proportional to
(nJ + nX ). Simulation experiments have shown thatnJ andnX
do not increase exponentially during the recursioni = N � 1; . . . ; 0

(although, in the worst case, they could). For instance in Example
1, we have at step 0nJ = 34 andnX = 4 while NV = 4 and
NN

V = 256. As the complexity of an mp-LP depends mostly (in
general combinatorially) on the number of constraints, one can expect
that the approach presented here is numerically more efficient than the
approach of [7] [23]. On the other hand, it is also true that the latter
approach could benefit from the elimination of redundant inequalities
before solving the mp-LP (how many inequalities is quite difficult to
quantifya priori).

We remark that the offline computational time of CL-CROC is about
ten times smaller than the one of OL-CROC, where the vertex enu-
meration would lead to a problem with 12 288 constraints, reduced to
52 by applying Remark 1, and further reduced to 38 after removing
redundant inequalities in the extended space of variables and parame-
ters. We finally remark that by enlarging the disturbancev to the set
~V = fv : kvk1 � 2g the OL-RRHC problem becomes infeasible for
all the initial states, while the CL-RRHC problem is still feasible for a
certain set of initial states.

Example 2: We consider here the problem of robustly regulating to
the origin the active suspension system [30]

x(t+ 1) =

0:809 0:009 0 0

�36:93 0:80 0 0

0:191 �0:009 1 0:01

0 0 0 1

x(t) +

0:0005

0:0935

�0:005

�0:0100

u(t) +

�0:009

0:191

�0:0006

0

v(t)
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(a)

(b)

(c)

(d)

(e)

(f)

Fig. 3. Closed-loop simulations for the two disturbances shown in Fig. 2:
nominal case (a, b), OL-CROC (c, d), and CL-CROC (e, f).

where the input disturbancev(t) represents the vertical ground
velocity of the road profile andu(t) the vertical acceleration.

We solved the CL-CROC (8)–(10) withN = 4; P = Q =

diagf5000; 0:1; 400; 0:1g;X f = 4, andR = 1:8, with input
constraints�5 � u � 5, and the state constraints

�0:02

�1

�0:05

�1

� x �

0:02

+1

0:05

+1

:

The disturbancev is restricted to the set�0:4 � v � 0:4. The problem
was solved in less then 5 min for the subset

X = x 2 4j

�0:02

�1

�0:05

�0:5

� x �

0:02

1

0:50

0:5

of states, and the resulting piecewise-affine robust optimal control law
is defined over 390 polyhedral regions.

VI. CONCLUSION

This note has shown how to find state feedback solutions to con-
strained robust optimal control problems based on min–max optimiza-
tion, for both open-loop and closed-loop formulations. The resulting
robust optimal control law is piecewise affine. Such a characterization
is especially useful in those applications of robust receding horizon
control where online min–max constrained optimization may be com-
putationally prohibitive. In fact, our technique allows the design of ro-
bust optimal feedback controllers with modest computational effort for
a rather general class of systems.
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Upper Bounds for Approximation of Continuous-Time
Dynamics Using Delayed Outputs and

Feedforward Neural Networks

Eugene Lavretsky, Naira Hovakimyan, and Anthony J. Calise

Abstract—The problem of approximation of unknown dynamics of
a continuous-time observable nonlinear system is considered using a
feedforward neural network, operating over delayed sampled outputs
of the system. Error bounds are derived that explicitly depend upon the
sampling time interval and network architecture. The main result of this
note broadens the class of nonlinear dynamical systems for which adaptive
output feedback control and state estimation problems are solvable.

Index Terms—Adaptive estimation, adaptive output feedback, approxi-
mation, continuous-time dynamics, feedforward neural networks.

I. INTRODUCTION

We consider approximation ofcontinuous-timedynamics of an ob-
servable nonlinear system givendelayed sampled valuesof the system
output. Although the problem has obvious application to system identi-
fication, our primary motivation originates within the context of adap-
tiveoutputfeedback control of nonlinear continuous-time systems with
both parametric and dynamic uncertainties. A reasonable assumption
in identification and control problems isobservabilityof the system,
which for discrete-time systems, given by difference equations, enables
state estimation, system identification and output feedback control [1].
In [1], it is shown that given an arbitrary strongly observable nonlinear
discrete-time system

x(k + 1) = f [x(k); u(k)] y(k) = h[x(k)] (1)

wherex(k) 2 X �
n is the internal state of the system,u(k) 2 U �

is the input to the system,y(k) 2 Y � is the output,1 there exists
an equivalent input-output representation, i.e., there exists a function
g( � ) and a numberl, such that future outputs can be determined based
on a number of past observations of the inputs and outputs

y(k + 1) = g[y(k); y(k � 1); . . . ; y(k � l+ 1)

u(k); u(k � 1); . . . ; u(k � l+ 1)]: (2)

Based on this property, adaptive state estimation, system identifica-
tion and adaptive output feedback control for a general class of dis-
crete-time systems are addressed and solved in [1] using neural net-
works. An equivalence, such as the one between (1) and (2), has not
been demonstrated for continuous-time systems. Therefore, adaptive
output feedback control of unknown continuous-time systems has been
formulated and solved for a limited class of systems [2].
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