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Technical Notes and Correspondence

Min—Max Control of Constrained Uncertain Discrete-Time law is piecewise affine so that the online computation involves a
Linear Systems simple function evaluation. Earlier results have appeared in [9], and
very recently [10] presented various approaches to characterize the
Alberto Bemporad, Francesco Borrelli, and Manfred Morari  solution of the open loop min—-max problem with a quadratic objective
function. The approach of this note relies on multiparametric solvers,
and follows the ideas proposed earlier in [11]-[13] for the optimal
Abstract—For discrete-time uncertain linear systems with constraints cgontrol of linear systems and hybrid systems without uncertainty.

on inputs and states, we de\_/elop an approach to dete_rmine state feEdbfaCkMore details on multiparametric programming can be found in [14]
controllers based on a min—max control formulation. Robustness is ’

achieved against additive norm-bounded input disturbances and/or [15] for linear programs, in [161 for nonlinear programs, and in
polyhedral parametric uncertainties in the state-space matrices. We show [11], [17], and [18] for quadratic programs.

that the finite-horizon robust optimal control law is a continuous piecewise

affine function of the state vector and can be calculated by solving a
sequence of multiparametric linear programs. When the optimal control

law is implemented in a receding horizon scheme, only a piecewise affine  Consider the following discrete-time linear uncertain system:
function needs to be evaluated on line at each time step. The technique

Il. PROBLEM STATEMENT

computes the robust optimal feedback controller for a rather general class 2(t 4+ 1) = A(w®)a(t) + Blw(t))u(t) + Eou(t 1
of systems with modest computational effort without needing to resort to ( ) (w(t)z(?) (w(®)u(®) (®) (1)
gridding of the state-space. subject to the constraints

Index Terms—Constraints, multiparametric programming, optimal con-
trol, receding horizon control (RHC), robustness. Fa(t) + Gu(t) < f 2

wherez(t) € R™ andu(t) € R"* are the state and input vector, re-
I. INTRODUCTION spectively. Vectors/(t) € R"* andw(t) € R"* are unknown ex-
?oﬁgenous disturbances and parametric uncertainties, respectively, and

A]‘( control syster_r;_ Ist' robust whertl fStab'“ty Is_f_prgserved afnd t assume that only bounds oft) andw(t) are known, namely that
performance specifications are met for a specified range of mod }) € V, where)’ C R™* is a given polytope containing the origin,

variations and a class of noise signals (uncertainty range). AIthoug = {v: Lv < (}, and thatw(¢) € W = {w: Mw < m}, whereW

a rich theory has been developed for the robust controlingfar isapolytope_irR”;.We also assumethalt(w).B(w_)are é\fﬁnefunc-

systems very little is known about the robust control dhear tions ofw, A(w) = A + 7 Aw', B(w) ;BD+Z""’ B’ a
5 £ = / i=1 7 5 2 B i=1 T ’

§ystems with constramté’_hls type_ of problem has bgen ad_dresse_ ther general time-domain description of uncertainty, which includes
in the context of constrained optimal control, and, in particular, in

. - certain FIR models [4]. A typical example is a polytopic uncertainty
the context of robust receding horizon control (RHC) and robu§£t given as the convex hull of, matrices (cf. [6]), namelyy —

model predictive control (MPC_); see, e.g., [1] apd [2]. A typicaiém < 0,37 w' < 1, -y w' < =1}, Ay = 0, By = 0.
rob.us't RHC/MPC strategy consists (')f.solvmg a min-max prqblem The following min—-max control_problem will be referred to as
opt|m|ze_ robust performa_nce (the minimum over t_he (_:ontrol Input %efgen-loop constrained robust optimal control (OL-CROC) problem
the maximum over the disturbance) while enforcing input and stai

constraints for all possible disturbances. Min—max robust RHC was T (o) I

originally proposed by Witsenhausen [3]. In the context of robust MPC,

the problem was tackled by Campo and Morari [4], and further ,‘01_1_1_1_/},1}%1'](‘”0’0) 3)
developed in [5] for multiple-input—multiple-output finite-impulse Fai+Gup < f

response plants. Kothaet al. [6] optimize robust performance for . = A(we)re + B(;v Vu + Eug
polytopic/multimodel and linear fractional uncertainty, Scokaert and subj. to { " FTT T ATRITE R)Tk ke

Mayne [7] for additive disturbances, and Lee and Yu [8] for linear e e !
time-varying and time-invariant state-space models depending on a k=0,....N-1
vector of parameterd € ©, where © is either an ellipsoid or a Vo € V,wp €W
polyhedron. In all cases, the resulting min—-max problems turn out Vk=0,....N -1 4
to be computationally demanding, a serious drawback for online T (0. U) N
receding horizon implementation. ’ ’ Nt

In this note we show how state feedback solutions to min—-max

> Q| + || Ruall,)

. . max
robust constrained control problems based on a linear performance Vo, UN
index can be computed offline for systems affected by additive Wor o WN B
norm-bounded exogenous disturbances and/or polyhedral parametric ’ P 'v 5
uncertainty. We show that the resulting optimal state feedback control Pl ©)
Th1 = A(wg)xy + Blwg)ug + Evg
. v €V
. . . subj. to (6)
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{wo,...,wn—1}; p = 1l orp = +oo, ||z|| and||z||: are the stan-
dardsc-norm and one-norm iR™ (i.e., ||2]|cc = max;—; |2’
and||z||: = |='| + --- 4+ |="|, wherez’ is thejth component of:),

Q € R"*", R € R"+*"« are nonsingular matrice, ¢ R"*", and
the constrainkx € X'/ forces the final state v to belong to the poly-
hedral set

X2 fr e R Fye < ful. @)
The choice oft” is typically dictated by stability and feasibility re-
quirements when (3)—(6) is implemented in a receding horizon fashior
Receding horizon implementations will be discussed in Section IV.

Problem (5)—(6) looks for the worst valuézo, U) of the performance
index and the corresponding worst sequeiédd” as a function ofo
andl’, while problem (3)—(4) minimizes the worst performance subject
to the constraint that the input sequence must be feafiblall pos-
sible disturbance realizations. In other words, worst-case performanc
is minimized under constraint fulfillment against all possible realiza-
tions of V, W.

In the sequel, we denote By* = {ug,...,ux_;} the optimal
solution to (3)—(6), where;: R* — R"*,j =0,...,N —1,and by
X° the set of initial states, for which (3)—(6) is feasible.

The min—max formulation (3)—(6) is based onaren-looppredic-
tion, in contrast to thelosed-loomprediction schemes of [6]-[8], [19],
and [20]. In [19],u, = Fz + uy, whereF is a fixed linear feed-
back law, andi;. are new degrees of freedom optimized on line. In [6]
ur = Fay, andF is optimized online via linear matrix inequalities.

In [20], ux, = Fxy, + uy, whereu, and F' are optimized on line (for
implementationF" is restricted to belong to a finite set of LQR gains).
In [7] and [8], the optimization is over general feedback laws.

The benefits of closed-loop prediction with respect to the open-loop
prediction can be understood by the following reasoning. In open-loop
prediction, it is assumed that the state will not be measured again ove
the prediction horizon and a single-input sequence is to be found that
would guarantee constraint satisfaction for all disturbances; it is well
known that this could result in the nonexistence of a feasible input se-
quence and the infeasibility of (3)—(4). In closed-loop prediction, it is

assumed that the state will be measured at each sample instant over the

prediction horizon and feedback control laws are typically treated as
degrees of freedom to be optimized, rather than input sequences; t
approach is less conservative (see, e.g., [7] and [20]).

Without imposing any predefined structure on the closed-loop cor
troller, we define the following closed-loop constrained robust optima
control (CL-CROC) problem [3], [8], [21], [22]:

& -
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J; (z;) =
min J;(aj, uj) (8) h
P
bi. ¢ Fao;+Gu; < f
subj. to N :
) A(wj)a; + B(wj)u; + Evj € X7
Vu; € V,w; € W 9
A
Jilwj,uj) =
. - Ru,l|,
‘vjel{/r‘}i?EW{HQIJHP + || Ryl
+ Ji 1 (A(w;)z; + B(wj)u; + Evy)} - (10) % 8 6 4 2 o0 2 4 6 8 10
X
forj =0,...,N — 1 and with boundary conditions 1
(©)
* rN) = P "N || . i i ici
JN(t\l\z I fl vl (11) Fig. 1. Polyhedral partition of the state—space corresponding to the explicit
AT =X (12)  solution of nominal (a) optimal control, (b) OL-CROC, and (c) CL-CROC.

whereX? denotes the set of statesor which (8)—(10) is feasible

X = {r € R"|Fu, (Fr + Gu < f,and A(w)x
+B(w)u+ Eve X' Yo eV,we W)} (13)

The reason for including constraints (9) in the minimization problem
and not in the maximization problem is that in (18)is free to act
regardless of the state constraints. On the other hand, thetnghas
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o

via dynamic programming by discretizing the state—space. Therefore,
// the technique is limited to simple low-dimensional prediction models.
In this note we aim at finding the exact solution to CROC problems via
multiparametric programming [11], [14], [15], [24], and in addition,
for the CL-CROC problem, by using dynamic programming.

For the problems defined previously, the task of determining
the sequence of optimal control actions can be expressed as a
mathematical program with the initial state as a fixed parameter.
To determine the optimal state feedback law we consider the initial
state as a parameter which can vary over a specified domain. The
resulting problem is referred to as a multiparametric mathematical

program. In the following, we will first define and analyze various
/ multiparametric mathematical programs. Then we will show how
they can be used to solve the different robust control problems.
Finally, we will demonstrate the effectiveness of these tools on some
8 10 12 14 16 18 20 numerical examples from the literature.

Time
(b)

Fig. 2. Disturbances profiles for Example 1.
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A. Preliminaries on Multiparametric Programming

Consider the multiparametric program

the duty of keeping the state within the constraints (9) for all possible J*(x) = min.g'z

disturbaqce reali;ation; . subj. to Cz < ¢+ Sa (14)
We will consider different ways of solving OL-CROC and

CL-CROC problems in the following sections. First, we will briefly o oo n

review other algorithms that were proposed in the literature. where: € R" is thergptlmlzatlc:nx\ﬁectomf € R" Is thenvic}or of
For models affected by additive norm-bounded disturbancB&r@meters, and € R"=,C" € R"™"*,c € R"¢,5 € R""" are

and parametric uncertainties on the impulse response coefficief@Stant matrices. We refer to (14) as a (right-hand siué)i-para-

Campo and Morari [4] show how to solve the OL-CROC probler€tric linear program(mp-LP) [14], [15]. _

via linear programming. The idea can be summarized as follows.FOr @ given polyhedral seX’ C R" of parameters, solving (14)

First, the minimization of the objective function (3) is replaced by th@mounts to determining the s& C X' of parameters for which (14)

minimization of an upper-boung on the objective function subject iS feasible, the value functioh™: X ; — R, and the optimizer functidn

to the constraint that is indeed an upper bound for all sequence§*1 Xy — R™.

V = {vos....on_1} € VXV x --- x V (althoughy is an upper Theorem 1: Consider the mp-LP (14). Then, the Sét is a convex

bound, at the optimum it coincides with the optimal value of thgolyhedral set, the optimizer: R* — R"+ is a continuou% and

original problem). Then, by exploiting the convexity of the objectiv@iecewise affine functidhof x, and the optimizer functiod™: X —

function (3) with respect td”, such a continuum of constraints isR is a convex and continuous piecewise affine functiom of

replaced by a finite number, namely one for each vertex of the set Proof: See [14]. O
Y xVx---xV.Asaresult, for a given value of the initial statg)), The following lemma deals with the special case of a multipara-
the OL-CROC problem is recast as a linear program (LP). metric program where the cost function is a convex function ahd

A solution to the CL-CROC problem was given in [7] using a simz.
ilar convexity and vertex enumeration argument. The idea there is tod,emma 1: Let J : R x R — R be a convex piecewise affine
augment the number of free inputs by allowing one free sequEncefunction of (=, ). Then, the multiparametric optimization problem
for each vertex ofthesetV x V x --- x V,i.e,, N - N{,V free con-
trol moves, wheréVy, is the number of vertices of the sgt By using NN

. f J () = min J(z,x)

a causality argument, the number of such free control moves is de- z
creased tq Ny — 1)/(Ny — 1). Again, using the minimization of subj. to Cz < ¢+ Sx. (15)
an upper-bound for all the verticesBfx V x - - - x V, the problem is
recast as a finite dimensional convex optimization problem, which jg an mp-Lp.
the case obc-norms or one-norms, can be handled via linear program-  proof: As J is a convex piecewise affine function, it follows that
ming as in [4] (see [23] for details). By reducing the numberofdegregstz’M = maxiey. o {Liz + Hiz + K} [25]. Then, it is easy to
of freedom in the choice of the optimal input moves, other suboptimg, ., that (15) is équivalent to the following mp-Liin. . = subject

CL-CROC strategies have been proposed, e.g., in [6], [19], and [20}O Co<etSu,Lisd+ Hu+ K <ei=1,....s 0
Lemmaz2: Letf : R"* xR" xR"? — Randg: R"* xR" xR"4 —
11l. STATE FEEDBACK SOLUTION TO CROC ROBLEMS R"™¢ be functions Of(z, X, (l) convex ind for each(z, :L‘)4 . Assume

In Section I, we have reviewed different approaches to compute nuin case of multiple solutions, we define () as one of the optimizers [15].
merically the optimal input sequence solving the CROC problems for &In case the optimizer is not unique, a continuous optimizer functign:)
given value of the initial state, . Here we want to find atate feedback can always be chosen; see [15, Remark 4] for details.
solution to CROC problems, namely a functigh R* — R"* (and an SWe recayl1|‘ that,_given' a polyhedral sat C R"1, a contin_upus fun_ction
explicit representation of it) mapping the stateto its corresponding ]go rf\i ex_;o oul%yhz elisr gf'ic.e.v\_”ﬁs)e(ifﬁgs d(}f(\;v)p‘j:”}?:i ixﬁtffi peaFRtJf,'?': OZX k'ntg
optimal inputuy,Vk = 0,..., N — 1. R"2),Vx € X;,i=1,...,N. '

For a very general parameterization of the uncertainty descriptionawe define a vector-valued function to be convex if all its single-valued com-
in [8] the authors propose to solve CL-CROC in state feedback fonmnents are convex functions.
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that the variablel belongs to the polyhedraR with vertices{d; }* 7 . In-1(en—1,un—1)
Then, the min—max multiparametric problem A
= max _ {llQe~—1ll»

J*(z) = min max f(z,x.d UN—1EV N
() = min max f(z, . d)

subj. to g(z,z,d) <0 Vd €D (16)
is equivalent to the multiparametric optimization problem

+ 1 Run 1l + 1 P(Awx 1)y
+ B(wy—1)un—1+ Evn_1)||,}- (22c)
The cost function in the maximization problem (22c) is piecewise

I (x) = lf}}? H affine and convex with respect to the optimization veetor 1, wx—1
subj. top > f(za,di), i=1.....Np aqd_ the parametere,\v_1,x,w_1. M(_Jreove_r, the constraints in the
- ) o minimization problem (22b) are linear iflun—i,zx—1) for all
g(z.w,di) <0, i=1....Np. (A7) vectors vN_1,wNn—1. Therefore, by Lemma 2 and Corollary 1,

Proof: Easily follows by the fact that the maximum of a convexJ% _ (xn—1),ui_;(zx—1) and X¥~' are computable via the
function over a convex set is attained at an extreme point of the set,rop-LF?:

also [7]. a .
Corollary 1: If f is also convex and piecewise affine(in x), i.e., Jy-1(en-1)
f(z, x,d) = max;=1, {Li(d)z+ H,(d)r + K;(d)} andg is linear 2 hin m (23a)
in(z,z) forald € D,g(z,2,d) = Ky(d) + Ly(d)x + Hy(d)z HoUN -1
(With K (). Ly(-), Hy(+), Li(-), Hi(+), Ki(-).i = 1,...,s, subj. to p > [|Qen—1|lp + [[Run—1ll»
convex functions), then the min—max multiparametric problem (16) is + |P(A(@rn)en—1 + B(wn)un—1+ Ev)||,
equivalent to the mp-LP problem (23b)
T (x) = min p Fan 1+ Gun1 < f (23¢c)
subj. to p > K;(d;) + Lj(d;)z + H;(d;)x A(@p)en—1 + B(@y)un—1 + Ev; € XY (23d)
Vi=1,...,Np,Vj=1,...,5 Vi=1l....,Ny Vh=1....Nw
Lo(di)x + Hg_(d‘i)z < —Ko(di) where{#;} % and{. }, are the vertices of the disturbance Séts
Vi=1,...,Np. (18) andW, respectively. By Theorem I%;_, is a convex and piecewise
Remark 1:In caseg(z,xz,d) = gi(z,2) 4+ g2(d), the second affine function ofzx _,, the corresponding optimizery _, is piece-

constraint in (17) can be replaced by (z.2) < —g, where wise affine and continuous, and the feasible¥&t * is a convex poly-

7 N [7'.....5"%] is a vector whoséth component is hedro'n. Therefore, the convexity and Ilnearlty arguments still h_old_ for
. ; j =N —2,...,0and the procedure can be iterated backward in time
g = max 92(d) 19 proving the theorem. O

Remark 2: Letn, andn; be the number of inequalities in (23b) and
(23d), respectively, for anyandh. In case of additive disturbances only
(w(t) = 0) the total number of constraints in (23b) and (23d) for all
_ ) andh can be reduced fron., + ny) Ny Ny ton, + np as shown in

fi= max f2(d). (20)  Remark 1. 0
Clearly, this has the advantage of reducing the number of constraints i "€ following corollary is an immediate consequence of the conti-
the multiparametric program (17) frof¥ip 11, ton,, for the second con- nuity properties of the mp-LP recalled in Theorem 1, and of Theorem

straint and fromNp s to s for the first constraint. Note that (19)—(20)2: ) . . . - n
does not requirg: ( - ), g>( - ). D to be convex. Corollary 2: The piecewise affine solutiom;: R" — R" to the

In the following sections, we propose an approach based on muffk"CROC problemis a continuous functionaf. vk = 0,.... N —1.
parametric linear programming to obtain solutions to CROC probler&s

and g5(d) denotes theith component ofgs(d). Similarly, if
f(z,2,d) = fi(z,2) + f2(d), the first constraint in (17) can be
replaced by > fi(z,2z) + f, where

in state feedback form. OL-CROC
Theorem 3: The solutionU*: x° — R™"* to OL-CROC with
B. CL-CROC parametric uncertainties in tHg matrix only(A(w) = A), is a piece-
Theorem 2: By solving N mp-LPs, the solution of CL-CROC is Ob_wise affine function of:y € A%, whereX® is the set of initial states for
tained in state feedback piecewise affine form which a solution to (3)—(6) exists. It can be found by solving an mp-LP.

Proof: Sincery = A¥wo+35 0 A'[B(w)up—1—i+Evp_1;]
is alinear function of the disturbancBs V' for any givenl/ andzo, the
er € XF 2 {;x: Tre < S,"} i=1,...,5 (21) cost function in the maximization problem (5) is convex and piecewise
affine with respect to the optimization vectdfsi¥ and the parameters
U, xo. The constraints in (4) are linear &h andx,, for anyV andWW.
Therefore, by Lemma 2 and Corollary 1, problem (3)—(6) can be solved
by solving an mp-LP through the enumeration of all the vertices of the

u:(’ﬂl\) = Fl‘kl‘k + gf-/ if

forallx, € X%, whereX* = Ui, A'F is the set of states, for which
(8)—(10) is feasible withy = %.
Proof: Consider the first step = N — 1 of dynamic program-

ming applied to the CL-CROC problem (8)—(10) setsV x VX ---xVandW x W x - x W. 0
Jn_1(zn_1) We remark that Theorem 3 covers a rather broad class of uncertainty
2 i Tner (2Nt 1) (22a) descriptions, including uncertainty on the coefficients of the impulse
un_1 T and step response [4]. In case of OL-CROC with additive disturbances

Fen_1+Gun—1 < f 5 ) i

Alwn o Blwn_1)un 1+ In casep =00 (23a), (23b) can'be rewritten asing ; o ug.uy_y M1 +
A(wy—1)en—1+ Blwny—1)un—1 (22b)  f12-Hha, SUDJECHGL, > £ Piwn. Vi = 1.2,....m, 2 > £Q a1, ¥i =
Euy_, € X/ 1,2,...,n, 5 > £Run_1,Vi = 1,2,...,n,,where’ denotes théth row.
Yon—1 €V, wn—1 EW The case = 1 can be treated similarly.

subj. to
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only (w(t) = 0) the number of constraints in (4) can be reduced as We compare the control law (24) for the nominal case, OL-CROC,
explained in Remark 1. and CL-CROC. In all cases, the closed-loop system is simulated from
The following is a corollary of the continuity properties of mp-LPthe initial stater(0) = [—8, 0] with two different disturbances profiles
recalled in Theorem 1 and of Theorem 3: shown in Fig. 2.
Corollary 3: The piecewise affine solutidii*: X° — RV« to the 1) Nominal Case:We ignore the disturbanegt), and solve the re-
OL-CROC problem with additive disturbances and uncertainty in thgilting multiparametric linear program by using the approach of [12].

B matrix only (A(w) = A) is a continuous function ofo. The piecewise affine state feedback control law is computed in 23 s, and
the corresponding polyhedral partition (defined over 12 regions) is de-
IV. RoBUSTRHC picted in Fig. 1(a) (for lack of space, we do not report here the different

A robust RHC for (1) which enforces the constraints (2) at each timaécflne gams for each region). Figs. 3(a)—(b) report the correspondln_g
. . - . - . .evolutions of the state vector. Note that the second disturbance profile
t in spite of additive and parametric uncertainties can be obtained IMag infeasibili

mediately by setting eads to infeasibility at s_tep 3. _ _

2) OL-CROC: The min—-max problem is formulated as in (3)—(6)
and solved offline in 582 s. The resulting polyhedral partition (defined
over 24 regions) is depicted in Fig. 1(b). In Fig. 3(c)—(d) the closed-loop
. oon _ . . ) . system responses are shown.
whereu;: R* — R"* is the piecewise affine solution to the OL-CROC 3) CL-CROC: The min—max problem is formulated as in (8)—(10)

or CL'CROb? .probletmts (:evg:)opekd Itn tthe p:je\:(l.ousd S?Ct'l(ljr:_s' In ihé%d solved in 53 s using the approach of Theorem 2. The resulting
way, we obtain a state feedback strategy detined at all time s eiPoSiyhedral partition (defined over 21 regions) is depicted in Fig. 1(c).

t=0,1,..., from the associated finite time CROC problem. ;
P . In Fig. 3(e)—(f), the closed-loop system responses can be seen.
While the stability of the closed-loop system (1)—(24) cannot be Remark 3:As shown in [23], the approach of [7] to solve

guaranteed (indeed, no robust RHC schemes with a stability guaraniee ~p~ - requires the solution of one mp-LP where the number of
are available in the literature in the case of general parametric unc@é’nstraints, is proportional to the numbas) of extreme points of
tainties) we demonstrate through examples that our feedback squng sefy x V x --- x V C RV™ of disturbance sequences, and the

peliformsdgatlsfgctorlly. tability of robust RHC tor th d number of optimization variables, as observed earlier, is proportional
or & cIscussion on stability of robus we Teter the reader {8 (N — 1)/(Ny — 1), whereNy is the number of vertices of.

previously published results, e.g., [1], [2], [23], and [26]. Also, SomEet n;+ andn.x, be the number of the affine gains of the cost-to-go

u(t) = ui(a(®)) (24)

stability issues are discusged in .[27]’ which extends the ideas of t URction J¥ and the number of constraints defining, respectively.
note to the clasg of p|eceW|se-aff|ng systems. . . .__The dynamic programming approach of Theorem 2 requikes
When the optimal control law is implemented in a moving honzorrlnp_LPS where at stepthe number of optimization variablesig + 1
scheme, the online computation consists of a simple function eval%%-d the number of constraints is equal to a quantity proportional to
tion. However, when the number of constraints involved in the opt@ + + nx.). Simulation experiments have shown that andrn.x
mization problem increases, the number of regions associated with éﬁot iné(rlea.\se exponentiarl) during the recursica N T "6
piecewise affine control map may increase exponentially. In [28] araéithough in the worst casg they could). For insiance }r.1.I.E’><ampIe
[29], efficient algorithms for the online evaluation of the explicit P e hav’e atstep 0, — 34 s :.4 o nce In e
timal control law were presented, where efficiency is in terms ofstoragkéN — 956, As the complexity of 0 LP d d ty (i
and computational complexity. -y 20. As e complexity of an mp epends mosty (in
general combinatorially) on the number of constraints, one can expect
that the approach presented here is numerically more efficient than the

approach of [7] [23]. On the other hand, it is also true that the latter
In [9], we compared the state feedback solutions to nominal RH&@Proach could benefit from the elimination of redundant inequalities
[12], open-loop robust RHC, and closed-loop robust RHC for tHeefore solving the mp-LP (how many inequalities is quite difficult to

example considered in [7], using infinity norms instead of quadratfiantifya priori). _ _ _ o
norms in the objective function. For closed-loop robust RHC, the We remark that the offline computational time of CL-CROC is about

offline computation time in Matlab 5.3 on a Pentium IIl 800 waden times smaller than the one of OL-CROC, where the vertex enu-
about 1.3 s by using Theorem 2 (mp-LP). Below we consider anotHggeration would lead to a problem with 12 288 constraints, reduced to

V. EXAMPLES

example. 52 by applying Remark 1, and further reduced to 38 after removing
Example 1: Consider the problem of robustly regulating to théedundant inequalities in the extended space of variables and parame-
origin the system ters. We finally remark that by enlarging the disturband® the set
V ={v: ||v]l« < 2} the OL-RRHC problem becomes infeasible for
11 0 1 0 all the initial states, while the CL-RRHC problem is still feasible for a
a(t+1) = [O 1} @) + {1} u(t) + {0 1} v(t). certain set of initial states. O

Example 2: We consider here the problem of robustly regulating to
We consider the performance measyifer v ||+ 31— ([|Q |-+  the origin the active suspension system [30]

| Fuv]) where 0.809  0.009 0 0
) —36.93 0.80 0 0
N=4 P=Q= {(1) i] R=18 dHD=10101 —0.000 1 001
0 0 0 1
andU = {wo,...,us}, subject to the input constraints3 < wu; < 0.0005 —0.009
3,k = 0,...,3, and the state constraintsl0 < z; < 10,k = 0.0935 0.191
0,...,3.The two-dimensional disturbancés restricted to the sét = (1) + —0.005 u(t) + —0.0006 v(t)

{v: o]l < 1.5} —0.0100 0
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Fig. 3. Closed-loop simulations for the two disturbances shown in Fig.
nominal case (a, b), OL-CROC (c, d), and CL-CROC (e, f).

where the input disturbance(t) represents the vertical ground
velocity of the road profile andu(¢) the vertical acceleration.
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We solved the CL-CROC (8)—(10) withV 4, P Q
diag{5000,0.1,400,0.1}, &7 = R', andR = 1.8, with input

constraints-5 < « < 5, and the state constraints

—0.02 0.02
Nl B T e
—0.05] —  — 10.05
—0o0 oo

The disturbance is restricted to the set0.4 < v < 0.4. The problem
was solved in less then 5 min for the subset

-0.02
-1
—0.05
—0.5

0.02
1
0.50
0.

X ={z€eR <z <

5

of states, and the resulting piecewise-affine robust optimal control law
is defined over 390 polyhedral regions. d

VI. CONCLUSION

This note has shown how to find state feedback solutions to con-
strained robust optimal control problems based on min—-max optimiza-
tion, for both open-loop and closed-loop formulations. The resulting
robust optimal control law is piecewise affine. Such a characterization
is especially useful in those applications of robust receding horizon
control where online min—max constrained optimization may be com-
putationally prohibitive. In fact, our technique allows the design of ro-
bust optimal feedback controllers with modest computational effort for
a rather general class of systems.
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