
832 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 49, NO. 5, MAY 2004

[8] E. Fridman and U. Shaked, “An improved stabilization method for
linear time-delay systems,” IEEE Trans. Automat. Contr., vol. 47, pp.
1931–1937, Nov. 2002.

[9] , “Delay-dependent stability and H control: constant and time-
varying delays,” Int. J. Control, vol. 76, no. 1, pp. 48–60, 2003.

[10] , “Parameter dependent stability and stabilization of uncertain time-
delay systems,” IEEE Trans. Automat. Contr., vol. 48, pp. 861–866,May
2003.

[11] T. Mori, “Criteria for asymptotic stability of linear time-delay systems,”
IEEE Trans. Automat. Contr., vol. AC-30, pp. 158–161, Feb. 1985.

[12] J. H. Lee, S. W. Kim, and W. H. Kwon, “Memoryless H controllers
for state delayed systems,” IEEE Trans. Automat. Contr., vol. 39, pp.
159–162, Jan. 1994.

[13] T. J. Su and C. G. Huang, “Robust stability of delay dependence for
linear uncertain systems,” IEEE Trans. Automat. Contr., vol. 37, pp.
1656–1659, Oct. 1992.

[14] X. Li and C. E. de Souza, “Delay-dependent robust stability and sta-
bilization of uncertain linear dealy systems: a linear matrix inequality
approach,” IEEE Trans. Automat. Contr., vol. 42, pp. 1144–1148, Aug.
1997.

[15] Y. Gu, S. Wang, Z. C. Q. Li, and J. Qian, “On delay-dependent stability
and decay estimate for uncertain systems with time-varying delay,” Au-
tomatica, vol. 34, no. 8, pp. 1035–1039, 1998.

[16] Y. Y. Cao, Y. X. Sun, and C. W. Cheng, “Delay-dependent robust sta-
bilization of uncertain systems with multiple state delays,” IEEE Trans.
Automat. Contr., vol. 43, pp. 1608–1612, Nov. 1998.

[17] C. E. de Souza and X. Li, “Delay-dependent robust H control of un-
certain linear state-delayed systems,” Automatica, vol. 35, no. 7, pp.
1313–1321, 1999.

[18] P. Park, “A delay-dependent stability criterion for systems with uncer-
tain time-invariant delays,” IEEE Trans. Automat. Contr., vol. 44, pp.
876–877, Apr. 1999.

[19] Y. S. Moon, P. Park, W. H. Kwon, and Y. S. Lee, “Delay-dependent
robust stabilization of uncertain state-delayed systems,” Int. J. Control,
vol. 74, no. 14, pp. 1447–1455, 2001.

[20] Q. L. Han and K. Q. Gu, “On robust stability of time-delay systems with
norm-bounded uncertainty,” IEEE Trans. Automat. Contr., vol. 46, pp.
1426–1431, Sept. 2001.

[21] J. H. Kim, “Delay and its time-derivative dependent roubst stability of
time-delayed linear systems with uncertainty,” IEEE Trans. Automat.
Contr., vol. 46, pp. 789–792, May 2001.

[22] Q. L. Han, “New results for delay-dependent stability of linear systems
with time-varying delay,” Int. J. Syst. Sci., vol. 33, pp. 213–228, 2002.

[23] , “Robust stability of uncertain delay-differential systems of neutral
type,” Automatica, vol. 38, no. 4, pp. 719–723, 2002.

[24] D. Yue and S. Won, “An improvement on ‘delay and its time-derivative
dependent roubst stability of time-delayed linear systems with uncer-
tainty’,” IEEE Trans. Automat. Contr., vol. 47, pp. 407–408, Feb. 2002.

[25] S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix In-
equality in System andControl Theory. Philadelphia, PA: SIAM, 1994.

[26] J. Hale, Theory of Functional Differential Equations. New York:
Springer-Verlag, 1977.

Efficient Conversion of Mixed Logical Dynamical Systems
Into an Equivalent Piecewise Affine Form

Alberto Bemporad

Abstract—For hybrid systems described by switched linear difference
equations, linear threshold conditions, automata, and propositional logic
conditions, described in mixed logical dynamical form, this note describes
two algorithms for transforming such systems into an equivalent piecewise
affine form, where equivalentmeans that for the same initial conditions and
input sequences the trajectories of the system are identical. The proposed
techniques exploit ideas from mixed-integer programming and multipara-
metric programming.

Index Terms—Equivalent models, hybrid systems, mixed-integer
programming, multiparametric programming, piecewise affine systems.

I. INTRODUCTION

Hybrid systems provide a unified framework for describing pro-
cesses evolving according to continuous dynamics, discrete dynamics,
and logic rules [1]–[5]. The interest in hybrid systems is mainly
motivated by the large variety of practical situations where physical
processes interact with digital controllers, as for instance in embedded
systems. Several modeling formalisms have been developed to
describe hybrid systems [6]. Among them are the class of piecewise
affine (PWA) systems [7], linear complementarity (LC) systems [8],
and mixed logical dynamical (MLD) systems [9]. In particular the
language HYSDEL (hybrid systems description language) [10] was
developed to obtain MLD models from a high level textual description
of the hybrid dynamics. Examples of real-world applications that
can be naturally modeled within the MLD framework are reported in
[9]–[11].
Each subclass has its own advantages. Although control and state-es-

timation techniques based on online mixed-integer optimization or of-
fline multiparametric mixed-integer programming were proposed for
MLD hybrid models [9], [12], most of the other hybrid techniques re-
quire a PWA formulation, such as: stability criteria [13]–[15], synthesis
of explicit piecewise affine optimal controllers [16]–[18], and verifica-
tion of safety properties via reachability analysis [19]–[21]. In addition,
simulation of hybrid systems is much easier for PWA systems (evalu-
ation of a PWA function per time step), than for MLD systems (one
mixed-integer feasibility test per time step [9]) and LC system (one
linear complementarity problem per time step).
In [6] and [22], we showed thatMLD, PWA, LC, and other classes of

hybrid systems are equivalent. Some of the equivalences were obtained
under additional assumptions related to well-posedness (i.e., existence
and uniqueness of solution trajectories) and boundedness of (some)
system variables. These results are extremely important, as they allow
to transfer all the analysis and synthesis tools developed for one partic-
ular class to any of the other equivalent subclasses of hybrid systems.
While the transformation of a PWA system into MLD form can be

done immediately, for instance by using appropriate “big-M” tech-
niques [9], the reverse transformation from MLD to PWA described in
[22] requires the enumeration of all possible combinations of the binary
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variables contained in the MLD model. This note provides efficient al-
gorithms that avoid such an enumeration and compute very efficiently
the equivalent PWA form of a given MLD system. We believe that the
proposed algorithms will extend the use of tools tailored for PWA sys-
tems, such piecewise quadratic Lyapunov functions for stability anal-
ysis [14], [15] and multiparametric programming for the synthesis of
optimal control laws [16], to many real-life nontrivial hybrid problems,
as those that can be described in the modeling language HYSDEL. A
Matlab implementation of the techniques described in this note is avail-
able at http://www.dii.unisi.it/~bemporad/tools.html and are included
in the Hybrid Toolbox for Matlab [23].

II. PRELIMINARIES

A. PWA Systems

PWA systems are described by

x(k + 1) = Aix(k) +Biu(k) + fi

y(k) = Cix(k) +Diu(k) + gi; for
x(k)

u(k)
2 
i

(1)

where u(k) 2 m; x(k) 2 n, and y(k) 2 p denote the input, state

and output, respectively, at time k;
i
�
= f

x

u
: Hixx + Hiuu �

Kig; i = 1; . . . ; s, are convex (possibly unbounded) polyhedra in the
input+state space. Ai; Bi; Ci; Di;Hix, and Hiu are real matrices
of appropriate dimensions and fi and gi are real vectors for all
i = 1; . . . ; s.

PWA systems have been studied by several authors (see [7], [9], [13],
[14], and the references therein) as they form the “simplest” extension
of linear systems that can still model nonlinear and nonsmooth pro-
cesses with arbitrary accuracy and are capable of handling hybrid phe-
nomena, such as linear-threshold events and mode switching.

A PWA system of the form (1) is called well-posed, if (1) is uniquely
solvable in x(k + 1) and y(k), once x(k) and u(k) are specified.
A necessary and sufficient condition for the PWA system (1) to be
well-posed over 


�
= s

i=1

i is therefore that x(k + 1); y(k) are

single-valued PWA functions of x(k); u(k). Therefore, typically the
sets 
i have mutually disjoint interiors, and are often defined as the
partition of a convex polyhedral set 
. In case of discontinuities of the
PWA functions over overlapping boundaries of the regions
i, onemay
ensure well-posedness either by writing some of the inequalities in the
form (Hix)

jx + (Hiu)
ju < K

j
i , where

j denotes the jth row, or by
shrinking some of the inequalities to the form (Hix)

jx + (Hiu)
ju �

K
j
i � �, where � is a small number (see Remark 1). Although this

would be important from a system theoretical point of view, it is not
of practical interest from a numerical point of view, as “<” cannot be
represented in numerical algorithms working in finite precision. In the
following we shall neglect this issue for the sake of compactness of
notation.

B. MLD Systems

In [9], a class of hybrid systems has been introduced in which logic,
dynamics, and constraints are integrated, of the form

x(k + 1) = Ax(k) +B1u(k) +B2�(k) +B3z(k) (2a)

y(k) = Cx(k) +D1u(k) +D2�(k) +D3z(k) (2b)

E2�(k) + E3z(k) � E1u(k) + E4x(k) +E5 (2c)

where x(k) =
xc(k)

x`(k)
is the state vector, xc(k) 2 n , and x`(k) 2

f0; 1gn , y(k) =
yc(k)

y`(k)
2 p � f0; 1gp is the output vector

u(k) =
uc(k)

u`(k)
2 m � f0; 1gm is the input vector, z(k) 2

r and �(k) 2 f0; 1gr are auxiliary variables, A;Bi; C;Di, and
Ei denote real constant matrices, E5 is a real vector, nc > 0, and
pc;mc; rc; n`; p`;m`; r` � 0. Without loss of generality, we assumed
that the continuous components of a mixed-integer vector are always
the first. Inequalities (2c) must be interpreted componentwise. Systems
that can be described by model (2) are called MLD systems. Contrary
to [9], we allow here that the input vector u(k) and state vector x(k)
may have unbounded components.
The MLD system (2) is called completely well-posed if �(k) and

z(k) are uniquely defined by (2c) in their domain, once x(k) and u(k)
are assigned [9]. From (2a)–(2b) this implies that also x(k + 1); y(k)
are uniquely defined functions of x(k); u(k).
The MLD formalism allows specifying the evolution of continuous

variables through linear dynamic equations, of discrete variables
through propositional logic statements and automata, and the mutual
interaction between the two. The key idea of the approach consists
of embedding the logic part in the state equations by transforming
Boolean variables into 0-1 integers, and by expressing the relations
as mixed-integer linear inequalities (see [9], [10], and the references
therein). MLD systems are therefore capable of modeling a broad class
of systems, in particular those systems that can be modeled through
the hybrid system description language HYSDEL [10].

C. Equivalence of MLD and PWA Systems

Definition 1: Let �1;�2 be hybrid systems in state-space form,
with equal state, input, and output dimensions. �1 and �2 are said
equivalent if whenever their states x1(k) = x2(k) and input vectors
u1(k) = u2(k), then the successor states x1(k+ 1) = x2(k+ 1) and
outputs y1(k) = y2(k), where k 2 �0 and �0 is the set of non-
negative integers.
Note that if trajectories are persistent, i.e., defined for all k 2 �0,

then Definition 1 implies that starting from the same initial state and
applying the same input sequence, the state and output trajectories of
two equivalent systems are identical.
The following proposition has been stated in [22] and is an easy

extension of the corresponding result in [9] for piecewise linear (PWL)
systems (i.e., PWA systems with fi = gi = 0).
Proposition 1: Consider a well-posed PWA system (1) and let the

set 
 of feasible states and inputs be bounded. Then, there exists an
MLD system (2) such that (1) and (2) are equivalent.
Remark 1: As MLD models only allow that nonstrict inequalities

are included in (2c), in rewriting a discontinuous PWA system as an
MLD model strict inequalities like x(k) < 0 must be approximated
by x(k) � �" for some " > 0 (typically the machine precision),
with the assumption that �" < x(k) < 0 cannot occur due to the
finite number of bits used for representing real numbers (no problem
exists when the PWA is continuous, where the strict inequality can be
equivalently rewritten as nonstrict, or " = 0); see [6] and [9] for more
details. From a strictly theoretical point of view, the inclusion stated in
Proposition 1 is, therefore, not exact for discontinuous PWA systems.
As discussed previously, one way of circumventing such an inexactness
is to allow part of the inequalities in (2c) to be strict, or to avoid strict
inequalities in the definition of the PWA dynamics. On the other hand,
from a numerical point of view this issue is not relevant.
The reverse statement of Proposition 1 has been established in [22]

under the condition that the MLD system is completely well-posed. A
slightly different and more general proof is reported here below, as it
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will be an essential ingredient of the MLD-to-PWA translation algo-
rithms described in Section III.
Definition 2: The feasible state+input set 
 � n � f0; 1gn �
m �f0; 1gm is the set of states+inputs pairs (x(k); u(k)) for which

(2c) has a solution for some �(k) 2 r ; z(k) 2 r .
Proposition 2: For every completely well-posed MLD system

(2) there exists an equivalent well-posed PWA system (1), i.e., the
feasible state+input set of (2) 
 can be partitioned into a collection
of convex polyhedra f
ig

s
i=1;
 = s

i=1

i, and there exist 5-tu-

ples (Ai; Bi; Ci; fi; gi); i = 1; . . . ; s, such that all the trajectories
x(k); u(k); y(k) of the MLD system (2) also satisfy (1).

Proof: By well-posedness of system (2), given x(k) and u(k)
there exists only one pair (�(k); z(k)) satisfying (2c), i.e., there exist
two functions F` : n � f0; 1gn � m � f0; 1gm 7! f0; 1gr

and Fc : n � f0; 1gn � m � f0; 1gm 7! r such that
�(k) = F`(x(k); u(k)); z(k) = Fc(x(k); u(k)); k 2 +. The idea
is to partition the space n +m of continuous states and inputs by
grouping in regions 
i all

xc(k)

uc(k)
2 n +m

corresponding to the same logic state x`(k) = x`i 2 f0; 1gn ,
binary input u`(k) = u`i 2 f0; 1gu , and binary vector
�(k) = F`(x(k); u(k)) 2 f0; 1g

r . Let us fix x`(k) = x`i; u`(k) =
u`i; �(k) � �i; i = 1; . . . ; 2n +m +r . The inequalities (2c) define
a polyhedron P in n +m +r . Moreover, from (2c) it is possible to
extract linear relations that involve z(k); xc(k); uc(k) (for instance,
pairs of symmetric inequalities that correspond to linear equalities)
and, therefore, matrices K4i; K1i;K5i such that

z(k) = K4ixc(k) +K1iuc(k) +K5i

8x(k); u(k) :

x`(k)

u`(k)

F (x(k); u(k))

=

x`i
u`i
�i

(3)

and that P � n +m +r is a polyhedral set of dimension less than or
equal to nc+mc (for instance if nc = 1;mc = 0; rc = 1;P would be
a segment in 2). By substituting (3) into (2a)–(2b), and by partitioning

A =
Acc Ac`

A`c A``

B1 =
B1cc B1c`

B1`c B1``

B2 =
B2c

B2`

B3 =
B3c

B3`

C =
Ccc Cc`

C`c C``

D1 =
D1cc D1c`

D1`c D1``

D2 =
D2c

D2`

D3 =
D3c

D3`

we obtain

xc(k + 1)

= (Acc +B3cK4i)xc(k) + (B1cc +B3cK1i)uc(k)

+ (B2c�i +B3cK5i + Ac`x`i +B1c`u`i) (4a)

x`(k + 1)

= (A`c +B3`K4i)xc(k) + (B1`c +B3`K1i)uc(k)

+ (B2`�i +B3`K5i + A``x`i +B1``u`i) (4b)

yc(k)

= (Ccc +D3cK4i)xc(k) + (D1cc +D3cK4i)uc(k)

+ (Cc`x`i +D1c`u`i +D3cK5i +D2c�i) (4c)

y`(k)

= (C`c +D3`K4i)xc(k) + (D1`c +D3cK4i)uc(k)

+ (C``x`i +D1``u`i +D3`K5i +D2`�i) (4d)

which, by a suitable choice ofAi; Bi; Ci; fi; gi, corresponds to (1) for


i =
xc
uc

: (E3K4i � E4c)xc + (E3K1i �E1c)uc

� (E1`u`i �E2�i �E3K5i + E4`x`i + E5)

� fx`ig � fu`ig (5)

where E1 = [E1c E1`]; E4 = [E4c E4`].
Note that the well-posedness of the original MLD system implies

that x`(k + 1) and y`(k) in (4) are always f0; 1g-valued. Note also
that well-posedness of the equivalent PWA systems and, hence, that
the affine maps in (4) must coincide on possible overlaps
i\
j ; i 6=
j. We also remark that, in general, the feasible state+input set of (2)

 = s

i=1

i may be nonconvex.

Remark 2: It may happen that different combinations (x`; u`; �)
lead to the same dynamics (Ai; Bi; Ci; fi; gi) and polyhedral cell 
i,
for instance if the MLD system contains redundant auxiliary binary
variables. In this case, duplicates should be eliminated.

III. TRANSLATION ALGORITHMS

For any given MLD system, Proposition 2 is constructive, as it
returns the equivalent PWA system. However, it is based on the
enumeration of all 2n +m +r combinations of binary (x`; u`; �)
variables. In general, most combinations lead to empty regions 
i in
(5), and a method that avoids the enumeration of all possibilities is
therefore desirable for computation efficiency. In this note, we propose
to avoid such an enumeration by using techniques of multiparametric
programming [24], [25] and of mixed-integer linear programming
(MILP), for which several efficient solvers exist [26], [27]. The key
idea is to determine a feasible combination (x`i; u`i; �i) via MILP
and generate the corresponding polyhedral cell 
i and dynamics
(Ai; Bi; Ci;Di; fi; gi).
Before proceeding further, we first embed the sets 
i in n+m by

treating the integer vectors x`; u` as real-valued vectors during the ex-
ploration of the state+input set. In particular, we replace the set f0; 1g
with [�1=2; 1=2) [ [1=2; 3=2].
Let

S =
x

u
: �A

x

u
� �B � n+m

be a polyhedral set of states/input pairs (x(k); u(k)) over which we
look for a PWA system (1) which is equivalent to the given MLD
system,1 and assume there exist a pair

(x1; u1) =
xc1
x`1

;
uc1
u`1

in S such that x`1 2 f0; 1gn ; u`1 2 f0; 1g
m , and such that theMLD

inequalities (2c) E2�1+E2z1 � E1u1+E4x1+E5 are satisfied for
some �1 2 f0; 1gr ; z1 2 r . Assuming that S is bounded, in order
to have (x1; u1) as much inside S as possible we solve the MILP

(x1; u1; �1; z1; �1) = arg max
x;u;�;z;�

�

subj: to E2� + E2z � E1u+ E4x+ E5

�A
x

u
+ em+n� � �B

� � 0

x` 2 f0; 1g
n u` 2 f0; 1g

m

� 2 f0; 1gr z 2 r (6)

1Typically, an information is available a priori on an over approximation S
of 
, as generally MLD models are obtained by HYSDEL through the appli-
cation of the so-called “big-M” technique, which requires the specification of
upper and lower bounds on state and input variables [9], [10], [28] (see also the
example reported in [29, App. A]).
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TABLE I
ALGORITHM 1: MLD-TO-PWA TRANSLATION

where en+m = [1 . . . 1]0 2 n+m. In case S is unbounded, a finite
pair (x1; u1) can be obtained by adding the linear constraint � � �max
in (6), and by choosing a finite optimizer (x1; u1) in case there are
multiple optima.

If the MILP (6) is infeasible, then either S is empty or the PWA dy-
namics is not defined over S (the latter condition may arise if the MLD
system is badly posed, i.e., for all initial states x(0) no input u(0) and
no auxiliary vectors �(0); z(0) exist that fulfil the MLD constraints
(2c) and therefore provide a successor x(1) and output y(0)). Other-
wise, let �1 be the corresponding optimal � for problem (6), and for
the triple (x`1; u`1; �1) compute the corresponding linear expression
for z according to (3), the quintuple (A1; B1; C1; f1; g1) according to
(4), and the corresponding region 
1 where such quintuple is valid
according to (5), with the assumption that xi`1 = 0 is represented by
xi`1 2 [�1=2; 1=2]; xi`1 = 1 is represented by xi`1 2 [1=2; 3=2], where
xi`1 denotes the ith component of x`1, and similarly for the components
ui`1 of the logic part of the input vector u`1. Clearly,
1 is a polyhedron
in n+m and represents the first region of the equivalent PWA system,
associated with the combination of logic variables x`1; u`1; �1.

In the following sections, we detail two possible algorithms for de-
termining the remaining polyhedral regions and the corresponding dy-
namics of the equivalent PWA form of the given MLD dynamics.

A. Recursive Algorithm

The nonconvex rest S n 
1 � n+m is partitioned into convex
polyhedral cells Rj ; j = 1; . . . ; p0, in accordance with the following
theorem (cf. ([25, Th. 3]).

Theorem 1: Let P � n+m be a polyhedron, and let� = f
x

u
2

P : G
x

u
� gg be a nonempty polyhedral subset of P , where G 2

p�(n+m). Also, let

Rj =
x

u
2 P :

Gj x

u
> gj

Gh x

u
� gh 8h < j

j = 1; . . . ; p0

where Gj denotes the jth row of G and gj denotes the jth entry of g.
Then, i)P = ([pj=1Rj)[�; ii)� Rj = ; for all j andRj\Rh = ;
for all j 6= h, i.e., f�; R1; . . . ; Rpg is a partition of P .

After partitioning the restSn
1, we proceed recursively:We choose
for each region Ri a new triple (x`1; u`1; �1) by solving the MILP (6)

with �A; �B such that f
x

u
: �A

x

u
� �Bg = Ri. If the MILP is

infeasible, region Ri is discarded. Otherwise, if the optimal solution
(x`1; u`1; �1) provides a new combination, (3)–(5) are computed to cal-
culate a new affine dynamics and polyhedral cell
i. Then, Theorem 1
is applied withP = Ri;� = Ri\
i (in order to minimize the number
p0 of regionsRi generated at each recursion, before applying Theorem
1 it is convenient to remove all redundant inequalities from the repre-
sentation of�, which requires the solution of qi linear programs, where

qi is the number of linear inequalities defining Ri), and the algorithm
proceeds recursively.
In order to avoid finding the same combination (x`; u`; �) twice

during the recursion, and therefore improve the performance of the al-
gorithm, the “no-good” constraint [30]

(x`; u`; �) 6= (x`j ; u`j ; �j) (7)

is imposed when determining a new combination (x`; u`; �), for all
combinations (x`j ; u`j ; �j) already found during the recursion. It is
easy to check that (7) is equivalent to the linear inequality constraint
n

i=1

2xi`j � 1 xi` +

m

i=1

2ui`j � 1 ui` +

r

i=1

2�ij � 1 �i

�

n

i=1

xi`j +

m

i=1

ui`j +

r

i=1

�ij � 1 (8)

which is included in (6).
At the end of the recursion, in a postprocessing operation, in order

to reduce the number of polyhedral cells in the PWA system we check
all pairs of regions in the state+input space n+m where the affine dy-
namics (for both the continuous and logic components of the state and
output vectors) are the same, and try to compute their union, provided
that the union is a convex set [31].
Algorithm 1 reported in Table I and Algorithm 1-1 reported in

Table II summarize the recursive procedure for translating a given
MLD system into a PWA system that is equivalent in the sense of
Definition 1; see Fig. 1.

B. Sequential Algorithm

Rather then following the recursive approach of Algorithm 1, all re-
gions
i; i = 1; . . . ; s can be obtained by repeatedly solving theMILP
(6) with the addition of the constraint (8), for all j = 1; . . . ; i� 1. To
this end, Algorithm 1-1 should be replaced by Algorithm 1-2 reported
in Table III.
We remark that after the PWA form has been generated, an opti-

mized MLD with minimum number of integer variables can be easily
obtained by efficiently coding the PWA dynamics as described in [9],
for instance by using dlog2 se integer variables, where s � 2n +m +r

is the number of regions in the PWA partition generated by Algorithm
1-1 or Algorithm 1-2.

C. Convergence and Complexity

Since the number of possible combinations of binary variables is
bounded by 2n +m +r , and since at each recursion of Algorithm 1-1
or at each iteration of Algorithm 1-2 the bound is decreased by one be-
cause of constraint (8), it is immediate to prove that both algorithms
terminate after a finite number of iterations. In particular, the tree as-
sociated with the recursive structure of Algorithm 1-1 has a maximum
depth of 2n +m +r . Although in the worst case the complexity of both
algorithms is clearly exponential in the number of binary variables, on
average it is typically significantly better than the algorithm suggested



836 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 49, NO. 5, MAY 2004

TABLE II
ALGORITHM 1-1: RECURSIVE MLD-TO-PWA TRANSLATION

Fig. 1. PWA system equivalent to the MLD model described in the example (the partition does not depend on the input T ). Same level of gray means same
value of u ; u .

in Proposition 2, where all possible combinations of binary variables
are enumerated [22].

Algorithm 1-1 and Algorithm 1-2 have pros and cons, and in gen-
eral one cannot assess the superiority of one over the other. Algorithm
1-2 enumerates all combinations (x`; u`; �) leading to nonempty cells

i. As observed in Remark 2, different combinations may lead to du-
plicates, and therefore Algorithm 1-2 would generate all duplicates,
while Algorithm 1-1, because of the subpartitioning induced by step
5.6., may avoid generating duplicates. On the other hand, Algorithm
1-1 may execute several infeasible MILPs before stopping the search
for new cells.

IV. AN EXAMPLE

Assume there are two bodies B1; B2 in a room, let T1; T2 be their
temperatures, and let Tamb be the room temperature (units are omitted
here, as the parameters have no particular meaning in this example).
We say that B1 is hot if T1 � Th1, cold if T1 � Tc1, very hot if
T1 � Tvh1, very cold if T1 � Tvc2, and that B2 is hot if T2 � Th2,
cold if T1 � Tc2, very hot if T2 � Tvh2, very cold if T1 � Tvc2. The
room is equipped with a heater delivering thermal power uhot and an
air conditioning system draining thermal power ucold. These are turned
on/off according to the following rules: The heater is on if B1 is cold,
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TABLE III
ALGORITHM-1-2: SEQUENTIAL MLD-TO-PWA TRANSLATION

or B2 is cold and B1 is not hot, or B2 is very cold, but never if B1 is
very hot; the air conditioning is on if B1 is hot, or B2 is hot and B1

is not cold, of B2 is very hot, but never if B1 is very cold; otherwise,
heater and air conditioning are off.

The dynamical equations of the model are described by the differ-
ence equations

Ti(k + 1)� Ti(k)

Ts
= ��i(Ti(k)� Tamb(k))

+ ki(uhot(k)� ucold(k)); i = 1; 2 (9)

where �1 = 1; �2 = 0:5; k1 = 0:8; k2 = 0:4; Ts = 0:5. By intro-
ducing binary variables �hi; �ci; �vhi; �vci 2 f0; 1g; i = 1; 2, the logic
relations of the model can be expressed as

[�hi = 1]$ [Ti � Thi] (10a)

[�ci = 1]$ [Ti � Tci] (10b)

[�vhi = 1]$ [Ti � Tvhi] (10c)

[�vci = 1]$ [Ti � Tvci]; i = 1; 2 (10d)

uhot =

uH; if [�vh1 = 0] ^ ([�c1 = 1] _ ([�c2 = 1]

^[�h1 = 0]))

0; otherwise

ucold =

uC; if [�vc1 = 0] ^ ([�h1 = 1] _ ([�h2 = 1]

^[�c1 = 0]))

0; otherwise

(11)

where “^” denotes the logic “and,” “_” the logic “or,”
Th1 = 30; Tc1 = 15; Th2 = 35; Tc2 = 10; Tvh1 = 40; Tvc1 =
5; Tvh2 = 45; Tvc2 = 2, and uH = 2; uC = 2 are constant power
heating and cooling levels, respectively.

Model (9)–(11) is described in HYSDEL, as reported in Appendix I,
and the corresponding MLD model has nc = 2 continuous states
(T1; T2); n` = 0 logic states, mc = 1 continuous input (Tamb),
m` = 0 binary inputs, r` = 10 auxiliary binary variables [eight
thresholds in (10) plus two for the “or” conditions in (11)], two aux-
iliary variables (uhot; ucold), and 32 mixed-integer inequalities. The
total number of binary variables is n` + m` + r` = 10, which gives
a worst-case number of possible regions in the PWA system equal to
210 = 1024. Let S = f[T1 T2 Tamb]

0 : �10 � T1 � 50;�10 �
T2 � 50;�50 � Tamb � 50g be the set of states+inputs over which
theMLD system is defined, and over which wewant to obtain an equiv-
alent PWAmodel. By running Algorithm 1-1, we obtain a PWA equiva-
lent consisting of 9 regions, computed in 1.87 s in Matlab 6.5 on a Pen-
tium III 800 MHz machine using the MILP solver GLPK 4.1 [27]. The
same PWA system is obtained in 1.59 s using Algorithm 1-2. The enu-
merative algorithm of [22] requires 6.75 s (clearly, one should expect
that the superiority of Algorithms 1-1, 1-2 increases with the number
of binary variables in the MLD system). Further examples are reported
in [23] and [29].

V. CONCLUSION

We have described an efficient algorithm for translating hybrid
systems expressed as mixed logical dynamical system into an equiv-
alent piecewise affine system, where equivalence means that the
same initial conditions and inputs produce identical state and output
trajectories. We believe that the result is very useful to apply several
techniques available for PWA systems such as stability analysis, veri-
fication, simulation, and in particular controller synthesis techniques
[16]–[18], to relatively complex hybrid systems composed by linear
dynamics, automata, propositional logic, linear threshold conditions,
and IF–THEN–ELSE rules, such as those described by the modeling
language HYSDEL [10].

APPENDIX I
HYSDEL DESCRIPTION

SYSTEM heatcool {

INTERFACE {

STATE { REAL T1 ;

REAL T2 ; }

INPUT { REAL Tamb ; }

PARAMETER {

REAL ; /* sampling time, seconds */

REAL ;

REAL ;

REAL ;

REAL ;

REAL ;

REAL ;

REAL ;

}

}

IMPLEMENTATION {

AUX { REAL uhot, ucold;

BOOL hot1, hot2, cold1, cold2;

BOOL vhot1, vcold1, vhot2, vcold2;

}

AD { ;

;

;

; }

DA { {IF vhot1 & (cold1 (cold2 & hot1)

vcold2) THEN Uh ELSE 0};

{IF vcold1 & (hot1 (hot2 & cold1)

vhot2) THEN Uc ELSE 0}; }

CONTINUOUS {

;

; }

}

}
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Control of a Planar Underactuated Biped
on a Complete Walking Cycle

Ahmed Chemori and Antonio Loría

Abstract—We address the problem of stabilizing a planar biped robot
on a complete walking cycle. Our approach is based on singling out the
three fundamental phases of motion of a biped: single and double-support,
separated (sequentially) by an impact “instantaneous” phase. We propose
control laws to drive the robot for a finite time during each phase, while
ensuring certain robustness vis-a-vis the impacts which are treated as ex-
ternal perturbations.

Index Terms—Bipod robots, underactuated mechanical systems.

I. INTRODUCTION

Biped robots have gained an increasing interest in the last few years.
From a control viewpoint the problem ofmaking a biped have a dynam-
ically stable walk (i.e., to follow a reference trajectory or path) is inter-
esting due to the complexity of the model: it consists on a set of con-
strained differential equations and a discrete-time map which induces
discontinuity in the solutions. Furthermore, the structure of the system
changes depending on the phase of motion “loosing” or “gaining” de-
grees of freedom. Many approaches have been proposed in the litera-
ture to address the problem of stable dynamic walking. See for instance
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