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Optimal Control of Continuous-Time Switched
Affine Systems
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Alberto Bemporad, Member, IEEE

Abstract—This paper deals with optimal control of switched
piecewise affine autonomous systems, where the objective is to
minimize a performance index over an infinite time horizon. We
assume that the switching sequence has a finite length, and that the
decision variables are the switching instants and the sequence of
operating modes. We present two different approaches for solving
such an optimal control problem. The first approach iterates
between a procedure that finds an optimal switching sequence of
modes, and a procedure that finds the optimal switching instants.
The second approach is inspired by dynamic programming and
identifies the regions of the state space where an optimal mode
switch should occur, therefore providing a state feedback control
law.

Index Terms—Dynamic programming, hybrid systems, optimal
control, switched systems.

I. INTRODUCTION

RECENT technological innovations have caused an ever in-
creasing interest in the study of hybrid systems and many

significant results have appeared in the literature [9], [11], [24],
[38]. A hybrid system has many operating modes, each one gov-
erned by its own characteristic dynamical law [14]. Typically,
mode transitions are classified as autonomous when they are
triggered by variables crossing specific thresholds (state events)
or by the elapse of certain time periods (time events), or con-
trolled when they are triggered by external input events.

A. Optimal Control of Hybrid Systems: State of the Art

The problem of determining optimal control laws for hybrid
systems and in particular for switched systems, has been ex-
tensively investigated in the last years and many results can be
found in the control and computer science literature. Many au-
thors considered very general problem statements so that it is
only possible to derive necessary conditions for optimality, other
authors provided methods for computing open-loop optimal tra-
jectories. However very few practical algorithms were given for
computing a state-feedback optimal control law. Here, we re-
view the most relevant literature.

For continuous-time hybrid systems, Branicky and Mitter
[10] compare several algorithms for optimal control, while
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Branicky et al. [9] discuss general conditions for the existence
of optimal control laws for hybrid systems.

Necessary optimality conditions for a trajectory of a switched
system are derived using the maximum principle by Sussmann
[31] and Piccoli [24], who consider a fixed sequence of finite
length. A similar approach is used by Riedinger et al. [26], who
restrict the attention to linear quadratic cost functionals but con-
sidering both autonomous and controlled switches.

Hedlund and Rantzer [19] use convex dynamic programming
to approximate hybrid optimal control laws and to compute
lower and upper bounds of the optimal cost, while the case
of piecewise-affine systems is discussed by Rantzer and Jo-
hansson [25]. For determining the optimal feedback control law
these techniques require the discretization of the state space
in order to solve the corresponding Hamilton–Jacobi–Bellman
equations.

Gokbayrak and Cassandras [18] use a hierarchical decom-
position approach to break down the overall optimal control
problem into smaller ones. In so doing, discretization is not in-
volved and the main computational complexity arises from a
higher level nonlinear programming problem. In [11], Cassan-
dras et al. consider a particular hybrid optimization problem of
relevant importance in the manufacturing domain and develop
efficient solution algorithms for classes of problems.

Xu and Antsaklis have surveyed several interesting op-
timal control problems and methods for switched systems
in [36]. Among them, we mention an approach based on
the parametrization of the switching instants [37] and one
based on the differentiation of the cost function [34]. Using
similar approaches, a problem of optimal control of switched
autonomous systems is studied in [33]. However the method
encounters major computational difficulties when the number
of available switches grows. In [35], the authors consider a
switched autonomous linear system with linear discontinuities
(jumps) on the state space and a finite time performance index
penalizing switching and a final penalty, and study the problem
only for fixed mode sequences.

Bengea and De Carlo [7] apply the maximum principle to an
embedded system governed by a logic variable and a contin-
uous control. The provided control law is open loop, however
some necessary and sufficient conditions are introduced for op-
timality.

Shaikh and Caines [30] consider a finite-time hybrid optimal
control problem and give necessary optimality conditions for a
fixed sequence of modes using the maximum principle. In [29]
these results are extended to nonfixed sequences by using a sub-
optimal result based on the Hamming distance permutations of
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an initial given sequence. Finally, in [28], the authors derive a
feedback law (similar to that one considered in this paper) but
for a finite time linear quadratic regulator (LQR) problem whose
solutions are strongly dependent of the initial conditions, thus
providing open-loop solutions.

Egerstedt et al. [15] considered an optimal control problem
for switched dynamical systems, where the objective is to mini-
mize a cost functional defined on the state and where the control
variable consists of the switching times. A gradient-descent al-
gorithm is proposed based on an especially simple form of the
gradient of the cost functional.

The hybrid optimal control problem becomes less complex
when the dynamics is expressed in discrete time or as discrete
events. For discrete-time linear hybrid systems, Bemporad and
Morari [6] introduce a hybrid modeling framework that, in par-
ticular, handles both internal switches, i.e., caused by the state
reaching a particular boundary, and controllable switches (i.e., a
switch to another operating mode can be directly imposed), and
showed how mixed-integer quadratic programming (MIQP) can
be efficiently used to determine optimal control sequences. They
also show that when the optimal control action is implemented
in a receding horizon fashion by repeatedly solving MIQPs on-
line, an asymptotically stabilizing control law is obtained. For
those cases where online optimization is not viable, Bemporad
et al. [1], [2] and Borrelli et al. [8] propose multiparametric pro-
gramming as an effective means for solving in state-feedback
form the finite-time hybrid optimal control problem with perfor-
mance criteria based on 1-, -, and 2-norms, by also showing
that the resulting optimal control law is piecewise affine.

In the discrete-time case, the main source of complexity is
the combinatorial number of possible switching sequences. By
combining reachability analysis and quadratic optimization, Be-
mporad et al. [3] propose a technique that rules out switching
sequences that are either not optimal or simply not compatible
with the evolution of the dynamical system.

For a special class of discrete-event systems, De Schutter
and van den Boom [27] proposed an optimal receding-horizon
strategy that can be implemented via linear programming.

An algorithm to optimize switching sequences that has an
arbitrary degree of suboptimality was presented by Lincoln
and Rantzer in [21], and in [22] the same authors consider a
quadratic optimization problem for systems where all switches
are autonomous.

B. The Proposed Approach

In this paper, we focus our attention on switched systems, that
are a particular class of hybrid systems in which all switches
are controlled by external inputs. Giua et al. [16], [17] consid-
ered the optimal control of continuous-time switched systems
composed by linear and stable autonomous dynamics with a
piecewise-quadratic cost function. The assumption is that the
switching sequence has finite length and that the mode se-
quence is fixed, so that only the switching instants must be opti-
mized. They provided a numerically viable way of computing a
state-feedback control law in the form of switching regions,
where the th switching region, is the set of states
where the th switch must occur.

In this paper, we solve an optimal control problem for contin-
uous-time switched affine systems with a piecewise quadratic
cost function. We first present the procedure to construct the
optimal switching regions for a finite-length fixed sequence.
Second, we propose two different approaches to solve a sim-
ilar optimal control problem when in the finite-length switching
sequence both the switching instants and the mode sequence are
decision variables.

The first approach is called master-slave procedure (MSP)
[4] and exploits a synergy of discrete-time and continuous-time
techniques alternating between two different procedures. The
master procedure is based on MIQP and finds an optimal
switching sequence for a given initial state, assuming the
switching instants are known. The “slave” procedure is based
on the construction of the switching regions and finds the
optimal switching instants, assuming the mode sequence is
known. Although we formally prove that the algorithm always
converges, the global minimum may not always be reached. A
few simple heuristics can be added to the algorithm to improve
its performance. A related approach that optimizes hybrid
processes by combining mixed-integer linear programming
(MILP) to obtain a candidate switching sequence and dynamic
simulation was proposed in [23]. A two-stage procedure which
exploits the derivatives of the optimal cost with respect to the
switching instants was proposed in [37].

The second approach, called switching table procedure (STP)
[5], is based on dynamic programming ideas and allows one
to avoid the explosion of the computational burden with the
number of possible switching sequences. It relies on the con-
struction of switching tables and can be seen as a generaliza-
tion of the slave procedure. In fact, the switching tables not
only specify the regions of the state space where an optimal
switch should occur, but also what the optimal next dynamical
mode must be. The solution is always globally optimal and in
state-feedback form. A similar approach based on the construc-
tion of “optimal switching zones” was also used in [28].

To summarize: STP is guaranteed to find the optimal solu-
tion and provides a “global” closed-loop solution, i.e., the tables
may be used to determine the optimal state feedback law for all
initial states. On the other hand, MSP is not guaranteed to con-
verge to a global optimum: it only provides an open-loop solu-
tion for a given initial state. Note however that, as a by-product,
it also provides a “local” state-feedback solution, as the slave
procedure consists of tables that may be used to determine a
state feedback policy (this, however, is only optimal for small
perturbations around the given initial state). Furthermore, MSP
handles more general cost functions than STP, such as penalties
associated with mode switching, and requires a lighter compu-
tational effort. Henceforth, both procedures have pros and cons,
and preferring one to another will depend on the application at
hand.

Finally, in the last section of this paper we discuss the com-
putational complexity of the two approaches.

The problem considered in this paper where the mode se-
quence is a decision variable is significant in all those appli-
cations where the controller has the ability of choosing among
several dynamics. There are many cases in which it is necessary
to consider finite length sequences as we do in the paper. As an
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example, when there is a cost associated to each switch an infi-
nite switching sequence would lead to an infinite cost. Further-
more, we also feel that solving the optimization problem in the
case of a finite length sequence is a necessary first step to derive
an optimal control law for an infinite time horizon and an infi-
nite number of available switches: in the literature this setting
is typically considered when addressing stabilizability issues of
switched linear autonomous systems (see, for instance, [13]).

This paper is structured as follows. In Section II, we provide
the exact problem formulation. In Section III, we restrict our
attention to the case of a fixed sequence of modes. In Section IV,
we illustrate the master-slave procedure. The switching table
procedure is then illustrated in Section V. A detailed comparison
among the two proposed approaches is performed in Section VI.

II. PROBLEM FORMULATION

We consider the following class of continuous-time hybrid
systems, commonly denoted as switched affine systems:

(1a)

if (1b)

where , is the current mode and represents a
control variable, is a finite set of integers,
each one associated with a matrix and a vector

, . Equation (1b) models a reset condition, by
allowing that whenever at time a switch from mode

to mode occurs, the state jumps from to
, where are constant matrices,

, , , and the continuity of the state trajectory
at the switching instant from mode to mode is preserved if

.
In order to make (1) stabilizable on the origin with a finite

number of switches, we assume the following.
Assumption 2.1: There exists at least one mode such

that is strictly Hurwitz and .

A. Optimal Control Problem

The main objective of this paper is to solve the optimal control
problem

(2)

where is a finite number of switches, are posi-
tive–semidefinite matrices, and is the initial state of the
system.

In this optimization problem, there two types of decision vari-
ables

• is a finite sequence of switching
times;

• is a finite sequence of modes.
Accordingly, the cost consists of two components: a quadratic
cost that depends on the time evolution (the integral) and a cost
that depends on the switches (the sum), where , ,

, is the cost for commuting from mode to mode , with
, .

Note that in the last equation of (2), we slightly generalized
model (1b) by allowing that more than one consecutive switch
may occur at the same time instant .

Denote by , , for ,
, the switching trajectory solving (2), and by ,

the corresponding optimal sequences. By letting
be the time interval elapsed between two consecutive

switches, , the optimal control problem (2) can be
rewritten as shown in (3) at the bottom of the page, where

(4)

, , can be obtained by simple integration and
linear algebra, as reported in Appendix A, or even resorting to
numerical integration.

B. Affine Versus Linear Models

Before proceeding further, we observe that the original affine
dynamics (1a) can be rewritten as a linear dynamics by simply
augmenting the state–space from to

(5)

(3)
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with . Note that the ( )th state variable is a
fictitious variable that does not influence the cost function if the
new weighting matrices are semidefinite matrices of the form

for all . Henceforth, without loss of generality, in the rest
of the paper when necessary we will deal with the optimal con-
trol of switched piecewise linear systems whose performance
index is the same as in the previous formulation (2). This will
be done in Sections III and V, where the procedures based on
the construction of the switching tables are presented.

On the contrary, the master-phase of the procedure discussed
in Section V may explicitly handle affine models and we prefer
to deal with the general form (1a) when presenting this ap-
proach.

We also observe that Assumption 2.1 is sufficient to ensure
that the system is stabilizable on the origin (and hence that the
optimal control problem we consider is solvable with a finite
cost) but it is not strictly necessary. As an example, assume
that all dynamics have a displacement term but
that at least one dynamics, say , is Hurwitz. One can make
a linear state-coordinate transformation and
penalize—whenever mode is active—the deviation from the
target state through the quadratic term

.

III. FIXED MODE SEQUENCE

For ease of exposition, in this section the attention is focused
onto the case in which the sequence of operating modes is fixed
and only the switching instants are decision variables, which is a
common ingredient both for the slave-phase of the master-slave
algorithm and for the switching table procedure presented in the
next sections.

We consider linear dynamics as explained in Section II-C.
Given that the switching sequence is preas-
signed, to simplify the notation we denote the state matrices as

for . We also denote the jump (respec-
tively, switching cost) matrices as (respectively,

) for .
Let us also observe that in the general optimization problem

(2) although the number of allowed switches is , it may be pos-
sible to consider also solutions where only switches ef-
fectively occur. This can be done choosing

: In this case, the switching cost only depends on the first
switches, because by definition

(recall that ). We also want to keep this additional fea-
ture when restricting our attention to the fixed mode sequence
problem formulation. Thus, we explicitly introduce a new vari-
able that is equal to the number of switches effectively
occurring in an optimal solution. Accordingly, we assume that

so that once the system
switches to mode at time , it will always remain in that
mode.

Summarizing, the optimization problem we consider in this
section is

(6)

or equivalently

(7)

where for ease of notation we have set

(8)

Now, we show that the optimal control law for the above op-
timization problem takes the form of a state–feedback, i.e., to
determine if a switch from to should occur it is only
necessary to look at the current system state . More precisely,
the optimization problem can be solved computing a set of ta-
bles ( ). Each table represents a portion of the
state space in two regions: and . If the current system
dynamics is we will switch to as soon as the state
reaches a point in the region of the table , for .

To prove this result, we also show constructively how the ta-
bles can be computed.

A. Computation of the Switching Tables

The cost associated to any evolution of the system consists
of two parts: the cost associated to the event–driven evolution,
i.e., to the number of switches that occur, and the cost of the
time–driven evolution. We will consider the two parts sepa-
rately.

Definition 3.1 (Event Cost): Let us assume that after
switches the current system dynamics is that corresponding
to matrix : in the future evolution up to switches
may occur. We define the remaining event cost starting from
dynamics and executing more switches
recursively as follows:

and for

In a similar manner, we would also like to compute the cost
of the time–driven evolution.
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Definition 3.2 (Time Cost): Let us assume that after
switches the current system dynamics is that corresponding
to matrix and the current state vector is . The remaining
time cost starting from the initial state with dynamics and
executing additional switches is

where represents the time spent within
dynamics .

Function depends on different parame-
ters ( ). We need to compute the optimal time cost
by a suitable choice of these parameters. It is easy to prove using
simple dynamic programming arguments that this optimal cost
can be computed by solving one-parameter optimizations.

Procedure 1: The optimal value

can be recursively computed as follows.

• Assume that , i.e., no future switch
occurs. Then there is only one possible
future evolution (henceforth it is op-
timal): the system evolves for ever with
dynamics . The optimal remaining cost
is

(9)

We also define, with a notation that will
be clear in the sequel, .
• Assume that additional switches occur,
with . We first consider a re-
maining evolution such that: a) the system
evolves with dynamics for a time ; b)
a switch to occurs after ; and c)
the future evolution is the optimal evo-
lution that allows only additional
switches. The remaining cost starting from
due to this time–driven evolution is

(10)

We define the value of that minimizes
(10) for all values of 1:

(11)

and denote the optimal value as

(12)

1We can have that % (x) is a set (not a single
value). In this case we assume a single value (i.e.,
the minimum) is taken.

It is obvious that

Let us now state an elementary result.
Proposition 3.1: If is a vector such that , with

and , the cost function of the time-driven
evolution is such that

(13)

(14)

Proof: This can be proved inductively.
Clearly, the result holds for (base step) because by

definition

Assume the result holds for ; we show that it also
holds for (inductive step). In fact

and from this it immediately follows that

and

Having introduced the necessary notation, we can finally
compute the optimal evolution that starts from a vector , in
terms of the optimal evolution that starts from a vector on the
unitary semisphere and parallel to .

Theorem 3.1: Let be the current dynamics and let the
current state vector at time be with and

.

i) The optimal remaining cost starting from is

(15)

ii) The optimal remaining number of switches starting
from is

(16)

iii) The optimal evolution switches to at time
, where

(17)

Proof: The optimal remaining cost starting from de-
pends on a discrete decision variable, i.e., the number of
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switches that in this case belongs to the set
and on the continuous decision variables ’s. Thus

and the other two statements trivially follow from this.
According to the previous proposition, assume that

switches have occurred and is the current dynamics with
current state vector . Then, the remaining cost is minimized
by an evolution that executes immediately the th switch
to if and only if . This leads to the definition
of a switching table.

Definition 3.3: The table is a partition of the state–space
in two regions.

• The optimal region for the th switch is defined as
follows: , if . Moreover,
since we want to be a closed region, we assume that

if where is the boundary of .
• The complementary region: .

The following result, that immediately follows from Theorem
3.1 and Definition 3.3, characterizes the switching regions.

Corollary 3.1: A state vector , with and
, belongs to region of if and only if there

exists an index such that the following
two conditions are both verified:

(18)

(19)

A final observation. To compute the switching table and
to determine the optimal remaining cost , we only need to
compute the value with a one-parameter optimization
(see (11) and (14)) for all on the unitary semisphere: This can
be easily done with a numerical procedure.

We discretize the unitary semisphere with the procedure de-
scribed in Appendix B. In particular, in all the examples exam-
ined the number of samples has been heuristically chosen to en-
sure a reasonable tradeoff between accuracy and computational
cost.

The corresponding values of can be obtained ap-
plying (12), while to determine if a vector belongs to

and to compute the corresponding optimal remaining cost
we only need to apply (18) and (19).

B. Structure of the Switching Regions

We now discuss the form that the switching regions may take.
Let us first consider the case of zero switching costs.
Proposition 3.1: Consider the case in which

. Then, for all
the switching region of table is such that

i.e., the region is homogeneous.
Proof: Thanks to (16), it is immediate to see that if all

costs are zero

and by (17) . Thus,
.

We now consider the case of nonzero switching costs. Let us
first state a trivial fact.

Fact 3.1: For all , and
it holds: .

Proof: This can be easily shown using the definition of
time cost. In fact

We can finally state the following result.
Proposition 3.2: For all , and for all

(with ) there exists a finite , that de-
pends on and , such that the switching region of table
has the following property:

Proof: For all and for all on the unitary semisphere we
can define

This allows us to write, also according to Fact 3.1, that the
optimal remaining time costs can be ordered as follows

while by definition the remaining event costs can be ordered as
follows:
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We now define

if

otherwise

so that we can write that for all with and for
all , it holds

Thus, the optimal remaining evolution starting from
with will contain more switches and belongs
to if and only if .

We finally denote

(20)

C. Numerical Examples

Let us now present the results of some numerical simulations.
In particular, we consider a second order linear system whose
dynamics may only switch between two matrices and .
We also assume that only three switches are possible (

) and the initial system dynamics is . Thus, the
sequence of switching is

where

We also assume that all ’s are equal to the identity matrix.
Finally, we take .

We consider two different cases. We first assume that no cost
is associated to switches. Second, we associate a constant cost
to each switch.

First Case: The switching regions , , 2, 3, are shown
in Fig. 1 where the following color notation has been used:
the lighter (green) region represents the set of states where the
system switches to the next dynamics, while the darker (blue)
region represents the set of states where the system still evolves
with the same dynamics. Note that these regions have only been
displayed inside the unit disc because they are homogeneous.

In the bottom right of Fig. 1 we have shown the system evo-
lution in the case of .

The switching times are , and ,
and the optimal cost is .

Second Case: Now, let us assume that nonzero costs are as-
sociated to switches. In particular, let us assume that

and .
The switching regions , , are shown in Fig. 2

where we used the same color notation as above, i.e., the lighter
(green) region represents the set of states where the system
switches to the next dynamics, and the darker (blue) region
represents the set of states where the system still evolves with
the same dynamics.

Fig. 1. Switching regions C , k = 1; 2; 3 in the case of no cost associated to
switches, and the system evolution for x = [0:6 0:6] .

Fig. 2. Switching regions C , k = 1; 2; 3 in the case of nonzero costs
associated to switches, and the system evolution for x = [1:3 1:4] .

In this example, is and it is sufficient to display the
regions within the circle of radius 2.

In the bottom right of Fig. 2 we have shown the system evo-
lution in the case of . In this case, the switching
times are , and , and the optimal
cost is .

Modification of the Regions: To show how the switching
region may change as varies, we have also com-
puted for this example the regions for different values of

.
These regions are shown in Fig. 3, where larger regions cor-

respond to smaller values of .

IV. MASTER-SLAVE PROCEDURE

In this section, we propose a solution to the optimal con-
trol problem (2) in which both the switching instants and the
switching sequence are decision variables, and the initial state

is given. The procedure exploits a synergy of discrete-
time and continuous-time techniques, by alternating between a
“master” procedure that finds an optimal switching sequence
and a “slave” procedure that finds the optimal switching in-
stants.
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Fig. 3. Switching regions C for different values of the cost H 2
f0:1; 0:5; 2g.

Problem 1 (Master): For a fixed sequence of switching times
, solve the optimal control problem (3) with respect

to . Denote by

(21)

and the optimizing mode sequence and the cor-
responding optimal value, respectively.

Problem 2 (Slave): For a fixed sequence of switching indices
, solve the optimal control problem (3) with respect to
. Denote by

(22)

and the optimizing timing sequence and the cor-
responding optimal value, respectively.

An approach for solving the slave phase has been extensively
discussed in the previous section. Here, we describe a way to
solving the master phase.

A. Master Algorithm

For a fixed sequence of switching times , the
master algorithm solves the optimal control problem (3) with
respect to . We assume here that ; if such
is not the case the problem can be simplified discarding the
infinity switching times and working
on the shorter prefix .

It is a purely combinatorial problem that can be rephrased as
shown in (23) at the bottom of the page, where

(24)

and where , and can be computed as
outlined in Appendix A or resorting to numerical integration.

Problem (23) can be efficiently solved via MIQP [20], [12].
To this end, we need to introduce the binary variables

, where if and only if the system is in the th
mode between time and

(25a)

(25b)

(25c)

where the exclusive-or constraint (25b) follows by the fact that
only one dynamics can be active in each interval , and
in (25c) is the set of indexes such that is strictly
Hurwitz and , so that the last dynamics be asymptotically
stable and linear ( is nonempty by Assumption 2.1).

We also need to introduce the continuous variables ,
where if or zero otherwise

(26)

and the continuous variables , , ,
where if , , or zero otherwise

(27a)

(27b)

(23)



734 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 51, NO. 5, MAY 2006

Constraint (26) can be transformed into the following set of
mixed-integer linear inequalities by using the so-called “big- ”
technique [32], [6]:

(28)

where is an upper bound on the state vector (more
precisely, the th component of is an upper bound on

, where is the th component of the state vector), and
therefore an upper bound on and on

, for all , , , where would
be the state at time if at time the system switches from
the th to the th mode. Usually a suitable can be chosen on
the basis of physical considerations on the switched system.

Constraint (27a) can be also transformed into a set of mixed-
integer linear inequalities by generalizing the above transforma-
tion to the case of the product of an affine function of continuous
variable and two integer variables as in (27a), namely by trans-
forming the conditions

(29a)

(29b)

where , denote the logic “or” and “and,” respectively, into
the linear mixed-integer inequalities

(30a)

(30b)

(30c)

(30d)

(30e)

(30f)

Note that in the absence of resets ( ), it is not necessary to
introduce real vectors , as by proceeding as in (26) and
(28) vectors would be sufficient.

Finally, constraints (25b)–(c) can be expressed as

(31)

The terms in (23) can be instead expressed as a
quadratic function of the variables

...
...

. . .
...

(32)

Note that (32) only contains terms , and, therefore, the
cost term leads to a nonconvex quadratic func-
tion of the vector of integer variables. In order to overcome this
issue,2 we add a constant term in the cost function in (23),

. This clearly does not change the optimal switching se-
quence. Then, by virtue of (31), we substitute

(33a)

(33b)

and choose large enough so that the overall cost function is
a convex function.

Summing up, the master problem (23) is equivalent to the
MIQP

(32) (33b)

(27b) (28) (30) (31) (34)

Note that additional constrains on the possible mode switches
can be easily embedded in (34) as linear integer constraints. For
example, is equivalent to

.
Another interesting case is that in which the initial mode

is assigned. In this case we add the constraint .

B. Slave Algorithm

The slave algorithm has been extensively discussed in the pre-
vious Section III. Note however that in the problem formulation
(6) an integer variable has been introduced to keep into
account the number of switches effectively occurring in an op-
timal solution. Now, a sequence of ’s, namely, ,
of fixed length is needed to iterate between the two proce-
dures. This has two important consequences.

• First, in the case of , we complete the time
sequence by simply taking .

• Second, all switching costs , con-
tribute to the performance index . As a conse-
quence, the term in (6) should be replaced
by the constant term . Thus, being this term
constant, it can be obviously neglected when solving
the slave phase.

2Mixed-integer quadratic programming solvers determine the solution
by solving a sequence of standard quadratic programs in which the integer
variables are either fixed or relaxed between the whole interval [0, 1]. Such QP
problems must be convex problems in order to be solved efficiently.
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C. Master-Slave Algorithm

The proposed master-slave algorithm is structured as follows.
Algorithm 4.1:

1. Initialize , ,
;

(e.g., are randomly or uniformly dis-
tributed); Let a given tolerance.
2. Solve the master problem

.
3. If

(35)

set and go to 7.
4. Solve the slave problem .
5. .
6. Go to 2.
7. Set , .
8. End

Proposition 4.1: Algorithm 4.1 stops after a finite number of
steps .

Proof: Let . Clearly

Since is a monotonically nonincreasing sequence
bounded between and 0, it admits a limit as .
Therefore, as , and hence (35)
is satisfied after a finite number of iterations for any given
positive tolerance .

Definition 4.1: The optimal control problem (2) is said
switch-degenerate if there exist a sequence and such
that .

Definition 4.2: The optimal control problem (2) is said time-
degenerate if there exist a sequence and such that

.
Note that the result of Proposition 4.1 also holds in the case

of degeneracy.
We remark that although Algorithm 4.1 converges to a solu-

tion after a finite number of steps, such a solution
may not be the optimal one, as it may be a local minimum where
both the master and the slave problems do not give any further
improvement. Note that the global solution can be computed
by enumeration by solving a slave problem for all possible
switching sequences .

Algorithm 4.1 computes the optimal switching policy for a
given initial state. On the other hand, for small enough perturba-
tions of the initial state such that the optimal switching sequence
does not change, the optimal time-switching policy is immedi-
ately available as a by-product of the slave algorithm, because
of its state-feedback nature.

We finally remark that Algorithm 4.1 may be formulated by
optimizing with respect to first, for a given initialization of the
switching sequence . The advantage of switching between the
master and slave procedures depends on the information avail-

TABLE I
RESULTS OF EXAMPLE 1

able a priori about the optimal solution. For instance when the
algorithm is solved repeatedly for subsequent values of the state
vector (such as in a receding horizon scheme), it may be useful
to use the previous switching sequence as a warm start and op-
timize with respect to first.

We finally remark the following about degeneracies.

1) Time-degeneracy: implies that the
switching instant is undetermined (multiple so-
lutions for ).

2) Switch-degeneracy: implies that mode is
undetermined (multiple solutions for ).

Ways to handle such degenerate cases will be highlighted in the
next section.

D. Numerical Examples

Example 1: Consider a second-order linear system whose
dynamics may be chosen within a finite set , where

We associate to each dynamics a weight matrix:
, , .

As only three modes are possible, , the control vari-
able only takes values from the finite set of integers

. Let the initial state vector be and
be the number of allowed switches.

Algorithm 4.1 is applied to determine the optimal mode
and timing sequence with the initial timing sequence

(randomly generated). The re-
sulting optimized mode sequence is and the
optimal cost value is . Note that in this case only
two switches are required to get the optimal cost value.

Detailed intermediate results are reported in Table I, where
one may also observe that the procedure converges after only
three steps. This also implies that the most burdensome part of
the algorithm, i.e., the slave problem, is only solved twice.

The correctness of the solution has been validated through an
exhaustive inspection of all admissible mode sequences. More
precisely, for each admissible mode sequence the corresponding
optimal timing sequence and cost value were computed by the
slave algorithm. As a result, it turns out that is in-
deed a global minimum. Obviously, being only two the switches
required to optimize the cost value, the minimum cost may also
be obtained by using other mode sequences. As an example,

and is an optimal so-
lution as well.
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TABLE II
RESULTS OF EXAMPLE 2 WHEN THE MASTER-SLAVE ALGORITHM IS APPLIED

IN ITS ORIGINAL FORM

Several random tests highlighted that the convergence of the
algorithm to a global minimum is heavily influenced by two fac-
tors. First, the initial switching times sequence should be such
that . In fact, if for some , only a
suboptimal solution—that corresponds to a smaller number of
switches—is usually computed. Second, the first switching time
should not be greater than two or three times the maximum time
constant associated to each dynamics: If this is not the case, only
degenerate solutions with no switch are usually found.

Example 2: We present here an heuristics that in many cases
improves the performance of the Algorithm 4.1. Consider the
second-order switched linear system with dynamic matrices

( ) and let , ,
. Note that while and are unstable matrices,

is strictly Hurwitz, so that Assumption 2.1 is satisfied.
We take as initial timing sequence

and apply the master–slave algo-
rithm to determine the optimal mode sequence. The provided
solution is and the corresponding performance
index is . Detailed results are reported in
Table II. Nevertheless, this solution is not optimal and this
may be easily verified through an exhaustive inspection of all
admissible switching sequences.

A careful examination of the solution suggests the presence
of time-degeneracy, being a switching sequence
that corresponds to only two switches. Thus, when it is used by
the slave algorithm, it may only compute a suboptimal solution.

A simple heuristic solution to this problem—that is effective
in this case, as well as in many other instances that were ex-
amined—consists of modifying the switching sequence com-
puted via the master algorithm that corresponds to a number
of switches that is less that before running the slave algo-
rithm. In particular, we suggest to arbitrarily change the mode
sequence so that the original sequence is still contained in the
new one but two consecutive indices are never the same.

Using such an heuristics, the results reported in Table III were
obtained. In particular, observe that at the first step of the whole
procedure the slave algorithm does not examine the switching
sequence firstly computed by the master algorithm, but com-
putes the optimal timing sequence corresponding to a new se-
quence , that has been randomly generated by
arbitrarily modifying the first mode so as to avoid time-degen-
eracy. At this step, the value of the performance index decreases

TABLE III
RESULTS OF EXAMPLE 2 WHEN THE MASTER-SLAVE ALGORITHM IS APPLIED

IN ITS MODIFIED FORM

but the optimum is not computed yet. The same reasoning is re-
peated at the third step and in this case the optimal value of the
cost is found and the procedure stops. The results of an exhaus-
tive search show that the computed solution is optimal thus re-
vealing the effectiveness of the modified procedure.

Although the previous heuristics is effective in most in-
stances, a condition is required that stops the algorithm
whenever a loop is detected, so that cycling is avoided.

V. SWITCHING TABLE PROCEDURE

Let us consider again the optimal control problem (2) or
equivalently (3) and assume that Assumption 1 is satisfied. In
this section, we show how to solve this problem generalizing
the procedure derived in Section III to compute the optimal
control law when the sequence is fixed. Again for simplicity
we assume that dynamics are linear, because affine dynamics
can be easily reduced to linear dynamics as shown in (5).

In particular we show that for a given mode and for a
given switch it is possible to construct a table
that partitions the state space into regions .
Whenever we use table to determine if a switch
should occur: as soon as the state reaches a point in the region

(with ) we will switch to mode , while no switch
will occur while the system’s state belongs to .

A. Computation of the Switching Tables

In this section we denote the optimal cost to infinity
of an evolution that starts with dynamics from the state

. We will show later how this value can be computed.
We can also define the following cost functions.
Definition 5.1: Let us assume that , i.e., after

switches the current system dynamics is that corresponding to
matrix , and let the current state vector be .

• For and , we define

(36)

the remaining cost of an evolution that starts with dy-
namics from and never switches and we denote

(37)

• For and , with , we
define

(38)

the remaining cost of an evolution that starts with dy-
namics from , switches after a time to and
from then on follows an optimal evolution.
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We also denote

(39)

the value of that minimizes (38) while the corre-
sponding minimum is

(40)

Proposition 5.1 (Optimal Remaining Cost): Let us assume
that , i.e., after switches the current system dynamics is
that corresponding to matrix , and let the current state vector
be with and .

1) If then the remaining optimal cost starting from
is:

(41)

2) If , then
i) the remaining optimal cost starting from is

(42)

ii) the next dynamics reached by the optimal evolution is

(43)

where means that no other switch will
occur;

iii) the optimal evolution switches to at time
, where

(44)

Proof: If the systems is forced to evolve with dy-
namics to infinity and the remaining cost (that is also op-
timal) is the one given in (41).

If , we have two options. If no future switch occurs then
the remaining cost will be . If at least a future switch
will occur, the two decision variables are the time before the first
switch occurs (parameter ) and the dynamics reached after
the switch (parameter , while after the switch it is
necessary to follow an optimal evolution such that the remaining
cost is minimized. Hence

According to the previous proposition, the optimal remaining
cost can be computed recursively, first computing for all vectors

and all dynamics the costs , then the costs
, etc.

The procedure may be simplified when all switching costs are
zero, as shown in the following proposition.

Proposition 5.2: Assume that all switching costs are zero,
i.e., for all , . If is a vector such that ,
with and , with the notation of Definition
5.1 we have that for all and all ,

(45)

(46)

(47)

Proof: Clearly, according to (36) and (37), the results a)
and b) hold for and . This also implies, by (41),
that the result c) holds for .

We now recursively show that results a)–c) hold for all values
of . Assume in fact that . By (38) and (40),
it also holds that , hence by (39),

and finally by (42)
.

This proposition implies that when all switching costs are
zero to determine the optimal costs it is sufficient to evaluate the
functions only for vectors on the unitary semisphere.

We can finally extend the definition of table given in Sec-
tion II.

Definition 5.2: The switching table is a partition of the
state space in regions (for ) defined as follows.

• The region
is the set of points where it is optimal to switch

from to .
• The complementary region is .

B. Computation of the Table for the Initial Mode

To decide the optimal initial mode we may use the knowl-
edge of the cost (i.e., of the optimal cost to infinity
starting from state with dynamics ) that is evaluated
during the construction of the table .

Definition 5.3: Table is a partition of the state space
into regions ( ) where each region is defined as:

.
According to this definition, if the initial state belongs to re-

gion we must choose to minimize the total cost.

C. Structure of the Switching Regions

We now discuss the form that the switching regions may take
in the case of zero switching costs.

Proposition 5.1: Consider the case in which for all
, . Then any region of table and of table is such

that , i.e., the region is
homogeneous.

Proof: When all switching costs are zero, we have shown
that (45) and (46) hold. Thus, is immediately follows that in
this case and . By Definition
5.2 this implies that all regions of table are homogenous for

.
The table used to select the initial mode has the same property.

In fact, assume (47) holds: taking (as a particular case)
one can see that by Definition 5.3 the regions of table are
homogenous as well.
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Fig. 4. Set of tables for the numerical example where N = 3 and S =
f1; 2; 3g.

Fig. 5. Table C .

D. Numerical Examples

Let us consider again the second order linear system consid-
ered in Section IV.C, Example 2. We first execute the off-line
part of the procedure, consisting in the construction of the

tables , for , 2, 3. Results are reported in Fig. 4
where the following color notation has been used: Red color
(medium gray) is used to denote region , i.e., the set of states
where the system either switches to if the current variable of
the control variable is , or no switch occur if ;
light blue (light gray) denotes region , and dark blue (dark
gray) is used to denote .

As an example, by looking at we know that, if the initial
dynamics is , then the system may either switch to or still
evolve with the same dynamics : On the contrary, a switch to
dynamics may never occur.

In Fig. 5, we have reported table that shows the partition
of the state space introduced in Section III-C. The same color
notation has been used. In particular, this table enables us to
conclude that the global optimum may only be reached when the
initial system dynamics is either or . On the contrary, if the
initial system dynamics is , we may only reach a suboptimal
value of the performance index.

Now, let us present the results of some numerical simulation.
Let us assume that the initial state is . We compute
the optimal mode sequence for all admissible initial system dy-
namics, i.e., we assume , respectively. Detailed re-
sults may be read in Table IV where we have reported the op-
timal mode sequence, the optimal timing sequence and the cor-

TABLE IV
RESULTS OF THE NUMERICAL EXAMPLE WHEN x = [1 1]

responding cost value for the different initial dynamics. We may
observe that the best solution may only be reached when the ini-
tial system dynamic is the second one. In the other cases only a
suboptimal value of the cost may be obtained (that is in accor-
dance with Fig. 5 being ).

The correctness of the solution has been validated through an
exhaustive inspection of all admissible mode sequences. More
precisely, for each admissible mode sequence we have com-
puted the optimizing timing sequence and the corresponding
cost value. In such a way, we have verified that
is indeed the global optimum.

VI. DISCUSSION ON COMPUTATIONAL COMPLEXITY

A. Theoretical Analysis

Let us first discuss the computational complexity involved in
the construction of the tables for a fixed mode sequence in terms
of operations required. In this case, a single table is associ-
ated to the th switch and it contains only two regions: ,
i.e., the set of state vectors where we continue using mode ,
and , i.e., the set of state vectors where we switch to mode

.
We have to distinguish two cases.

• Assuming that not all switching costs are zero, it is nec-
essary to discretize the state space within a region cen-
tered around the origin and large enough to contain all
vectors of length smaller than or equal to as defined
in (20). The two regions of the table can be determined
by solving a one-parameter optimization problem for
each discretization point. If the state space is and
we assume a uniform sampling with samples along
each dimension the complexity for constructing each
table is , being the number of operations required
to find the value of that minimizes (10).

• On the contrary, if all switching costs are zero it is
sufficient to grid the unitary semisphere. In this case we
can assume that the complexity for constructing each
table is .

Thus, the complexity of solving the optimal control problem
for a fixed sequence of length is
or , in the case of zero and nonzero switching
costs, respectively, because for each switch a new table must be
determined.

It is important to observe that the choice of the number of
samples is a trade-off. The proposed procedure can always be
applied even when the number of samples is small: in this case,
however, the switching sequence that leads to the final stable
mode will most likely only be sub-optimal. By increasing the
number of samples one can get as close as desired to the optimal
solution.
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When the switching sequence is not fixed, using the switching
table procedure STP given in Section V, for each switch it is nec-
essary to compute tables, one for each possible mode. Now, for
sake of simplicity assume that all switching costs are zero. The
complexity of computing the generic table is .
In fact each table contains regions that can be determined
solving one-parameter optimization problems for each
vector on the unitary semisphere. Thus the complexity of
solving the optimal control problem (2) for a sequence of length

is . On the contrary, if
not all switching costs are zero, following the same argument
one can immediately show that the complexity is

. In any case, the complexity is a quadratic func-
tion of the number of possible dynamics.

Note that the amount of data required to construct the
switching tables is equal to or ,
depending on the switching costs. In fact, when computing
the tables relative to the th switch we only look at the
tables relative to the th switch, where for each grid point
we keep track of two values: the region it belongs to and the
optimal remaining costs when switches are available.
However, once the switching tables have been constructed (the
offline part of the procedure is finished) we do not need to keep
memory of the optimal remaining costs.

Let us finally discuss the computational complexity of the
master-slave procedure MSP. The complexity of solving MSP is

, where is the number
of times the slave procedure is executed and is the cost for
solving the master MIQP problems. Note in fact, that the slave
algorithm is always invoked with zero switching costs. In theory,

and in the worst case it grows exponentially with
and . Parameter depends in general on all the data of the

problem. However, for problems with relatively small and ,
as those shown in the paper, it turns out that and

.
From all these considerations, one may conclude that from a

computational point of view MSP offers the best performance.
For all other aspects, STP is better. In fact STP always finds an
optimal solution while MSP may converge to a local minimum.
Furthermore, the solutions provided by MSP are local, i.e., the
optimal sequence and the corresponding tables are valid for a
given initial state and for bounded disturbances. On the
contrary, the tables constructed by STP provide the optimal state
feedback law for all initial states.

B. Numerical Simulations

We conclude this section with a brief presentation of some
numerical examples randomly generated, in order to provide a
better idea of the time required to perform the off-line phase
of the STP. Calculations have been done using Matlab 7, on an
Intel Pentium 4 with 2 GHz and 256 Mb RAM.

We consider 3 different switched linear systems composed
of 4 stable dynamics. The state space of the three systems has
dimension , 3, 4, respectively. No cost is associated to the
switches, thus we used a discretization of the unitary semisphere
as explained in Appendix B. We compare the time requested to

TABLE V
RESULTS OF THE NUMERICAL EXAMPLES IN SECTION VI-B

compute a single table assuming that the sequence is not fixed.
We need not specify the maximum number of allowed switches

because the time spent for the computation of each table does
not depend on or on the remaining number of switches.

To compare the three cases, the optimal value of that
minimizes the remaining cost (see (39)) has been determined
by looking at a finite time horizon: that
is the same for all systems. A finite uniformly distributed
number of are considered: , with and

. The time (in seconds) required to compute
a switching table for all the three cases examined are given in
Table V. In this table, we have also reported, using the nota-
tion of Appendix B, the parameters relative to the considered
discretization of the unitary semisphere.

VII. CONCLUSION

We have considered a simple class of switched piecewise
affine autonomous linear systems with the objective of min-
imizing a quadratic performance index over an infinite time
horizon. We have assumed that the switching sequence has a
finite length, and that the decision variables are the switching
instants and the sequence of operating modes.

We have presented two different approaches for solving
such an optimal control problem. The first approach iterates
between a “master” procedure that finds an optimal switching
sequence of modes, and a “slave” procedure that finds the
optimal switching instants. The second approach is inspired
by dynamic programming and allows one to compute a state
feedback control law, i.e., it is possible to identify the regions of
the state space where an optimal switch should occur whenever
the state trajectory enters them.

There are several ways in which this research may be ex-
tended. First, we will consider the case in which an infinite
number of switches may occur. Second, we will consider the op-
timal control of switched systems whose switching sequence is
determined by a controlled automaton whose discrete dynamics
restrict the possible switches from a given location to an ad-
jacent location. Finally, we may assume that in the automaton
there are two types of edges. A controllable edge represents
a mode switch that can be triggered by the controller; an au-
tonomous edge represents a mode switch that is triggered by the
continuous state of the system as it reaches a given threshold.

APPENDIX A
COMPUTATION OF THE COST FUNCTION MATRICES

In the problem formulation (3), we assumed
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for any initial state , where

In general cases, it is not easy to provide analytical expres-
sions for , , and , thus numerical integration is
needed. On the contrary, under appropriate assumptions on
and , these analytical expressions can be easily determined.
As an example, let us consider the following two cases.

• Assume is strictly Hurwitz and . In such a
case

where is the unique solution of the Lyapunov equa-
tion . The same computation is
valid when the eigenvalues of are all unstable.

• Assume that is diagonalizable. In such a case,
, where and ,
are the eigenvalues of . We obtain

and it is straightforward to symbolically compute the
integrals given the simple form the exponential of a
diagonal matrix takes.

APPENDIX B
SAMPLING THE “HYPER” SEMI-SPHERE

The main computational effort in the construction of the
switching tables is the discretization of the state space. The
first step is to construct the relation between polar and carte-
sian system in . The polar coordinates are composed
of 1 radius and angles . Given a point

, such relation is

...

where , for . To de-
scribe , variables must range in: , ,
and . To describe the unitary ”hyper”
semisphere we choose ,

, and .
Note that a uniform discretization for each angle brings to

areas with high density of points (think of the grid on the earth
surface at the poles). An equally spaced grid can be obtained
with a reduced number of points using the following criterion,
that provides constant arc length.

As an example, assume . Let us call ,
and .

1) Define nominal values of discretization
, , ; since ,

and we choose pro-
portional to the respective range of each
variable;

2) discretize uniformly, i.e.,
, ;

3) denoted by a function that
approximates to the closest integer,
for every define
and discretize uniformly, i.e.,

, ;

4) for every and define
and discretize uni-

formly, i.e., , .

REFERENCES

[1] A. Bemporad, F. Borrelli, and M. Morari, “Piecewise linear optimal con-
trollers for hybrid systems,” in Proc. American Contr. Conf., Chicago,
IL, Jun. 2000, pp. 1190–1194.

[2] , “On the optimal control law for linear discrete time hybrid sys-
tems,” in Hybrid Systems: Computation and Control, M. Greenstreet
and C. Tomlin, Eds: Springer-Verlag, 2000, vol. 2289, Lecture Notes
in Computer Science, pp. 105–119.

[3] A. Bemporad, L. Giovanardi, and F. D. Torrisi, “Performance Driven
Reachability Analysis for Optimal Scheduling and Control of Hybrid
Systems,” Automatic Control Laboratory, ETH Zurich, Switzerland,
Technical Report AUT00-15, 2000.

[4] A. Bemporad, A. Giua, and C. Seatzu, “A master-slave algorithm for the
optimal control of continuous-time switched affine systems,” in Proc.
41th IEEE Conf. on Decision and Control, Las Vegas, Nevada, Dec.
2002, pp. 1976–1981.

[5] , “Synthesis of state-feedback optimal controllers for switched
linear system,” in Proc. 41th IEEE Conf. on Decision and Control, Las
Vegas, Nevada, Dec. 2002, pp. 3182–3187.

[6] A. Bemporad and M. Morari, “Control of systems integrating logic, dy-
namics, and constraints,” Automatica, vol. 35, no. 3, pp. 407–427, Mar.
1999.

[7] S. C. Bengea and R. A. DeCarlo, “Conditions for the existence of a solu-
tion to a two-switched/hybrid optimal control problem,” in IFAC Conf.
on Analysis and Design of Hybrid Systems, Saint Malo, France, Jun.
2003, pp. 419–424.

[8] F. Borrelli, M. Baotic, A. Bemporad, and M. Morari, “Dynamic pro-
gramming for constrained optimal control of discrete-time linear hybrid
systems,” Automatica, vol. 41, no. 10, pp. 1709–1721, Oct. 2005.

[9] M. S. Branicky, V. S. Borkar, and S. K. Mitter, “A unified framework
for hybrid control: Model and optimal control theory,” IEEE Trans. Au-
tomatic Control, vol. 43, no. 1, pp. 31–45, 1998.



SEATZU et al.: OPTIMAL CONTROL OF CONTINUOUS-TIME SWITCHED AFFINE SYSTEMS 741

[10] M. S. Branicky and S.K. Mitter, “Algorithms for optimal hybrid control,”
in Proc. 34th IEEE Conf. on Decision and Control, New Orleans, USA,
Dec. 1995.

[11] C. G. Cassandras, D. L. Pepyne, and Y. Wardi, “Optimal control of a
class of hybrid systems,” IEEE Trans. Automatic Control, vol. 46, no. 3,
pp. 398–415, 2001.

[12] (2003) XPRESS-MP User Guide. Dash Associates. [Online]. Available:
http://www.dashopt.com

[13] R. DeCarlo, M. S. Branicky, S. Pettersson, and B. Lennartson, “Perspec-
tives and results on the stability and stabilizability of hybrid systems,”
Proceedings of the IEEE, vol. 88, pp. 1069–1082, 2000.

[14] “Special issue on hybrid systems: Theory and applications,” Proceed-
ings of the IEEE, vol. 88, Jul. 2000.

[15] M. Egerstedt, Y. Wardi, and F. Delmotte, “Optimal control of switching
times in swithced dynamical systems,” in Proc. 42th IEEE Conf. on De-
cision and Control, Maui, Hawaii, USA, Dec. 2003, pp. 2138–2143.

[16] A. Giua, C. Seatzu, and C. Van Der Mee, “Optimal control of au-
tonomous linear systems switched with a pre–assigned finite sequence,”
in Proc. 2001 IEEE Int. Symp. on Intelligent Control, Mexico City,
Mexico, 2001, pp. 144–149.

[17] , “Optimal control of switched autonomous linear systems,” in
Proc. 40th IEEE Conf. on Decision and Control, Orlando, Florida,
USA, 2001, pp. 2472–2477.

[18] K. Gokbayrak and C. G. Cassandras, “A hierarchical decomposition
method for optimal control of hybrid systems,” in Proc. 38th IEEE Conf.
on Decision and Control, Phoenix, AZ, Dec. 1999, pp. 1816–1821.

[19] S. Hedlund and A. Rantzer, “Convex dynamic programming for hybrid
systems,” IEEE Trans. Automatic Control, vol. 47, no. 9, pp. 1536–1540,
Sep. 2002.

[20] CPLEX 8.1 User Manual, ILOG, Inc., Gentilly Cedex, France, 2003.
[21] B. Lincoln and A. Rantzer, “Optimizing linear system switching,” in

Proc. 40th IEEE Conf. on Decision and Control, 2001, pp. 2063–2068.
[22] , “Relaxed optimal control of piecewise linear systems,” in IFAC

Conf. on Analysis and Design of Hybrid Systems, Saint Malo, France,
Jun. 2003.

[23] C. C. Pantelides, M. P. Avraam, and N. Shah, “Optimization of hybrid
dynamic processes,” in Proc. American Contr. Conf., 2000.

[24] B. Piccoli, “Necessary conditions for hybrid optimization,” in Proc. 38th
IEEE Conf. on Decision and Control, Phoenix, Arizona, USA, Dec.
1999.

[25] A. Rantzer and M. Johansson, “Piecewise linear quadratic optimal con-
trol,” IEEE Trans. Automatic Control, vol. 45, no. 4, pp. 629–637, Apr.
2000.

[26] P. Riedinger, F. Kratz, C. Iung, and C. Zanne, “Linear quadratic opti-
mization for hybrid systems,” in Proc. 38th IEEE Conf. on Decision and
Control, Phoenix, AZ, USA, Dec. 1999, pp. 2093–2098.

[27] B. De Schutter and T. van den Boom, “Model predictive control for
max-plus-linear discrete event systems,” Automatica, vol. 37, no. 7, pp.
1049–1056, Jul. 2001.

[28] M. S. Shaikh and P. E. Caines, “On the optimal control of hybrid sys-
tems: Analysis and zonal algorithm for trajectory and schedule optimiza-
tion,” in Proc. 42th IEEE Conf. on Decision and Control, Maui, USA,
Dec. 2003, pp. 2144–2149.

[29] , “On the optimal control of hybrid systems: Optimization of
switching times and combinatoric schedules,” in Proc. American Contr.
Conf., Denver, USA, 2003.

[30] , “On the optimal control of hybrid systems: Optimization of tra-
jectories, switching times and location schedules,” in 6th Int. Workshop
on Hybrid Systems: Computation and Control, Prague, The Czech Re-
public, 2003.

[31] H. J. Sussmann, “A maximum principle for hybrid optimal control prob-
lems,” in Proc. 38th IEEE Conf. on Decision and Control, Phoenix, Ari-
zona, USA, Dec. 1999.

[32] H. P. Williams, Model Building in Mathematical Programming, Third
ed. John Wiley & Sons, 1993.

[33] X. Xu and P. J. Antsaklis, “Optimal control of switched autonomous
systems,” in Proc. 41th IEEE Conf. on Decision and Control, Las Vegas,
USA, 2002.

[34] , “Optimal control of switched systems via nonlinear optimization
based on direct differentiations of value functions,” Int. J. Control, vol.
75, no. 16/17, pp. 1406–1426, 2002.

[35] , “Quadratic optimal control problems for hybrid linear au-
tonomous systems with state jumps,” in Proc. American Contr. Conf.,
Denver, USA, 2003.

[36] , “Results and perspectives on computational methods for optimal
control of switched systems,” in 6th Int. Workshop on Hybrid Systems:
Computation and Control, Prague, The Czech Republic, 2003.

[37] , “Optimal control of switched systems based on parameterization
of the switching instants,” IEEE Trans. Automatic Control, vol. 49, no.
1, pp. 2–16, 2004.

[38] P. Zhang and C. G. Cassandras, “An improved forward algorithm for
optimal control of a class of hybrid systems,” IEEE Trans. Automatic
Control, vol. 47, no. 10, pp. 1735–1739, 2002.

Carla Seatzu (M’05) received the Laurea degree in
electrical engineering and the Ph.D. degree in elec-
tronic engineering and computer science, both from
the University of Cagliari, Cagliari, Italy, in 1996 and
2000, respectively.

She is an Assistant Professor of Automatic Control
with the Department of Electrical and Electronic En-
gineering of the University of Cagliari. Her research
interests include discrete-event systems, hybrid sys-
tems, Petri nets, control of mechanical systems, and
decentralized control of open-channels.

She has been member of the International Program Committee of several in-
ternational conferences on Automatic Control and the Chair of the National Or-
ganizing Committee of the 2nd IFAC Conference on Analysis and Design of
Hybrid Systems (ADHS’06). She is a member of the IFAC Technical Com-
mittee on discrete-event and hybrid systems.

Daniele Corona (M’04) received the degree in elec-
trical engineering from the University of Cagliari,
Cagliari, Italy, in 1999.

He worked two years for a worldwide TLC en-
terprise as a Customer Engineer before beginning a
Ph.D. program in control systems at the Dipartimento
di Ingegneria Elettrica ed Elettronica, University of
Cagliari, under the supervision of Prof. A. Giua. In
July 2005, he joined the Delft Center for System and
Control, University of Delft, The Netherlands, as a
Postdoctoral Fellow within the Framework VI Hycon

project. His research interests are switched and hybrid systems, Petri nets, and
automotive applications.

Alessandro Giua (S’90–M’92) received the Laurea
degree in electric engineering from the University of
Cagliari, Cagliari, Italy, in 1988, and the M.S. and
Ph.D. degrees in computer and systems engineering
from Rensselaer Polytechnic Institute, Troy, NY, in
1990 and 1992.

He is Professor of Automatic Control with the De-
partment of Electrical and Electronic Engineering of
the University of Cagliari. He has been with the Uni-
versity of Cagliari since 1994. His research interests
include discrete event systems, hybrid systems, Petri

nets, control of mechanical systems, and failure diagnosis.
Dr. Giua is a member of the Editorial Board of the journal Discrete Event

Dynamic Systems: Theory and Applications and was an Associate Editor of the
European Journal of Control and of the IEEE TRANSACTIONS ON AUTOMATIC

CONTROL. He is a Reviewer for Mathematical Reviews. He is member of the
Workshop Series on Discrete Event Systems (WODES) Steering Committee.

Alberto Bemporad (S’93–M’99) received the M.S.
degree in electrical engineering the Ph.D. degree in
control engineering, both from the University of Flo-
rence, Florence, Italy, in 1993 and in 1997, respec-
tively.

He spent the academic year 1996–1997 at the
Center for Robotics and Automation, Department
of Systems Science and Mathematics, Washington
University, St. Louis, MO, as a Visiting Researcher.
In 1997–1999, he held a postdoctoral position at the
Automatic Control Lab, ETH, Zurich, Switzerland,

where he collaborated as a senior researcher in 2000–2002. Since 1999, he
has been with the Faculty of Engineering of the University of Siena, Siena,
Italy, where he is currently an Associate Professor. He has published several
papers in the area of hybrid systems, model predictive control, multiparametric
optimization, computational geometry, robotics, and automotive control. He is
coauthor of the Model Predictive Control Toolbox (The Mathworks, Inc.) and
author of the Hybrid Toolbox for Matlab.

Dr. Bemporad was an Associate Editor of the IEEE TRANSACTIONS ON

AUTOMATIC CONTROL during 2001–2004. He has been Chair of the Technical
Committee on Hybrid Systems of the IEEE Control Systems Society since
2002.


	toc
	Optimal Control of Continuous-Time Switched Affine Systems
	Carla Seatzu, Member, IEEE, Daniele Corona, Member, IEEE, Alessa
	I. I NTRODUCTION
	A. Optimal Control of Hybrid Systems: State of the Art
	B. The Proposed Approach

	II. P ROBLEM F ORMULATION
	Assumption 2.1: There exists at least one mode $i\in {\cal S} $ 
	A. Optimal Control Problem
	B. Affine Versus Linear Models

	III. F IXED M ODE S EQUENCE
	A. Computation of the Switching Tables
	Definition 3.1 (Event Cost): Let us assume that after $k$ switch
	Definition 3.2 (Time Cost): Let us assume that after $k$ switche
	Procedure 1: The optimal value $${\mathtilde {T}}_{k,j}^{\ast }(
	• Assume that $j=0$, i.e., no future switch occurs. Then there i
	• Assume that $j$ additional switches occur, with $j=1, \ldots ,
	Proposition 3.1: If $x$ is a vector such that $ x = \lambda y$, 
	Proof: This can be proved inductively.

	Theorem 3.1: Let $A_{k}$ be the current dynamics and let the cur
	Proof: The optimal remaining cost starting from $x$ depends on a

	Definition 3.3: The table ${\cal C}_{k}$ is a partition of the s
	Corollary 3.1: A state vector $x = \lambda y$, with $ \Vert y \V

	B. Structure of the Switching Regions
	Proposition 3.1: Consider the case in which ${ H_{1} = \cdots = 
	Proof: Thanks to (16), it is immediate to see that if all costs 

	Fact 3.1: For all $ x \in \BBR ^{n}$, $k = 1, \ldots , N$ and $j
	Proof: This can be easily shown using the definition of time cos

	Proposition 3.2: For all $k = { 0, \ldots , N-1}$, and for all $
	Proof: For all $k$ and for all $ y$ on the unitary semisphere we


	C. Numerical Examples
	First Case: The switching regions ${\cal C}_{k}$, $k=1$, 2, 3, a
	Second Case: Now, let us assume that nonzero costs are associate



	Fig. 1. Switching regions ${\cal C}_{k}$, $k=1, 2, 3$ in the cas
	Fig. 2. Switching regions ${\cal C}_{k}$, $k=1, 2, 3$ in the cas
	Modification of the Regions: To show how the switching region ${
	IV. M ASTER -S LAVE P ROCEDURE

	Fig. 3. Switching regions ${\cal C}_{3}$ for different values of
	Problem 1 (Master): For a fixed sequence of switching times $\ba
	Problem 2 (Slave): For a fixed sequence of switching indices $\b
	A. Master Algorithm
	B. Slave Algorithm
	C. Master-Slave Algorithm
	Algorithm 4.1:
	1. Initialize $ {\cal T}(0)\leftarrow \{\tau _{1},\ldots ,\tau _
	2. Solve the master problem $ I(k)\leftarrow f_{M}( {\cal T}(k-1
	3. If $$\vert F( {\cal T}(k-1), I(k))-F( {\cal T}(k-1), I(k-1))\
	4. Solve the slave problem $ {\cal T}(k)\leftarrow f_{S}( I(k))$
	5. $k \leftarrow k+1$ . 
	6. Go to 2.
	7. Set $\{\tau _{1},\ldots ,\tau _{N}\}\leftarrow {\cal T} (k)$,
	8. End
	Proposition 4.1: Algorithm 4.1 stops after a finite number of st
	Proof: Let $V(k) \triangleq F( {\cal T}(k), I(k))$ . Clearly $$\

	Definition 4.1: The optimal control problem (2) is said switch-d
	Definition 4.2: The optimal control problem (2) is said time-deg


	TABLE I R ESULTS OF E XAMPLE 1
	D. Numerical Examples
	Example 1: Consider a second-order linear system whose dynamics 


	TABLE II R ESULTS OF E XAMPLE 2 W HEN THE M ASTER -S LAVE A LGOR
	Example 2: We present here an heuristics that in many cases impr

	TABLE III R ESULTS OF E XAMPLE 2 W HEN THE M ASTER -S LAVE A LGO
	V. S WITCHING T ABLE P ROCEDURE
	A. Computation of the Switching Tables
	Definition 5.1: Let us assume that $i_{k}=i$, i.e., after ${ k}$
	Proposition 5.1 (Optimal Remaining Cost): Let us assume that $i_
	Proof: If $k={ N}$ the systems is forced to evolve with dynamics

	Proposition 5.2: Assume that all switching costs are zero, i.e.,
	Proof: Clearly, according to (36) and (37), the results a) and b

	Definition 5.2: The switching table ${\cal C}^{i}_{k}$ is a part

	B. Computation of the Table for the Initial Mode
	Definition 5.3: Table ${\cal C}_{0}$ is a partition of the state

	C. Structure of the Switching Regions
	Proposition 5.1: Consider the case in which $H_{i,j} = 0$ for al
	Proof: When all switching costs are zero, we have shown that (45




	Fig. 4. Set of tables for the numerical example where $N=3$ and 
	Fig. 5. Table ${\cal C}_{0}$ .
	D. Numerical Examples

	TABLE IV R ESULTS OF THE N UMERICAL E XAMPLE W HEN $x_{0}=[1\;\;
	VI. D ISCUSSION ON C OMPUTATIONAL C OMPLEXITY
	A. Theoretical Analysis
	B. Numerical Simulations


	TABLE V R ESULTS OF THE N UMERICAL E XAMPLES IN S ECTION€ VI-B
	VII. C ONCLUSION
	C OMPUTATION OF THE C OST F UNCTION M ATRICES
	S AMPLING THE H YPER S EMI -S PHERE
	1) Define nominal values of discretization $N_{\vartheta }$, $N_
	2) discretize $\xi $ uniformly, i.e., $\xi _{i}=i {{ \pi }/{ 2N_
	3) denoted by $ {\rm round}(\cdot )$ a function that approximate
	4) for every $\xi _{i}$ and $\varphi _{j}$ define $\bar {N}_{\va

	A. Bemporad, F. Borrelli, and M. Morari, Piecewise linear optima
	A. Bemporad, L. Giovanardi, and F. D. Torrisi, Performance Drive
	A. Bemporad, A. Giua, and C. Seatzu, A master-slave algorithm fo
	A. Bemporad and M. Morari, Control of systems integrating logic,
	S. C. Bengea and R. A. DeCarlo, Conditions for the existence of 
	F. Borrelli, M. Baotic, A. Bemporad, and M. Morari, Dynamic prog
	M. S. Branicky, V. S. Borkar, and S. K. Mitter, A unified framew
	M. S. Branicky and S.K. Mitter, Algorithms for optimal hybrid co
	C. G. Cassandras, D. L. Pepyne, and Y. Wardi, Optimal control of

	(2003) XPRESS-MP User Guide . Dash Associates. [Online] . Availa
	R. DeCarlo, M. S. Branicky, S. Pettersson, and B. Lennartson, Pe

	Special issue on hybrid systems: Theory and applications, Procee
	M. Egerstedt, Y. Wardi, and F. Delmotte, Optimal control of swit
	A. Giua, C. Seatzu, and C. Van Der Mee, Optimal control of auton
	K. Gokbayrak and C. G. Cassandras, A hierarchical decomposition 
	S. Hedlund and A. Rantzer, Convex dynamic programming for hybrid

	CPLEX 8.1 User Manual, ILOG, Inc., Gentilly Cedex, France, 2003.
	B. Lincoln and A. Rantzer, Optimizing linear system switching, i
	C. C. Pantelides, M. P. Avraam, and N. Shah, Optimization of hyb
	B. Piccoli, Necessary conditions for hybrid optimization, in Pro
	A. Rantzer and M. Johansson, Piecewise linear quadratic optimal 
	P. Riedinger, F. Kratz, C. Iung, and C. Zanne, Linear quadratic 
	B. De Schutter and T. van den Boom, Model predictive control for
	M. S. Shaikh and P. E. Caines, On the optimal control of hybrid 
	H. J. Sussmann, A maximum principle for hybrid optimal control p
	H. P. Williams, Model Building in Mathematical Programming, Thir
	X. Xu and P. J. Antsaklis, Optimal control of switched autonomou
	P. Zhang and C. G. Cassandras, An improved forward algorithm for



