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Constrained Control and Observer Design by Inverse Optimality
Mario Zanon and Alberto Bemporad

Abstract— Model Predictive Control (MPC) is often tuned by trial
and error. When a baseline linear controller exists that is already
well tuned in the absence of constraints and MPC is introduced to
enforce them, one would like to avoid altering the original linear
feedback law whenever they are not active. We formulate this prob-
lem as a controller matching similar to [1]–[3], which we extend
to a more general framework. We prove that a positive-definite
stage cost matrix yielding this matching property can be computed
for all stabilizing linear controllers. Additionally, we prove that the
constrained estimation problem can also be solved similarly, by
matching a linear observer with a Moving Horizon Estimator (MHE).
Finally, we discuss various aspects of the practical implementation
of the proposed technique in some examples.

Index Terms— MPC, Controller Matching, LQR, MHE,
Kalman Filter.

I. INTRODUCTION

Model Predictive Control (MPC) provides a systematic approach to
controlling systems subject to constraints, by relying on constrained
optimization. Recent progress on solvers has made MPC applicable at
unprecedented high rates, thus widely enlarging its range of potential
applications. While constraint satisfaction is honored automatically
by the optimization procedure, closed-loop tracking performance is
achieved by adequately tuning the cost function to be minimized.

The main drawback of MPC is the lack of a systematic approach
to tune its cost function. Some approaches have been developed to
tune the controller for specific definitions of the control performance.
In case a clear performance criterion can be formulated as a function
of the states and controls (often referred to as economic MPC), an
approach for computing a quadratic positive-definite stage cost was
proposed in [4]–[6]. Moreover, (semi)-automatic tuning methods were
proposed in [7] and [8] based on black-box global and preference-
based optimization, respectively. In many cases, however, the standard
procedure consists of adapting the MPC cost parameters by trial-and-
error until closed-loop performance is satisfactory.

Since a plethora of tuning methods were developed for linear
controllers, forcing MPC to match the feedback law of a well-
designed linear controller whenever possible is of practical interest.
Therefore, a controller matching procedure was proposed in [1]–[3],
with the objective of computing a stage cost for MPC that, whenever
possible, delivers a feedback control coinciding with the one of a
prescribed linear controller. The tuning procedure consists of (a)
tuning a linear controller using one of the many available methods,
and (b) solving the controller matching problem to obtain a suitable
cost function for MPC.

In [1], [2], a controller matching in state space was proposed,
but the cost was restricted to have zero cross state-input terms,
such that some controllers could only be matched approximately.
In [3], an input-output setting was considered and the norm of
the difference between the MPC and the desired feedback matrix
minimized. However, no guarantee that the feedback matrix can be
recovered exactly was given. Additionally, it was left as an open
question whether an indefinite cost can leave more freedom to match
a wider range of controllers.
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In this paper we close a theoretical gap by proving that every
stabilizing linear feedback controller can be matched exactly by a
positive-definite stage cost in MPC. Additionally, we provide three
different methods for solving the controller matching problem which
are easy to implement. Our derivation is first done for models in
state-space form and then extended to the input-output case. Finally,
we show that our developments also apply to state estimation, such
that constraints on state estimates are handled by a moving horizon
estimator that matches a prescribed linear observer.

The paper is structured as follows. In Section II we prove that every
stabilizing linear feedback controller can be matched exactly by a
linear quadratic regulator (LQR). We propose three solution strategies
based on solving a small-dimensional semidefinite programming
(SDP) problem in Section III. We comment on how to deploy
our results for reference tracking both in case of state-space and
input-output models in Section IV. In Section V we prove that
the controller-matching property proven for LQR holds for MPC
as long as the constraints are not active. We briefly discuss the
observer matching problem in Section VI. Using four examples, we
demonstrate the effectiveness of the matching procedure and discuss
practical implementation aspects in Section VII. We finally draw
conclusions in Section VIII.

II. PROBLEM FORMULATION

Consider the linear discrete-time system

x+ = Ax+Bu, (1)

where x ∈ Rnx is the state vector, u ∈ Rnu is the input vector, and
x+ is the state at the next time. Assume that a linear feedback law

u = −K̂x (2)

which asymptotically stabilizes (1) has been designed to yield the
desired closed-loop performance. Our goal is to design a model
predictive controller that: (a) enforces the constraints

Cx+Du+ e ≤ 0, (3)

defined by matrices C, D and vector e; and (b) delivers a feedback
law which exactly coincides with the linear control law in (2), when
the constraints in the MPC optimization problem are not active.

In order to address such a goal, we first neglect constraints (3) and
focus on the LQR problem

min
u

∞∑
k=0

`(xk, uk)

s.t. xk+1 = Axk +Buk, k = 0, 1, . . . , (4a)

where the stage cost is

`(x, u) =

[
x
u

]> [
Q S>

S R

] [
x
u

]
=

[
x
u

]>
H

[
x
u

]
, (4b)

with H = H> ∈ R(nx+nu)×(nx+nu). The solution of the LQR
problem (4), if it exists, is the only stabilizing solution among all
solutions of the Discrete Algebraic Riccati Equation (DARE)

P = A>PA+Q− (S> +A>PB)K, (5a)

(R+B>PB)K = S +B>PA. (5b)
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Problem 1 (LQR controller matching): Given a linear model
(A,B) and an asymptotically stabilizing feedback matrix K̂, design
a positive-definite stage cost such that the corresponding LQR
controller from (5) is K = K̂.

We focus on the discrete-time case, even though the same results
also hold in continuous time, which is omitted for conciseness.

For all positive-definite matrices H , the assumption that (A,B)
is stabilizable implies that the LQR feedback gain from (5) is
asymptotically stabilizing. In case H is not positive-definite, the
additional asymptotic convergence constraint

lim
k→∞

xk = 0 (6)

is often necessary to guarantee that the solution is asymptotically
stabilizing, as shown in the following example:

Example 1 (Indefinite LQR and DARE): Consider the scalar sys-
tem xk+1 = 2xk + uk and stage cost `(xk, uk) = u2. The
corresponding DARE is P = 4P − 4P2

1+P , with solutions P ∈ {0, 3},
K ∈ {0, 1.5}. The first one is destabilizing and corresponds to the
formulation without constraint (6), the second one is stabilizing and
corresponds to the constrained formulation.

For more details on indefinite LQR formulations we refer the
interested reader to [4], [9]–[11].

III. SOLUTION TO THE INVERSE LQR PROBLEM

In order to discuss Problem 1 we first establish some preliminary
results. Let A

K̂
:= A − BK̂ and note that, for any matrix Q̄ � 0,

asymptotic stability of A
K̂

implies that the Lyapunov equation

Q̄+A>
K̂
P̄A

K̂
− P̄ = 0 (7)

is solved by some matrix P̄ � 0.
Lemma 2: Consider the linear discrete-time system

x+ = A
K̂
x+Bu,

with A
K̂

asymptotically stable. Let P̄ be the solution to the Lyapunov
equation (7) for Q̄ = Q̄> � 0, and select cost matrices Q̄, S̄ :=
−B>P̄A

K̂
and any R̄ � 0. Then, the LQR feedback is K = 0.

Proof: We begin by noting that P = P̄ , with P̄ solving (7), and
K = 0 solve the DARE (5) associated with system (A

K̂
, B) and cost

matrices Q̄, S̄, for any R̄ � 0. Since A
K̂

has all eigenvalues inside
the unit circle, K = 0 stabilizes (A

K̂
, B). Then P = P̄ , K = 0 is a

stabilizing solution of the LQR. Since the stabilizing solution, when
it exists, is unique [4], [10] this concludes the proof.

Lemma 3 ( [4, Lemma 1]): Consider system (A
K̂
, B) with A

K̂
asymptotically stable, cost matrices Q̄, R̄, S̄ from Lemma 2, and
corresponding LQR feedback K̄ = 0; and consider system (A,B)
with cost matrices Q, R, S and corresponding LQR feedback K.
Assume that

Q = Q̄+ S̄>K̂ + K̂>S̄ + K̂>R̄K̂, S = S̄ +RK̂, R = R̄.
(8)

Then, starting from the same initial state, the two systems generate
the same trajectories in closed-loop with the corresponding LQR law,
where for system (A,B) the LQR law is K = K̂.

Proof: The proof given in [4] is obtained by noting that the
DAREs associated with the two LQR formulations coincide.

We are now ready to prove the following theorem.
Theorem 4: Given a linear discrete-time stabilizable system

(A,B) and any asymptotically stabilizing feedback K̂, there exists a
quadratic positive-definite stage cost `(x, u) as in (4b) such that the
corresponding LQR solution (5) is K = K̂.

Proof: The proof is based on using first Lemma 2 to construct a
positive-definite LQR formulation for system (A

K̂
, B), with A

K̂
=

A−BK̂, and then prove that this implies the existence of a positive-
definite LQR formulation also for system (A,B).

Select any matrix Q̄ = Q̄> � 0, compute P̄ by solving the
Lyapunov equation (7), and define S̄ := −B>P̄A

K̂
. By selecting

any symmetric matrix R̄ such that R̄ � S̄Q̄−1S̄> � 0, we get

H̄ :=

[
Q̄ S̄>

S̄ R̄

]
� 0.

By Lemma 2, this yields a positive-definite LQR formulation with
zero feedback for system (A

K̂
, B), so that no control action is

applied to system (A
K̂
, B).

By applying Lemma 3, we obtain an equivalent LQR for system
(A,B) by defining the cost matrices Q,R, S as in (8).

We are left with proving that H � 0, or, equivalently, that Q −
S>R−1S � 0, since R � 0. Because

S>R−1S = S̄>R̄−1S̄ + S̄>K̂ + K̂>S̄ + K̂>R̄K̂,

we obtain Q − S>R−1S = Q̄ − S̄>R̄−1S̄ � 0, where positive-
definiteness of the second term follows from H̄ � 0.

By taking a different point of view, we provide next an alternative
proof of Theorem 4.

Proof: [Alternative proof of Theorem 4] For any Γ � 0 the cost

`(x, u) = (u+ K̂x)>Γ(u+ K̂x) (9a)

=

[
x
u

]> [
K̂>ΓK̂ K̂>Γ

ΓK̂ Γ

] [
x
u

]
(9b)

solves the DARE (5) with K = K̂ and P = 0. This fact is used
in [12] in the context of tube-based robust MPC. Since the proposed
cost is indefinite, we exploit the results of [4], [5] which state that
any LQR with indefinite cost and stabilizing feedback matrix can be
reformulated as an LQR with positive definite cost.
Since this theorem proves that any stabilizing feedback matrix K̂ can
be obtained as the solution of an LQR with positive-definite stage
cost, there is no advantage in using an indefinite stage cost. Further-
more, we establish next a counterintuitive result about the solution
of the controller matching problem for destabilizing feedback.

Lemma 5: Given any feedback K̂ there exists a solution to the
DARE formulated using cost (9) which yields K̂ as feedback.
Moreover, this entails that a stabilizing LQR solution exists, though
K = K̂ only holds if K̂ is stabilizing.

Proof: The DARE reads

P = A>PA+ K̂>ΓK̂ − (K̂>Γ +A>PB)

· (Γ +B>PB)−1(ΓK̂ +B>PA),

such that P = 0, K = K̂ is a solution, though not necessarily a
stabilizing one, of the DARE. The existence of a stabilizing solution
of the indefinite LQR is then a direct consequence of this fact and [4,
Proposition 2].
This lemma warns the control engineer that the controller matching
procedure might succeed at finding a positive-definite LQR formula-
tion also in case of a non-stabilizing feedback K̂; however, the LQR
feedback is stabilizing, such that K 6= K̂. We provide next a simple
example to demonstrate this fact.

Example 2 (Destabilizing Controller Matching): Consider the
system A = 0.9, B = 0.1, with destabilizing feedback K̂ = −2.
The indefinite LQR formulation using cost (9) with Γ = 1, i.e.,
Q = K̂>K̂, R = 1, S = K̂> yields the DARE

P = 0.81P + 4− (0.09P − 2)2(0.01P + 1)−1,

which simplifies to −P P−21
P+100 = 0. This equation has two solutions:

the stabilizing one corresponds to P = 21 and K = −0.0909; and
the destabilizing one corresponds to P = 0 and K = −2.
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We conclude this section by proving that in general there exist
infinitely many LQR formulations yielding K = K̂.

Proposition 6: Given a stabilizing feedback gain K̂, there exist
infinitely many LQR formulations yielding K = K̂.

Proof: The LQR gain is invariant under the transformation [13]

H ← H +

[
K>P1K K>P1

P1K P1

]
+

[
A>P2A− P2 A>P2B

B>P2A B>P2B

]
,

for any P1, P2, provided that the following holds:

P1 +B>P2B +R+B>PB � 0.

In addition, the LQR gain is invariant under positive scaling, i.e.,
H ← σH , for any σ > 0.

Numerical Methods for the Inverse LQR Problem: We propose
two formulations based on semidefinite programming (SDP) [14]: (i)
a direct formulation which does not require any other information
than K̂; (ii) an indirect formulation based on cost (9), where one
needs to provide a tuning matrix Γ. We stress that the matching
problem must be solved only once offline. Since there exist infinitely
many cost matrices yielding an exact match, we minimize the
condition number (the ratio between the maximum and minimum
eigenvalue) of matrix H in order to avoid numerical inaccuracies
when later solving the MPC problem on line.

Direct formulation: Given the desired gain K̂, solve

min
Q,S,R,P,β

β (10a)

s.t. βI �
[
Q S>

S R

]
� I, βI � P � I (10b)

P = A>PA+Q− (S> +A>PB)K̂, (10c)

(R+B>PB)K̂ = S +B>PA. (10d)

Let H? =

[
Q? S

>
?

S? R?

]
, P?, β? be an optimal solution of (10). The

condition number κ? of the stage cost matrix H? clearly satisfies
κ? ≤ β?, which is the reason for minimizing β in (10). The lower
bound H � I in (10) does not cause any loss of generality: since
β is not upper-bounded and scaling H to σH does not change the
optimizer for all σ > 0, any H � 0 can be rescaled with σ−1 =
λmin(H) (the minimum eigenvalue of H), so that σH � I . The
same reasoning holds for P .

Indirect formulation: For any given matrix Γ = Γ> � 0, solve

min
P,α,β

β (11a)

s.t. βI � αHΓ +HP � I, βI � P � I, (11b)

where in (11) we have set

HΓ :=

[
K̂>ΓK̂ K̂>Γ

ΓK̂ Γ

]
, HP := −

[
A>PA− P A>PB

B>PA B>PB

]
.

Here, we exploited the fact that, by Proposition 6, HP does not
change the LQR solution and stage cost matrix HΓ yields feedback
K = K̂ by construction (see the alternative proof of Theorem 4).
From SDP (11) we obtain H = HΓ +HP , or, equivalently,

Q = K̂>ΓK̂ + P −A>PA, (12a)

R = Γ−B>PB, (12b)

S = ΓK̂ −B>PA. (12c)

Note that, as proven in [4], P is the cost-to-go matrix associated
with stage-cost matrix H . Therefore, the considerations made for
Problem (10) regarding the condition number of H and P directly
apply to Problem (11).

This second formulation allows one to tune the behavior in case
some constraint becomes active, as one can adjust the way the MPC
control deviates from the prescribed controller. This fact will be
illustrated by an example in Section VII. Since it might not be clear
how to best select Γ, one can let the optimizer select it by solving

min
Γ,P,β

β (13a)

s.t. βI � HΓ +HP � I, βI � P � I, (13b)

where variable α has been removed, since Γ is now an optimization
variable. This third formulation might be desirable when there is no
clear criterion on how to select Γ and the only objective is to obtain
a numerically well conditioned cost matrix. Note that the solution
of Problem (13) coincides with that of Problem (10), since both
problems are convex and minimize the same cost.

Remark 1: Though the three formulations (10), (11), and (13) are
all equivalent (see the alternative proof of Theorem 4), in practice (11)
and (13) were always solved by all the SDP solvers we tested, i.e.,
SeDuMi [15], SDPT3 [16], and Mosek [17]. Problem (10), instead,
was harder to solve and in some cases the solvers were unable to
compute a solution.

Remark 2: When solving MPC problems, one can either keep the
QP in a sparse form or condense it. The Hessian of the sparse QP is
block diagonal, with N blocks equal to H and the last block equal
to P . Therefore, the condition number of the sparse QP Hessian
is the condition number of blockdiag(H,P ). The condensed QP
Hessian is instead dense, since the states are eliminated using the
solution formula xk = Akx0 +

∑k
j=0A

jBuj . Because matrices A,
B are fixed, the condensed Hessian is a linear function of H and P .
One can therefore in principle minimize the condition number of the
condensed QP. Note, however, that the condensed QP Hessian might
be ill-conditioned and, therefore, pose difficulties to the SDP solver.

IV. TRACKING PROBLEMS AND INPUT-OUTPUT FORM

In this section, we show how the results of the previous sections
can be adapted to solve output tracking problems, both for state-space
and input-output models.

Tracking in State-Space Form: Let y ∈ Rny be the output vector
associated with system (1),

y = Cyx+Dyu. (14)

In order to achieve perfect tracking, as also suggested in [18], one
can design a linear controller for the extended system[

xk+1

qk+1

]
=

[
A 0
Cy I

] [
xk
qk

]
+

[
B
Dy

]
uk, (15)

where q is the integral of the output y. Tracking of constant references
and rejection of constant disturbances is achieved by feeding back
qk+1 = qk + (yk − rk) along with xk in the implementation.
Therefore, assuming that we are given the linear controller

u = −K̂
[
x
q

]
, (16)

we can solve the inverse LQR problem for (15), (16) as suggested in
the previous section, which leads to also weighting the integral state
qk in the stage cost.

Input-Output Form: The controller matching problem in input-
output form has been investigated in [3] where, however, no guar-
antee on the existence of a matching controller was proven. In the
following, we prove that the above inverse LQR construction can be
immediately extended to linear input-output models and, therefore,
all existence guarantees can be extended to the input-output setting.
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We consider strictly causal input-output models of the form

A(z−1)yk = B(z−1)uk, (17)

where z−1 is the backward-shift operator and

A(z−1) = Iny −
nA∑
i=1

Aiz−i, B(z−1) =

nB∑
i=1

Biz−i.

We are given the linear dynamic compensator

Ĉ(z−1)uk = D̂(z−1)yk (18)

with Ĉ(z−1) = Inu −
∑nC
i=1 Ĉiz

−i, D̂(z−1) =
∑nD
i=0 D̂iz

−i, and,
without loss of generality, nC ≤ nB, nD ≤ nA.

Assume that the linear dynamic compensator (18) asymptotically
stabilizes (17). In this case the inverse LQR construction described
in the previous section can be applied to the nonminimal state-space
realization with state vector

xk =
(
yk, · · · , yk−nA+1, uk−1, · · · , uk−nB+1

)
, (19)

x ∈ RnynA+nu(nB−1), by setting

A=


A1 . . . AnA−1 AnA B2 . . . BnB
I(nA−1)ny 0 0

0 0 0

0 0 I(nB−2)nu 0

, B=


B1

0

Inu
0

,
where, depending on nB , some blocks can have dimension 0, and

K̂ = −
[
D̂0 . . . D̂nD 0 . . . 0 Ĉ1 . . . ĈnC 0 . . . 0

]
.

The proposed controller matching procedure can then be applied
by using the state-space description of the system, provided that A,B
are stabilizable and K̂ does stabilize the system.

Tracking in Input-Output Form: Set-point tracking problems can
be solved in input-output form by defining the tracking error ek =
yk − rk and the input increment ∆uk = uk − uk−1, for which the
given control law is

Ĉ(z−1)∆uk = D̂(z−1)ek. (20)

In this case, model (17) can be rewritten as

(1− z−1)A(z−1)yk = B(z−1)∆uk. (21)

For constant references rk ≡ r, by letting P (z−1) := (1 −
z−1)A(z−1) we have that P (z−1)rk = 0, which subtracted
from (21) gives the tracking error model

P (z−1)ek = B(z−1)∆uk. (22)

The inverse LQR problem can be now synthesized for model (22)
to match the controller (20) as described above. This provides a
quadratic stage cost that involves ek and ∆uk.

V. MPC MATCHING PROBLEM

Let us now analyze the case in which linear constraints (3) must
be enforced by the controller. This problem is naturally formulated
in the Model Predictive Control (MPC) framework, based on solving
the following optimal control problem

min
w

Vf(xN ) +

N−1∑
k=0

`(xk, uk) (23a)

s.t. x0 = x̂0, (23b)

xk+1 = Axk +Buk, k = 0, . . . , N − 1, (23c)

Cxk +Duk + e ≤ 0, k = 0, . . . , N − 1, (23d)

xN ∈ Xf , (23e)

where w := (w0, . . . , wN−1, xN ), wk := (xk, uk), the stage cost `
is defined as in (4), the terminal cost Vf(xN ) is quadratic and must
be suitably selected together with a corresponding terminal constraint
set Xf to yield recursive feasibility and asymptotic stability [19].

Given the current state measurement x̂0, MPC solves Problem (23)
and applies the first (optimal) control u?0 to the system. At the next
time step, problem (23) is solved again using new state measurement
in order to close the loop.

Consider the set of states XN := { x̂0 |µ?k(x̂0) = 0, ν?(x̂0) = 0 },
where µ?k(x̂0), ν?(x̂0) are the optimal Lagrange multipliers associ-
ated with constraints (23d) and (23e), respectively, when solving (23).
This is the set of states for which the MPC problem (23) and the
unconstrained MPC problem (23a)–(23c) coincide. The following
result is well known in the MPC literature, see, e.g., [20]–[22].

Lemma 7: Assume that x̂0 ∈ XN , ∇2` = H � 0, and Vf(x) =
x>Px, with P � 0 the solution of the DARE associated with cost `
along with the corresponding LQR gain K as in (5). Then the MPC
law (23) delivers u?0 = −Kx̂0.

A set X is positive invariant for system (1) under feedback u =
−K̂x if (A−BK̂)x ∈ X and (C−DK̂)x+e ≤ 0, for all x ∈ X . The
maximal positive invariant (MPI) set is the largest positive invariant
set, containing all positive invariant sets.

Lemma 8: If Xf is selected as the MPI set for the LQR feedback
gain K̂, then XN = Xf .

Proof: By assumption, Xf is the largest set in which the
autonomous system with transition matrix (A−BK̂) does not violate
the path constraints (3). Therefore, Xf ⊇ XN . Moreover, ∀ x̂0 ∈ Xf

the closed-loop dynamics uk = −K̂xk, xk+1 = Axk +Buk, x0 =
x̂0 satisfy Cxk+Duk+e ≤ 0; i.e., xk, uk are a feasible initial guess
for (23). Since K̂ is the optimal LQR feedback matrix associated with
the stage cost, the guess is also optimal and Xf = XN .

The previous results cover the case in which no constraint is active.
With the following Lemma we prove that whenever some constraint
is active, the resulting feedback minimizes the deviation from the
matched controller.

Lemma 9: Assume that `(x, u) is formulated as in (4b) and
Vf(x) = x>Px where P is the solution to the DARE (5) with
K = K̂. Then MPC minimizes the cost

N−1∑
k=0

(uk + K̂xk)>Γ(uk + K̂xk),

with Γ = R+B>PB � 0.

Proof: The proof follows from Equation (12), which implies

N−1∑
k=0

[
xk
uk

]>
H

[
xk
uk

]
+ x>NPxN

= x̂>0 P x̂0 +

N−1∑
k=0

(uk + K̂xk)>Γ(uk + K̂xk).

Since x̂0 is fixed, the term x̂>0 P x̂0 is constant and does not influence
the optimal solution.
Note that Lemma 9 contains Lemma 7 as a special case, since it states
that the proposed controller matching procedure guarantees that MPC
delivers u = −K̂x whenever possible, i.e., whenever no constraint
becomes active.

We remark that, for H � 0, P � 0, MPC asymptotically stabilizes
system (A,B) to the origin [19], [23], [24]. Note that the size of
the region of attraction—and feasible domain—of MPC does not
decrease with an increasing prediction horizon N . In practice one
observes that increasing a short prediction horizon N typically leads
to a significant increase of the region of attraction.
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Finally, the proposed controller matching procedure can easily be
coupled with more advanced MPC formulations, e.g., tube-based
robust MPC [12], [25], which asymptotically stabilizes the closed-
loop system to the minimum robust positive invariant set [25].

The MPC matching procedure is summarized as follows:
1) compute H by solving the matching problem (10), (11) or (13);
2) select P as the LQR cost-to-go, obtained automatically in 1);
3) compute the terminal set Xf as the MPI set for feedback K.

Nonlinear MPC: We consider now the case of a nonlinear system

xk+1 = f(xk, uk).

One can linearize the system around a steady state xs, us to obtain

A = ∇xf(xs, us)
>, B = ∇uf(xs, us)

>,

C = ∇xh(xs, us)
>, D = ∇uh(xs, us)

>, e = h(xs, us),

and use a linear controller to locally stabilize the nonlinear system.
Then, the controller matching strategy can be deployed as described
before to define a matching linear MPC problem.

In case one is interested in further improving performance by using
a nonlinear model within MPC, Nonlinear MPC (NMPC) can be
formulated as follows [19], [24]

min
w

Vf(xN ) +

N−1∑
k=0

`(xk, uk) (24a)

s.t. x0 = x̂0, (24b)

xk+1 = f(xk, uk), k = 0, . . . , N − 1, (24c)

h(xk, uk) ≤ 0, k = 0, . . . , N − 1, (24d)

xN ∈ Xf . (24e)

Lemma 10: Assume that the stage cost is selected as the solution
to the controller matching problem (10), (11), or (13) for the system
linearization computed at xs, us. Assume further that h(xs, us) < 0
and the terminal cost is selected as Vf(x) = x>Px, with P � 0 the
solution of the DARE associated with cost ` and the system linearized
at xs, us. Then, the NMPC feedback u∗0(x̂) satisfies

‖u∗0(x̂) + K̄x̂‖ = O(‖x̂− xs‖2).
Proof: By relying on the results derived in [26], [27] we note

that, by construction, the feedback control law uNMPC(x̂0) yielded
by the NMPC formulation (24) and the one yielded by the linear
MPC formulation (23), i.e., uMPC(x̂0), satisfies

∇x̂0u
NMPC(xs) = ∇x̂0u

MPC(xs).

A more detailed proof can be found in [5, Appendix B].

VI. OBSERVERS AND MOVING HORIZON ESTIMATION

In this section, we discuss how the proposed controller matching
procedure can be applied to the state estimation problem. This allows
one to interpret any linear observer as a Kalman filter and to formulate
Moving Horizon Estimation (MHE) which locally behaves like the
linear observer, and handles constraints and nonlinear dynamics.

Note that, while MHE is often formulated using the Kalman filter
for tuning, MHE observers can be tuned using other criteria, e.g.,
H∞ [28],

where, due to the computational complexity of solving a minimax
problem, the problem is solved only approximately. We need to stress
that with our tuning procedure the H∞-tuned MHE problem can be
solved exactly and efficiently for linear systems, since one needs to
solve a convex QP instead of a minimax problem.

Consider the following linear system

x+ = Ax+ w, y = Cyx+ v,

where w and v denote process and measurement noise, respectively.
We write the one-step-ahead estimation problem at time n as

x∗−, x
∗
+ = arg min

x−,x+

[
Ax− − x+

Cyx− − y

]>
H−1

[
Ax− − x+

Cyx− − y

]
+ (x− − x̂)>P−1(x− − x̂), (25)

where the estimation error covariance is P = E[(x − x̂)(x − x̂)>]
and the measurement and process noise covariance is

H =

[
Q S>

S R

]
= E

[[
w
v

] [
w
v

]>]
,

where in Kalman filtering one often assumes S = 0. The optimal state
estimate is then x̂+ = x∗+. Note that we used a compact notation
for the state estimates, which are usually denoted as x̂ = xn|n−1;
x∗− = xn|n; and x̂+ = xn+1|n to explicitly state which information
they use to predict the state at which time.

The Kalman filter covariance update is given by the DARE [29]

P+ = APA> +Q− L(S> + CyPA
>), (26a)

L = (S +APC>y )(R+ CyPC
>
y )−1, (26b)

where P+ = P at steady state. The Kalman filter state estimate is

x̂+ = Ax̂− L(Cyx̂− y). (27)

Lemma 11: The estimation problem (25) coincides with a Kalman
filtering problem and delivers state estimate (27) with feedback gain
and covariance update given by (26).

Proof: We define[
Q̃ S̃>

S̃ R̃

]
=

[
Q S>

S R

]−1

= H−1.

The matrix inversion lemma and the Schur complement yield

Q̃−1S̃> = −S>R−1, R̃− S̃Q̃−1S̃> = R−1. (28)

Then, the first-order necessary conditions for optimality of the
problem in (25) read

0 = −S̃>(Cyx
∗
− − y)− Q̃(Ax∗− − x∗+),

0 = P−1(x∗− − x̂) + C>y R̃(Cyx
∗
− − y) + C>y S̃(Ax∗− − x∗+)

+A>S̃>(Cyx
∗
− − y) +A>Q̃(Ax∗− − x∗+).

From the first condition we get

x∗+ = Ax∗− + Q̃−1S̃>(Cyx
∗
− − y).

By inserting this in the second condition and using (28), we have
(P−1 +C>y R

−1Cy)x∗− = P−1x̂+C>y R
−1y. By using the matrix

inversion lemma one can derive

x∗− = x̂− PC>y (R+ CyPC
>
y )−1(Cyx̂− y).

Then, we can conclude that

x̂+ = x∗+ = Ax∗− − S>R−1(Cyx
∗
− − y) = Ax̂− L(Cyx̂− y),

L = (S> +APC>y )(R+ CyPC
>
y )−1. (29)

Let us denote the estimation error as e = x̂− x, which entails

e+ = Ae− L(Cyx̂− y)− w = (A− LCy)e− w + Lv,

and remind that E[ee>] = P , E[ew>] = 0, E[ev>] = 0, E[ww>] =
Q, E[vv>] = R, E[wv>] = S.

The covariance P+ := C[e+] of the estimation error update is:

P+ = (A− LCy)P (A− LCy)> + LRL> +Q− SL> − LS>

= APA> +Q− L(CyPA
> + S>),
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where we used (29) to derive the last equality and obtain (26).
We proved that the one-step-ahead estimation problem (25) coin-

cides with a Kalman filter whose feedback and covariance propaga-
tion are given by DARE (26). Note that (26) coincides with (5), if
(A,B) is replaced by (A>, C>y ), such that L = K>. Therefore, the
controller matching procedure also applies to linear observers and
can be used to formulate MHE problems which match any desired
linear observer yielding asymptotically stable state-estimation errors.

VII. PRACTICAL IMPLEMENTATION

In this section we demonstrate the theory with some examples and
show how the matching technique can be implemented in practice.

Tuning Matrix Γ: We illustrate how different choices of Γ can
influence the optimal solution in the presence of active constraints.
We remark that, by construction, whenever no constraint is active any
Γ � 0 delivers the same feedback. Consider the discrete-time linear
system defined by

A = −0.8, B =
[
0.1 0.1 0.1

]
,

subject to the constraint x ≤ 0.7. Consider the stabilizing gain

K̂ =
[
0.5 0.5 0.2

]>
.

We want to synthesize an MPC controller with prediction horizon
N = 1, terminal LQR cost, terminal constraint set Xf = {x|x ≤
0.7}, and such that the MPC law coincides with K̂ when constraints
are inactive in the MPC problem. Consider the two weighting
matrices Γ1 = I and Γ2 = diag(

[
1 100 1

]
). Moreover, consider

the tuning matrix obtained by solving the direct formulation (10):

H =


1.3128 0.6917 0.7088 0.4775
0.6917 1.1610 −0.1849 0.1173
0.7088 −0.1849 1.2435 −0.0036
0.4775 0.1173 −0.0036 1.2021

 .
For x̂0 = −1, we have (A − BK̂)x̂0 = 0.92 > 0.7: MPC deviates
from the desired controller to satisfy the constraint. We obtain the
following controls (the subscript denotes the used weighting matrix):

uΓ1
=

−0.2333
−0.2333
−0.5333

 , uΓ2
=

−0.5945
0.4891
−0.8945

 , uH =

−0.2849
−0.2923
−0.4228

 .
The tuning role of matrix Γ is best understood by considering the cost
in form (9): Γ does not penalize the use of the controls themselves,
but rather their deviation from −K̂x̂0:

|uΓ1
+ K̂x̂0| =

0.7333
0.7333
0.7333

 , |uΓ2
+ K̂x̂0| =

1.0945
0.0109
1.0945

 ,
i.e., for Γ2, the second control is closer to its reference value 0.5 than
for Γ1, but larger in magnitude. Since tuning matrix H is obtained
through the direct formulation (10), no choice can be made on how
the controls are selected in the presence of active constraints.

PID and Input-Output Form: Consider the linear system in input-
output form from [2]

yk = 1.8yk−1 + 1.2yk−2 + uk−1,

with sampling time ts = 2 and subject to constraints −24 ≤ u ≤ 24,
and y ≥ −5. We want to match the PID controller

uPID
k = −

(
Ki y

i
k +Kp yk +

Kd

ts
(yk − yk−1)

)
,

yi
k = yi

k−1 + tsyk,
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Fig. 1. Closed-loop simulations for the PID example. Top plot: MPC
(blue line), PID (red line), PID with saturated control (yellow dotted line).
Bottom plot u = −K̂x, with x form the MPC closed-loop trajectory
(dotted red line). Constraints are displayed in dashed black line.

with Ki = 0.248, Kp = 0.752, Kd = 2.237. We write the system
dynamics in the state-space representation xk+1 = Axk+Buk where

xk =


yk−1

yk−2

yi
k−1
uk−1

, A=


1.8 1.2 0 1
1 0 0 0

3.6 2.4 1 2
0 0 0 0

, B=


0
0
0
1

.
Then, the PID becomes u = −K̂x, with

Kpid = Kp +Kits +Kd/ts,

K̂ =
[
Kd/ts + 1.8Kpid 1.2Kpid Ki Kpid

]
=
[

5.3782 2.8398 0.2480 2.3665
]
.

In [2] an LQR with dense Q provided an exact match. We are able to
reproduce the same result by either adding the constraint that S = 0
or minimizing, e.g., ‖S‖1. By minimizing the condition number of
H , we obtain κ(H) ≈ 1.7, as opposed to κ(H) ≈ 6.6 found by [2].
In this case, there is no clear advantage in minimizing the condition
number, since 6.6 is so low that it does not cause numerical issues.
If we minimize the condition number of H = blkdiag(H,P ), we
obtain κ(H) ≈ 158.8 with S = 0 and κ(H) ≈ 149.2 with S free.

We plot the control and output closed-loop trajectories in Figure 1.
MPC respects the constraints and, as soon as the output enters the
region in which no output nor input constraints would be active under
the feedback K̂, MPC and PID deliver the same control (blue and
dotted red lines). The PID controller violates both the input and output
constraints (red line). By saturating the PID input to satisfy the input
constraint, the output is not stabilized (dotted yellow line).

Consider now the desired feedback law

K̂ =
[

4 2 0.15 1.6
]
.

In this case, with S = 0 there exists no LQR matching the feedback
K̂, though it is stabilizing. By allowing S 6= 0, one is able to compute
H � 0 such that K = K̂. The condition number is κ(H) ≈ 30.5.

From Continuous to Discrete Time and Anti Wind-Up: Con-
sider the nonlinear continuously-stirred tank reactor (CSTR) with
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dynamics [30]

Ṫ =
q

V
(Tf − T ) +

HAB

ρCp
K0e

E
RT CA +

UA

V ρCp
(Tc − T ),

ĊA =
q

V
(CAf − CA)−K0e

E
RT CA,

with state x = (T,CA) (temperature and concentration of A); control
u = Tc (temperature of the cooling jacket); and output y = T . The
parameters are: volume V = 100 m3, density of the A-B mixture
ρ = 1000 kg/m3, reaction heat HAB = 5 · 104 J/mol, activation
energy over the universal gas constant E/R = 8750 J/mol K, time
constant K0 = 7.2 · 1010 1/s and the heat transfer coefficient times
the area UA = 5·104 W/K. The system is subject to the uncontrolled
volumetric flowrate q = 1 ± 0.1 m3/s, feed concentration CAf =
1± 0.1 mol/m3, and feed temperature Tf = 350± 10 K.

The system is already controlled by a PI controller with propor-
tional gain Kp = 0.5, integral gain Ki = 5 and an anti-windup gain
Kaw = 1 such that the integral term is given by

İe = e+Kaw min(max(Kpe+KiIe, ulb), uub),

with e = Tref − T ; Tref the reference setpoint and ulb = 250 K,
uub = 350 K the saturation bounds on the control signal.

Consider the setpoint xs = (300, 0.39, 59.72) us = 298.59 with
output reference rs = 300. We write the system dynamics in closed-
loop with the PI controller as ẋ = fc

PI(x, r) and linearize them at
xs, rs to obtain the continuous- and discrete-time matrices

Ac
PI =

∂fc
PI

∂x
, API = eA

c
PIts ,

Bc
r,PI =

∂fc
PI

∂r
, Br,PI =

∫ ts

0
eA

c
PItBc

r,PIdt,

for a sampling time ts.
We apply the same procedure to the open-loop dynamics ẋ =

fc(x, u), linearized at xs, us to get

Ac =
∂fc

∂x
, Bc =

∂fc

∂u
, Bc

r =
∂fc

∂r
,

and the corresponding discrete-time linearized system ∆xk+1 =
A∆xk+B∆uk+Br∆rk. From the the continuous-time PI feedback,
we compute the corresponding discrete-time feedback matrix K̂ by
pole placement, i.e., by imposing: eig(A−BK̂) = eig(API)..

We compute the reference for MPC as the steady-state ∆xr, ∆ur

associated with a given ∆r:

∆xr = (API)
−1Br,PI∆r,

∆ur = arg min
∆u
‖A∆xr +B∆u+Br∆r‖,

where, by construction, A∆xr +B∆ur +Br∆r = 0.
Since the integral state is not a state of the system but a state of

the controller, its time propagation is given by the MPC prediction.
We introduce an anti-windup mechanism by adding the term

faw(∆x,∆u) := tsKaw
(
∆u+ us −∆ur − K̄(∆x+ xs −∆xr)

)
to the dynamics of the integral state, where Kaw is the PI anti-windup
gain. The MPC formulation then reads

min
∆x,∆u

N−1∑
k=0

[
∆xk −∆xr

k
∆uk −∆ur

k

]>
H

[
∆xk −∆xr

k
∆uk −∆ur

k

]
+ (∆xN −∆xr

N )>P (∆xN −∆xr
N )

s.t. ∆x0 = x̂− xs,

∆xk+1 =A∆xk+B∆uk+Br∆rk+

 0
0

faw(∆x,∆u)

 ,
C∆xk +D∆uk ≤ e.
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Fig. 2. Temperature and input profiles for a closed-loop simulation using
the PI controller (PI), the MPC controller (MPC), the MPC controller with
a constraint on the maximum temperature (MPCx) and nonlinear MPC
with the same constraint (NMPC).

A nonlinear MPC can also be formulated, where the dynamics are

∆xk+1 = f(∆xk,∆uk,∆rk) +

 0
0

faw(∆x,∆u)

 .
We compare in simulations the PI controller with the linear MPC

controller on a reference step change. Additionally, we introduce a
constraint on the maximum temperature and simulate both the MPC
(MPCx) and NMPC controllers. The results are displayed in Figure 2:
the PI controller violates the temperature constraint; linear MPC is
also violating it due to the linearization error which causes an inaccu-
rate prediction; NMPC does satisfy this constraint and stabilizes the
system to the desired output. If the temperature constraint is removed,
NMPC has a smaller overshoot for the considered step of 30 degrees.
For a step of 10 degrees all controllers are qualitatively the same.

H∞ Moving Horizon Estimation: With the following example,
we detail how a robust MHE can be formulated, based on classical
results for robust linear observers. Given the full equivalence with
control problems, we remark that this also applies to robust tuning
of MPC controllers.

Consider the system defined by

x+ =

(
A+

[
0 0
−2x2 0.1x2

])
x+Bw,

y = Cyx+ v,

A =

[
0.93 0.09
−0.61 0.92

]
, B =

[
0.01 0.01
0.003 0.12

]
,

Cy =
[

1 0
]
,

with process noise covariance W = diag(
[

10 10
]
) and mea-

surement noise covariance V = 0.01. By neglecting the nonlinear
term, one can design both a Kalman filter and an H∞ observer,
which solves [31]:

Σ = (I − PG>G+ PC>y V
−1Cy)−1P,

L = AΣC>y V
−1,

P = AΣA> +BWB>,

where we select tuning parameter G = γ diag(
[

0.1 1
]
), and γ

is a scalar to be maximized.
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Fig. 3. State estimation error: tuned MHE (blue), standard MHE (red).

For our example, the H∞ observer is obtained for γ ≈ 1.3438.
The two observers yield feedback

LKalman =

[
0.6866
1.5202

]
, LH∞ =

[
1.4391
4.5947

]
.

The tuning procedure yields

H−1
H∞ =

 0.9451 −0.2260 −0.0239
−0.2260 0.0693 −0.0985
−0.0239 −0.0985 0.9896

 ,
as weighting matrix for theH∞-tuned MHE; while the Kalman MHE
formulation uses the inverse of the noise covariance, i.e., H−1

Kalman =
diag(

[
0.1 0.1 100

]
).

We assume that we have knowledge about the fact that w ≥ 0. We
include this information by using the proposed tuning procedure to
design a cost for the Kalman filter such that it yields theH∞ observer
and then use the obtained cost within a linear (MHE) framework.

The simulation results are displayed in Figure 3, where one can
see that the two MHE perform similarly. The root mean square
(RMS) error obtained with the H∞-tuned MHE is 176.9, while for
a standard MHE formulation we obtain an RMS error of 214.9. Note
that the H∞ and Kalman filter have an RMS error of 208.4 and
215.5 respectively.

VIII. CONCLUSIONS

This paper analyzed how to design a LQR/MPC cost function
that results in a prescribed linear control law. We have proven
that the problem can be solved exactly for all stabilizing linear
controllers, both in state-space and input-output form, and provided
three approaches to compute the desired cost by solving a convex
SDP. The results also extend to linear observers, which can be
matched by a Kalman filter or MHE.
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