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Abstract—In this technical note we examine the relationship between
linear hybrid automata (LHA) and piecewise affine (PWA) systems. While
a LHA is an autonomous non-deterministic model, a PWA is a determin-
istic model with inputs. Through the key idea of modeling the uncertainty
associated with LHA transitions as input disturbances in a PWA model,
by extending continuous-time PWA models to include the dynamics of dis-
crete states and resets we show in a constructive way that a LHA can be
equivalently represented as a PWA system, where equivalent means that
the two systems generate the same trajectories. Besides filling in a missing
theoretical link between the LHA modelling framework and the PWA mod-
elling framework, the result has the practical advantage of enabling the use
of several existing control theoretical tools developed for PWA models to a
wider class of hybrid systems.

Index Terms—Hybrid systems modeling, linear hybrid automata (LHA),
model equivalence, piecewise Affine systems (PWA).

I. INTRODUCTION

Several mathematical models have been proposed for hybrid systems
with different modelling capabilities and different purposes. In com-
puter science, hybrid automata (HA) [1] are probably the most pow-
erful model. System theoretical properties of HA were investigated in
[2]. Linear hybrid automata (LHA) [1], [3] and timed automata (TA)
[4] are also popular in the computer science community. In systems
theory, the proposed hybrid dynamical models include piecewise affine
(PWA) systems [5], and other classes of hybrid systems like mixed log-
ical dynamical (MLD) systems, linear complementarity (LC) systems,
and min-max plus scaling (MMPS) systems (see [6] and the references
therein). Different models have different purposes, in particular contri-
butions in computer science focus on simulation and verification [3],
[4], while in control theory are mainly concerned with stability anal-
ysis [7], control systems design [8], [9].

Equivalence relations between different classes of hybrid models
were investigated in the past. Discrete-time MMPS, LC, MLD and
PWA systems were shown in [6], [10] to be equivalent, possibly under
suitable conditions. An inclusion relation between HA, LHA and TA
was shown in [1]. In this technical note we connect the above two sets
of models by showing in a constructive way that a LHA can be repre-
sented as a PWA system. This result is useful to apply tools for PWA
systems for the analysis and the synthesis of LHA, as shown in [11],
[12] as regards mixed integer programming for control and verification.
The result also provides the basis for exploiting the synergy of tools for
LHA and for PWA, similarly to what is done in [13] for controlling a
class of hybrid systems.
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The technical note is organized as follows. In Section II we briefly
recall LHA models, in Section III we discuss PWA models and their
extension to include discrete dynamics and resets. For a formal and ex-
tensive definition of LHA and PWA systems the reader is referred to [1],
and [7], [9], respectively. The representation of the continuous and dis-
crete LHA dynamics in the PWA formalism is described in Section IV.
A discussion on representing piecewise affine systems by linear hybrid
automata, and the conclusions are summarized in Section V.

A. Notation

We adopt the formalism of [1] for LHA, and the formalism of [7] for
PWA systems. The Boolean domain is {0,1}, the sets of reals, positive
reals, nonnegative reals are , �, and ��, respectively. is the set
of integers, and given �� � � , ����� is the set �� � � � � � � ��.
The relational operators used between vectors denote componentwise
relations. The superscript � indicates the transpose. Given a matrix � ,
���� denotes the ��� row, ����� the scalar at �-th row, ��� column; given
a vector � � 	 , ���� is the ��� component of �, and the notation
� � �, where � � , denotes ���� � �, �� � ���	�. Logical “and” is
denoted by�. Predicates are logical functions of Boolean variables and
of Boolean conditions defined by the comparison of real expressions
(e.g., 	 �
�� 
�� � ��
� � �� � �
� � ���, 
�� 
� � ). The
notation �	 �
�� 	 	 	 � 

��
� 	 ��� 	 	 	 � 

 	 �
� is the evaluation
of 	 when
�� 	 	 	 � 

 take values ��� 	 	 	 � �
 , respectively. The short
form �	 �
�� 	 	 	 � 

��
 	 ��, � � 
 , is also used.

II. LINEAR HYBRID AUTOMATA

A linear hybrid automaton (LHA) is a tuple [1], [14]


 � �
� � � ���� ���� ����� ����� ������
� (1)

where 
 � �
��
�� 	 	 	 � 
�� is the (ordered) collection of con-
tinuous (real-valued) states, the couple � � � defines a graph where

� ���� ��� 	 	 	 � ��� is the set of vertices (the discrete states of
the LHA), each one representing a control mode, and  �
is the set of directed edges, representing the way control modes can
switch, that is, the discrete dynamics. Each of the vertex labelling
functions ���, ��� and ���� assigns a predicate to each control
mode: ��� defines the allowed continuous state evolutions, ���
the invariant set in which the continuous states must remain when
in that mode,1 and ���� the allowed values for initial states. The
functions ���� and ����� are edge-labelling functions: ����

defines the conditions for changing the control mode, ����� as-
sociates events from the finite set 
 to control mode switches.2

The free variables in ��� and ���� predicates are from 
 , i.e.,
������� ��� 	 ��

� �
�� 	 	 	 � 
��, �������� ��� 	 ����
� �
�� 	 	 	 � 
��,

the ones in ��� are from the set of the continuous states derivatives
�
 , i.e., ������� ��� 	

����
� � �
�� 	 	 	 � �
��. Resets of continuous

states are defined by the predicates assigned by the ���� function to
the vertices. The free variables on such predicates are from 
 � 
�,
where 
 � is the set of values of state variables after a discrete transi-
tion, i.e., �������� ��� ��� 	

����
��� �
�� 	 	 	 � 
� � 


�

�� 	 	 	 � 

�

� �. If
the predicate ��������� ����
 	 ��
 � 	 �� � ���, then the
transition from the control mode �� to the control mode ��, where the
continuous state is � and it is reset to �, is allowed. For linear hybrid
automata the ����, ���, ��� and ���� predicates are the conjunction
of linear inequalities.3 Given a generic predicate 	 acting on a finite

1Since these are not invariant sets in the strict control theoretic sense, they are
also referred to as domains [2].

2����� and � are used for verification and composition purposes that are
beyond the scope of this technical note. Hence, they will not be further discussed
here.

3As pointed out in [3, footnote 7], a disjunction of predicates can be imple-
mented by splitting control modes and transitions.
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set � of free variables, for any assignment of the variables in �� � �

there may exist more than one assignment of the variables in � � ��

such that � holds. Such an ambiguity maps into nondeterministic state
evolutions.

The ���� function associates a predicate in the form of conjunction
of clauses

�

���

�
���

�
�

�

���

�
���
��� �

�	� � �
���
� (2)

to each control mode 
� , � � �����, where �� is the number of ranges
defining the flow, and ����

�
, ������� , ����� ,  � ���� �, � � ���� � are the

scalars that define the predicate. Given any 
� � , the predicate takes
value TRUE for the values �� � �	 , such that (2) is satisfied. Thus, the
LHA continuous state dynamics (2) is defined by a zero-order differ-
ential inclusion. Predicate (2) could also contain strict inequalities, that
we skip here for the compactness of notation.

The set of initial states �	� � �� � � � � � contains couples
���� 
	� such that ������
	��	 	 ��� � ��	
. Let us indicate the
value of the continuous state and of the control mode of the LHA at any
time � by ���� and 
���, respectively, a simple illustration of the LHA
evolution follows (see [1] for an extensive discussion). From an initial
state ���� 
	� at time �� such that ������
	��	 	 ��� � ��	
, the
continuous state evolves for � � �� � ���� ��� in a way such that for all
� � ��, ������
	�� �	 	 ������ 
 ���
�
	��	 	 ����� � ��	
.
Let the instant �� � �� be the control mode switch instant so that
there exists � � �
	� 
�� � � ���������	 	 ������	

� 	
������ ���	
 and ���
�
���	 	 ������ � ��	
. Then, the evo-
lution proceeds from ����� through a continuous flow for � � �� �
���� ���, when a new switch occurs. The evolution of the LHA can be
defined by a sequence of epochs �	 � ��	� �	�, �	 � �	��, where contin-
uous evolution takes place, interleaved by instants at which the control
mode changes and the continuous state is reset. Such a sequence of
epochs � � ���� ��� � � �� is defined as the hybrid time-trajectory [2].
If ������ 
	��� is such that both ���� and ���� take value FALSE

for all possible values of the respective free variables, the system is in
deadlock [4].

III. CONTINUOUS-TIME PIECEWISE AFFINE SYSTEMS

Continuous-time piecewise affine (PWA) systems [5], [7] are defined
by

��
��� � �	����
��� �	����
���  �	��� (3a)

���� � �	����
���  �	����
��� � �	��� (3b)
��	����
���  ��	����
��� � ��	��� (3c)

where �
��� �
� is the state vector at time �, and �
��� �

�

is the input vector. The index ���� � �
�
� ��� � � � � � labels the ac-

tive mode of the system, which is uniquely determined by the condi-
tion ��
���

 �
���
 �


� �	���, where the polyhedral region �	��� �

� 	� is defined by inequalities (3b), (3c). A PWA system is well-
posed if for all �� � � � , � �� �, �	 � �� � �. A PWA system is
globally defined on � �� if

	��
�	 �

� 	� . A condition sim-
ilar to LHA deadlock occurs if at time �, �
��� � � is such that
��
��� �

� , ��
��� �
���
 �


��

	��
�	.

Given an initial state ��, an initial instant �� and an input function
�
 � ���� �� � �

� , the PWA system (3) evolves as follows. Let
�� be the active mode at � � ��, that is �� � � such that (3b), (3c)
are satisfied for ���� � ��, �
��� � ��, �
��� � �
����. We call
��� � ������� �� ��� � ���� � �� �� � ���� ��� � �� the mode switching

instant. The mode at �� is �� � � such that ������
 �����

 �

� �	 .

For general PWA systems, the vector field might be discontinuous,
hence extended solutions concepts (such as Filippov’s or Utkin’s [15])
might be needed to define the trajectory. However, this does not happen

with the class of PWA systems considered in this technical note, as it
will become clear later.

In order to capture the features of LHA, we include possible resets
and discrete dynamics in continuous-time PWA systems, similarly to
what done in [10] for discrete-time PWA systems. Because of the im-
pulsive behavior during a state reset, the system trajectory cannot be
defined as the solution of a classical differential equation on the whole
time axis. Instead, as for LHA, we define the PWA trajectory as a se-
quence of intervals of right-continuous evolution interleaved by im-
pulsive resets. These are triggered by the state and input vectors en-
tering certain regions and are thus modelled by additional reset modes
�� � ��  �� � � � � ��. In the presence of a reset, the system evolves
as follows. Let the system be evolving in mode � � � , �� be a switching
instant, and assume a reset mode � � �� is activated by ����� and �����.
Then the state vector is reset to a value ��, which in turn forces the
mode to change to an evolution mode  � � . To define the evolution at
non-differentiable points of the trajectory we introduce the “” oper-
ator that indicates “immediately after” ( 	��� �  ��	� is the value of
 immediately after time �), similarly to [9] where resets and discrete
dynamics have also been proposed.

By using resets, we can include discrete dynamics, defined for in-
stance by a finite state machine. The variables in (3) become ���� �
� ���
� ���

� � ���� �� , ���� � � ���
� ���

� � ���� �� . The dis-
crete state-update function is modelled as a mode-dependent constant
vector with Boolean components [10], which is impulsively updated
during reset modes. In details, ������ � �, for ���� � � , ����	� � � �

	���

for ���� � �� , can be simplified into ����
	� � � �

	��� for ���� � �� �� ,
where � �

	��� � ����� for ���� � � . The discrete state can be also used
to model dependency of the current mode from previously activated
modes.

In summary, the overall PWA dynamics can be expressed as4

��
�����	����
����	����
���  �	���� ������ (4a)

�
	

 ����!	����
���"	����
���  �	���� ������� (4b)

�
	
� �����

�
	���� ��� � �� (4c)

������ � �� � �	���
�
���

�����
�	����
�����	���# (4d)

The complete formulation would also require strict inequalities in the
mode selection (4d), we skip them here for the compactness of notation.
Note that (4) permits behaviors such as Zeno dynamics and non-per-
sistent dynamics (i.e., not defined at all time instants �). This is done
on purpose, as such behaviors may occur in LHA models (1) that we
want to represent by (4).

IV. TRANSLATION OF LHA IN PWA FORM

Given a LHA (2), we want to construct a PWA (4) such that for
any LHA trajectory ������ 
����� of (2) there exists an exoge-
nous input signal ��
����� , and a corresponding PWA trajectory
��
���� ������� of (4) with ���� � �
���, 
��� � ������������,
�� � �	, for a given binary encoding function ������.

A. Continuous and Discrete States

The continuous states �
 �
� of the equivalent PWA model are

the continuous states 	 of the LHA, hence �
 � �.
The control modes � �
�� � � � � 
� are mapped into discrete states

�� � ��� �� by the encoding ��� � � ��� �� , which as-
sociates a unique value �� � ��� �� to each 
 � . The inverse
���������� � may be a partial function. Thus, for all 
 � ,
�� � ����
� and for all �� � ��� �� such that ��������� is de-
fined, 
 � ���������. In this technical note we use the “one-hot”

4A combined representation of (4) based on differentials has been proposed
in [16, Ch. 4]].
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coding, namely the ��� vertex �� is associated with �� � ��, where ��
is the ��� column of the identity matrix of dimension �, hence �� � �.

When evolving in control mode �� , the continuous state value ��
of the LHA must satisfy the predicate �������, namely �� � �����,
where ����� is the invariant set for �� . ����� is the set of all �� � �

such that ���������� � ��� � ���	. Since the ��� predicate is
defined by clauses composed of linear inequalities, ����� is the poly-
hedron described by the inequalities 	��� � 
� , where 	� �

� ��,

� � � , and �� is the number of inequalities describing a (min-
imal) hyperplane representation of �����. Again, for the compactness
of notation, we avoid distinguishing between strict and non-strict in-
equalities. The continuous dynamics associated to �� are defined by
the zero-order linear differential inclusion (2). By introducing a con-
strained input ��� � � that models the uncertainty associated with
the actual value of state derivatives, we transform (2) into

� 
������ � �����
�
� � � �� � � � � � (5a)

����
�

�

	


��

�
���
��
 � �����
 � �

���
� � � � �� � � � � �� (5b)

where (5a) can be expressed as 
���� � ���, and (5b) as �
�
�

����� � �� , where �� �
� ��, ��� �




�
� �

���
��
 , and �

�
� �� �

� ,

��
�
�
�
� ����

�
, ��� �� � �

���
� . Due to the LHA dynamics, the obtained

PWA dynamics are (piecewise) integral.
Lemma 1: Given any time interval � � �� � such that for all  � �

the LHA control mode is ��� � �� and no jump occurs, for any given
constant vector � � 

�, ���� � ����, � � ���� the dynamics


���� ���� (6a)

��� �� � ������� (6b)

�
�
������ � �� (6c)

	����� �
� (6d)

�� ������ ������� � � (6e)

represents all the possible evolutions of the LHA state ���.
Proof: The proof follows by the construction of (6). For all  � � ,

���� � ������� by (6e), (6d) enforces ���������� � ����� �
���	, and by (5), (6c) enforces (2) from which ���������� 
� �

���� � ���	 follows. Finally, for any value of 
��� such that (2)
holds, there exists a value ��� such that 
���� � 
��� by (5).

The reason for using (6e) instead of ��� ������� � � is to define a
full-dimensional polyhedron.

B. Discrete Transitions

Dynamics (6) describe the trajectories of the continuous states of
the LHA except for the (normally) zero-measure set of time instants
� � 	�� � � � � �� � � �
 at which the discrete state switches. We intro-
duce additional PWA system modes to represent discrete state transi-
tions and resets.

Assumption 1: For all ���� ��� � � , �������� ��� �
��� ���� ���  ��!���� ���, where the free variables in ��� are from
� , while the free variables in ��! are from � �� �.

Assumption 1 states that the ���� predicate can be decomposed
into the conjunction of two predicates. The ��� predicate, defining
the enabling of the discrete transition, depends only on the current
continuous state (i.e., ��� ���� ��� ��� " ����

��� ���� � � � � �	�). The
��! predicate, defining the reset after the transition, depends on the
current and on the successor continuous state (i.e., ��!���� ��� ���
" ���
��� ���� � � � � �	 � � �

�� � � � � �
�

	�). Since ���� is composed of linear
inequalities, the same will be for both ��� and ��!. Assumption 1 is
usually satisfied for realistic systems, where the enabling of the discrete
transitions does not depend on the state after the transitions.

Definition 1: A transition ���� ��� � is enabled at a state �� �
� if ���� ���� ����� � ��� � ���	. The enabling set of the tran-

sition ���� ��� � is ����� �� � 	�� � ����� � ���� ���� ����� �
��� ����	
.

When enabled, a discrete transition can occur at any time instant.
Assumption 2: For all ���� ��� � , for all �� � � such that

���� ���� ����� � ��� � ���	 there exists ��� �
� such that

���������� � ����  ���!���� ����� � ��� �
� � ����.

Assumption 2 requires that when a transition is enabled, there exists
at least one feasible successor state after the reset. Also this condition
is natural for real systems. However, while Assumption 1 is needed
because of the transformation mechanism we introduce, Assumption 2
is only needed to ensure the system does not reach a deadlock in the
middle of a transition.

In standard PWA systems, mode switches are deterministic events
that occur when the system state crosses the boundaries of the cur-
rently active region. Nondeterminism can be obtained by introducing
further additional inputs acting as disturbances, that affect the hyper-
planes defining the PWA region boundaries.

Example 1: Consider the system shown in Fig. 1 with one-dimen-
sional continuous state �� � and initial value ����� � �. The state
evolves in mode �� , with dynamics 
�� � #, where # $ � is a given
scalar. The control mode can switch for all �� � ���� �� �, and the
invariant set for this mode is �� � 	�� � � � � �� � ��
. Let us
introduce an additional input � � . The partitions of the expanded
PWA system are defined in the lifted ���� ��-space, 	. The region �
in the expanded PWA system is defined by �� � 	���� �� � 	 �
� � �� � �� � �� � � � � ��
, where �� is a constant such
that �� $ �� � ��. In this example, let ��� � �� � �� � ��
for all  � ��� ��, where � is the instant at switch occurs, that is
����� � �� � ��. For different values of �� the mode switch occurs
at different state values, covering the whole range of possible values
���� �� �. See for instance the two trajectories % and & shown in
Fig. 1. When �� is projected back onto the state space , the parti-
tion can be decomposed into a region (thin line) in which the system
certainly does not switch, and a region (thick line) in which the system
is enabled to switch. Note that in the general case ��� will not be con-
stant.

Consider a LHA in control mode �� and let ����� be defined as in
(6d). Consider a set of functions '� � �� � �, defining a relation
between the set of outgoing transitions from �� � and the set ��� �,
where �� is the number of outgoing transitions from �� . In detail, for
a control mode �� , '���� � � associates a unique positive index � �

��� � to the transition ��� � ��� � . Let '��
� � ��� � � �� be the

inverse mapping that associates the second vertex index to a transition
index.

Let the enabling set ����� �� of transition ��� � ��� � be defined
by the ���� linear inequalities (����� � )��� where (��� is a ma-
trix, )��� is a vector, both with ���� rows, and where we avoid dis-
tinguishing between strict and non-strict inequalities, for the compact-
ness of notation. The transition ��� � ��� can occur at  � �� such that
(������� � )���, but not necessarily at the smallest  such that this
holds, as defined by the LHA semantics.5

Consider the set of continuous states associated to control mode ��
such that all the linear inequalities in ��� ��� � �� ���

�, for all � �

��� �, are not satsfied

(����� �)���� � � ��� � (7a)

	��� �
� * (7b)

The continuous dynamics cannot change while �� satisfies (7). In
order to represent nondeterminism in discrete transitions by using a
PWA model, we introduce other additional continuous input vectors
	����




��� to relax constraints (7a) in (����� � )��������. The effect

5Transitions that occur as soon as enabled are called urgent events [3], [4].
If the PWA transitions were associated to regions described by � � � � ,
they would occur as soon as the LHA conditions were enabled, becoming urgent
events.
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Fig. 1. Uncertain LHA transitions can be represented by a PWA system with additional disturbance inputs. (a) LHA with an uncertain transition. (b) Equivalent
PWA representation.

of ������� � ������ is to enlarge the half-space ��������� � �������
by ������������������. In this way, we lift the dimension of the PWA
partition and we obtain polyhedra that are not overlapping. The
projection back onto the ��-space of the set

������ ����� � ����� � � ���� � (8a)

	�� �
� � ���� � � (8b)

is clearly �����. By fixing ���� � � for all � � ���� �, (8) describes
(7), while by setting ���� � � for all � � ���� �, (8) describes a set
in the �-space contained in between the set (7) and �����. ����� is
recovered by setting ���� �� (or large enough, see [16, Sec. 4.3.4]).

In the lifted PWA space we can define equivalent discrete dynamics
of LHA. Introduce � � � PWA modes ���� , � � ���� �, associated to
the LHA control mode �� , where

���� � ���� ��� �� �
	���� 	

������ � ���� � ����� � � ���� � (9a)

	��� �
� � ���� � �� � � ���� � (9b)

	� � �� 	 
������ � �
 (9c)

and for � � ��    � ����� � ���� ��� �� �
	���� 	

������ � ���� � ���� (10a)

������ � ���� � ����� � � ���� � � � (10b)

	��� �
� � ���� � �� � � ���� � (10c)

	� � �� 	 
������ � �
 � (10d)

The above sets ���� , � � ���� �, are non-overlapping polyhedral
cells associated to the original control mode �� of the LHA. ���� rep-
resents the situation in which the current mode remains active, while
���� , � � ���� �, represents the occurrence of the transition enabled by
������ � ���� . Inequalities (9a), (10a), (10b) impose constraints on
the selection of ���� for a given state ��, and as a consequence the dy-
namics are not globally defined in the space of states and disturbances.
The reason is that LHA transitions only occur within a given set, which
restricts the choice of the disturbance input for a given state, similarly
to (5b).

Sets ���� allow the PWA system to represent discrete transitions
��� � �
 ���

� that occur at any state value �� � ����� ���� ����. Con-

sider a transition ��� � �
 ���
�, let �� �

�

�	�����, �� �
�

�� be

the vector collecting all ����, � � ���� �, and ��� �
�

�� be such
that ����� 
������� ���� � ���� . Let � be the time instant at which
the evolution in control mode �� begins, and �� � � be the time in-
stant such that ������ � ���. Thus, assuming that ����� � ����� and
������� ������ ������ � ����, for all � � ��� ���, if ������ � ��� , at time
�� the system enters ���� .

Lemma 2: At any given time �, let the LHA control mode be �� ,
the continuous state be �����, and ��������� � ������ � ����.
Then for all ��� � �
 ���

� � it holds that (i) ������ �
�

��

such that ������� 
������� ������ � ����; (ii) ������ �
�

��,

� � ���� � such that ������� 
������� ������ � ���� if and only if
��������� �
 ���

�� � ������ � ����.

Proof: Set ����� � �. Since ��������� � ������ � ����
and ����� � 
������, all the inequalities that define ���� are satisfied
for ������� 
������� ������. Let �������� � �
 ���

�� � ������ �

�����, then��������� � ���� . Thus, since �� � �, for all values of
�� , ��������� � �� � �� , hence ������� 
������� ������ �� ���� ,
for � � ���� �. Let �������� � �
 ���

�� � ������ � ����,

which means ��������� � ���� . Define ����� such that ������� � �
for all � � ���� � � � , and ������� � �. For this choice of �����,
������� 
������� ������ � ���� .

As a consequence of Lemma 2 the space ���� ��� ��� is partitioned
into regions in which the jumps to different control modes are either
enabled or disabled. By associating to the regions the discrete state
update equation

��� ��� �


������ if ������� ������ ������ � ����


�� �

 ���

if ������� ������ ������ � ���� ,

� � ���� �

(11)

when discrete transitions are enabled, ����� selects whether the jump
occurs or not, by selecting the active region. The sets ���� partition
the �� � �� � �� space into regions in which the system behavior
is deterministically defined: either it performs a continuous state evo-
lution, or it performs a discrete transition. When the active region is
����, the discrete state �� remains constantly equal to 
������, while
when the system is in ���� , � � ���� �, the discrete state changes to

����


 ���
�. Hence, the successor discrete state ��� ��� is defined by

a region-dependent constant. The regions ���� are also used to model
resets
��� ��� � ������ � ���� �� ������� ������ ������ � ���� �

� � ������ � � ���� �� (12)
C. Equivalent PWA Reformulation

The PWA dynamics can be obtained by collecting the continuous
dynamics (6a) and the constraints (6c), the resets (12), the discrete dy-
namics (11), and the constraints (9), (10) that define the switching con-
ditions on ��, �� and �� , � � �����. Let � � �, � � �

�	� �� , be
the vector that collects �� , � � �����, let � � ��� ��, � � �����, and

� � ���� �. Define �


� �� � ��� �� 	 � � �����
, ��



� �� � ��� �� 	

� � ������ � � ���� � 	 ��� � �
 ���
� � 
. The PWA model (4) equiv-

alent to the given LHA is
������ ������ � � � (13a)

��� ��� �������� � ��� � � �� (13b)

��� ��� � ��� � � � � �� (13c)

�
�
� ����� � �� � � � ����� (13d)

������� ������ ������ ��� (13e)

where ������ � 
������, and ������ � 
������ for � � ���� �. For
� � �, (13a) models the continuous flow evolution of the LHA while
in control mode �� , and, for � � �� , (13b) models the reset following
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the LHA jump from control mode �� to �
� ���

. The full state of the

PWA (13) is � � �

�
� � � ��� ���, and the full (disturbance)

input is �� � �

	
� ��
. Only modes � � ��� �� � are defined

in (13), hence the number of partitions is � �� � �, where � � � denotes
set cardinality. Because of (9c), (10d), whenever ����� � ��	���� for
any � �� � and 	 � ���� �, there exists no value 
 � � such that 	��

is active.
Theorem 1: For any state trajectory ������ ������� of the LHA

(1), there exists a trajectory of vectors ���� and 
��� such that the tra-
jectory ������� �������� of PWA (13) is ����� � ����, ����� �

��	������, 
� � ��.
Proof: Lemma 1 ensures that between two consecutive discrete

transitions ���� � 
����, and hence 
����� � 
����. Lemma 2 ensures
that whenever ���� � �� and ��������� � ������ � ���,
there exists 
��� such that ������� ��	�������
���� � 	��� and
hence the discrete state can remain constant. If at time �, ���� � ��,
and the LHA performs the jump �������� �� ���

�, it must hold

�������� �� ���
��� � ������ � ���, and Lemma 2 ensures

that there exists 
��� such that ������� ��	�������
���� � 	��� . Thus,
for such value of 
���, the PWA system state is updated by (11) and
(12) to ��� ��� � ��	��

� ���
� and ��� ��� � ��������� � ���� , where

�������� �� ���
��� � �������

� � ��������� � ���� � ����,
which is the PWA state equivalent to the LHA state after the jump.

By similar arguments, it is straightforward to prove that for any
trajectory ������� ������ ����� 
���� of the PWA system (13) well
defined on a time interval � � ��� ��, there exists a LHA trajectory
������ �������� , such that ����� � ����, ���� � ��	���������, and
that if at time � there are no ����,
��� such that the PWA trajectory is
defined, then the LHA trajectory is deadlock.

The proposed techniques model the nondeterminism of LHA by ap-
propriately defining auxiliary vectors � and 
 which act as distur-
bances on the PWA dynamics and regions, respectively. The dimension
of � is  and in [16, Sec. 4.3.4] a procedure to make the dimension of

to be �� � ���

��� �
�� is discussed. Also, a way to suitably define upper

bounds on 
 and to model nondeterministic resets is described in [16,
Sec. 4.3.4].

Finally, we summarize the procedure for obtaining the equivalent
PWA of a given LHA: (i) map the continuous states of the PWA model
on the continuous states of the LHA; introduce function ��	���, to map
control modes of the LHA to the discrete states of the PWA; (ii) for each
�� � build the invariant set (6d) and the continuous dynamics (2) by
collecting the inequalities in the predicates ������ and ���
����, re-
spectively; (iii) for any �� � , for any ���� ��� � build set (8) from
the predicate ������� ���, in �������� ���, then build the PWA parti-
tions (9), (10) from (6e), (8); (iv) associate the continuous state update
(6a), (6c), the discrete state update (11), and the resets (12) to partitions
(9), (10) to obtain (13). An example of a classical LHA translated into
PWA through the proposed technique is reported in in [16, Sec. 4.3.5].

V. DISCUSSION ON THE OPPOSITE TRANSFORMATION

AND CONCLUSIONS

In this technical note we have provided a constructive way to convert
linear hybrid automata into a piecewise affine model with piecewise-
integral continuous dynamics. Since PWA systems allows for affine
state dynamics, the result can be extended to more complex classes of
hybrid automata, where the continuous flow depends linearly on the
current state.

The conversion of a standard piecewise affine system in LHA form is
possible and relatively simple if (i) the PWA is defined over a bounded
domain, (ii) it has bounded inputs, and (iii) it has partitions that are
independent of the input


���� ���������� ���������� � ����� (14a)

���� �� � ���������   ����� � �
� (14b)

� � �
	
� �� � � � �  �  ���! (14c)

In order to obtain an equivalent LHA, define � � ���, 	 �
�� � � � � , and associate control mode �� to PWA mode � � � . For all
� � � , let ��
��� � ������ ���� � 
��, � 
��� � ������ ���� ���,
where 	� � �� � � � ���   �. For all �� � � � let ���� �
���	������	��, where cl indicates the set closure, hence � ���� �� �
���� �� ��, and ���� � �� � � � �����  ����� for some
���� � � ��, ���� � � . Then, " ���	

� � � 
�� 

�  �
���,

" ���
� � ����   ��, "

����
��� � ������  �� � �� � � ��. It can

be shown that every trajectory of the PWA is generated by the obtained
LHA, while for the opposite to hold, �� � �, 
� � � , is also needed.
Conditions (i)–(iii) can be further relaxed.
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