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An L-BFGS-B approach for linear and nonlinear system identification under ¢; and
group-Lasso regularization
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Abstract—In this paper, we propose a very efficient numerical
method based on the L-BFGS-B algorithm for identifying linear
and nonlinear discrete-time state-space models, possibly under
¢; and group-Lasso regularization for reducing model complexity.
For the identification of linear models, we show that, compared
to classical methods, the approach often provides better results,
is much more general in terms of the loss and regularization
terms used (such as penalties for enforcing system stability), and
is also more stable from a numerical point of view. The pro-
posed method not only enriches the existing set of linear system
identification tools but can also be applied to identifying a very
broad class of parametric nonlinear state-space models, including
recurrent neural networks. We illustrate the approach on synthetic
and experimental datasets and apply it to solve a challenging
industrial robot benchmark for nonlinear multi-input/multi-output
system identification. A Python implementation of the proposed
identification method can be found in the package jax-sysid,
accessible at https://github.com/bemporad/jax—sysid.

Index Terms— Nonlinear system identification, recurrent neural
networks, linear system identification, ¢;-regularization, group-
Lasso regularization.

[. INTRODUCTION

Model-based control design requires, as the name implies, a
dynamical model of the controlled process, typically a linear discrete-
time one. Learning dynamical models that explain the relation
between input excitations and the corresponding observed output
response of a physical system over time, a.k.a. “system identification”
(SYSID), has been investigated since the 1950s [32], mostly for
linear systems [19]. In particular, subspace identification methods
like N4SID [25] and related methods [24] have been used with
success in practice and are available in state-of-the-art software tools
like the System Identification Toolbox for MATLAB [20] and the
Python package SIPPY [4]. The massive progress in supervised learn-
ing methods for regression, particularly feedforward and recurrent
neural networks (RNNs), has recently boosted research in nonlinear
SYSID [21], [27]. In particular, RNNs are black-box models that can
capture the system’s dynamics concisely in a deterministic nonlinear
state-space form, and techniques have been proposed for identifying
them [29], including those based on autoencoders [22].

In general, control-oriented modeling requires finding a balance
between model simplicity and representativeness, as the complexity
of the model-based controller ultimately depends on the complexity
of the model used, in particular in model predictive control (MPC)
design [10], [23]. Therefore, two conflicting objectives must be
carefully balanced: maximize the quality of fit and minimize the
complexity of the model (e.g., reduce the number of states and/or
sparsify the matrices defining the model). For this reason, when
learning small parametric nonlinear models for control purposes,
quasi-Newton methods [18], due to their convergence to very high-
quality solutions, and extended Kalman filters (EKFs) [6], [28]
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can be preferable to simpler (stochastic) gradient descent methods
like Adam [17] and similar variants. Moreover, to induce sparsity
patterns, /1 -regularization is often employed, although it leads to non-
smooth objectives; optimization methods were specifically introduced
to handle /7 -penalties [2] and, more generally, non-smooth terms [3],
(81, [31], [34].

In this paper, we propose a novel approach to solve linear and
nonlinear SYSID problems, possibly under ¢; and group-Lasso reg-
ularization, based on the classical L-BFGS-B (Limited-memory Broy-
den—Fletcher—Goldfarb—Shanno with Box constraints) algorithm [15],
an extension of the L-BFGS algorithm to handle bound constraints,
whose software implementations are widely available. To handle such
penalties, we consider the positive and negative parts of the parame-
ters defining the model and provide two simple technical results that
allow us to solve a regularized problem with well-defined gradients.
To minimize the open-loop simulation error, we eliminate the hidden
states by creating a condensed-form of the loss function, which is
optimized with respect to the model parameters and initial states. By
relying on the very efficient automatic differentiation capabilities of
the JAX library [11] to compute gradients, we will first show that
the approach can be effectively used to identify linear state-space
models on both synthetic and experimental data, analyzing the effect
of group-Lasso regularization for reducing the number of states or for
selecting the most relevant input signals. We will also show that the
approach is much more stable from a numerical viewpoint and often
provides better results than classical linear subspace methods like
N4SID, which, in addition, cannot handle non-smooth regularization
terms, non-quadratic losses, and constraints on model parameters.
We will also show how to identify open-loop stable linear models
via additional non-quadratic regularization terms. Finally, we will
apply the proposed method in a nonlinear SYSID setting to solve the
challenging industrial robot benchmark for black-box nonlinear multi-
input/multi-output SYSID proposed in [35], by identifying a recurrent
neural network (RNN) model in residual form under ¢; -regularization
largely extending the preliminary results presented in [7].

Il. SYSTEM IDENTIFICATION PROBLEM

Given a sequence of input/output training data (ug,¥o), -- -
(uN—1,YN—1), up € R™, yp € R™, we want to identify a
deterministic state-space model in the following form

Tpy1 = Az + Bug, + fo (v, ug; 0x)

A 1)
Ok = Cxy, + Dug + fy(zk, ug; 0y)

where k denotes the sample instant, z;, € R"™® is the vector of

hidden states, A, B, C, D are matrices of appropriate dimensions,

fo : R"™ xR™ — R"® and fy : R"® x R"™* — R™ are nonlinear

functions parametrized by 6, € R0« and 6, € R"%, respectively.
The training problem we want to solve is (cf. [8]):

N-1

. 1
sy D r(z) + ~ I;) L(yk, Cx + Duy, + fy(wp, ug; 0y))
- (2a)
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st xp41 = Az + Bug + fa(zg, ug; 02)
k=0,...,N—2
22 20 col A col B' colC’ col D' 6, 6,]

(2b)

where the optimization vector z € R™# collects the entries of the
initial state o and of the model parameters A, B, C, D, 0., 0, with
dimension n; = nz + (nz + nu) (N +ny) +np, + ng, s col is the
vectorization operator stacking matrix columns, ¢ : R™¥ x R™ — R
is a differentiable loss function, and r : R — R is a regularization
term.

After eliminating zy, kK = 1,..., N — 1, by replacing x4 as
in (2b), Problem (2) can be rewritten as the unconstrained (and in
general nonconvex) nonlinear programming (NLP) problem

min f(z)+r(2) (3a)
1 N-—-1

fe) = > Uyk, Cxg + Dug + fy(wp, ups; 0y)). - (3b)
k=0

We will sometimes also incorporate box constraints zy < z < 2y
in (3) to impose prescribed limits on the model parameters.

A. Special cases

1) Linear state-space models: A special case of (2) is system
identification of linear state-space models based on the minimization
of the simulation error

N-1
, 1
min  r(z) + 5 Y Iy — Cox — Dug[3 (4a)
k=0
s.t. Tp41 = Axg + Bug, k=0,...,N =2 (4b)

22 [z) col A" col B colC" col D).

Specific model structures, such as y; = [I O]z or other sparsity
patterns, can be imposed by simply removing components of z.
Moreover, by using bound constraints on z, special properties of the
model can be enforced; for example, positive linear systems can be
identified by constraining the entries of A, B, C, D (and, possibly,
o) to be nonnegative.

2) Training recurrent neural networks: Recurrent neural net-
works (RNNs) are special cases of (1) in which fz, fy are multi-layer
feedforward neural networks (FNNs) parameterized by weight/bias
terms 6 € R™= and 6y € R"0v, respectively, and A = 0,
B =0,C =0, D = 0. In particular, fz is a FNN with linear
output function and L, —1 layers parameterized by weight/bias terms
{A7,b7} (whose components are collected in 0z), ¢ = 1,..., Ly,
and activation functions f*, ¢ = 1,..., Ly — 1, and similarly fy
by weight/bias terms {AY,bY}, i = 1,..., Ly (forming 6,) and
activation functions fly ,t=1,...,Ly — 1, followed by a possibly
nonlinear output function fgy [6], [8]. We denote by n{,...,nr, 1
and nllj, -..,nL,—1 the number of neurons in the hidden layers of
fz and fy, respectively.

3) > and ¢y regularization: To prevent overfitting, both standard
{9 and {7 regularization terms can be introduced. In Section IV we
will use the elastic-net regularization

1 2 2
r(z) = 5 (po O3 + pellzol3) +7lI®]), s)
where © collects all the model parameters related to the state-update
and output function, i.e., z = [x6 @/]/, pog >0, pge >0, and 7 > 0.
While ¢;-regularization promotes model sparsity, it also makes the
objective function in (2) non-smooth. The quadratic £2-penalty term is
also beneficial from an optimization perspective, in that it regularizes
the Hessian matrix of the objective function.

4) Group-Lasso regularization: To effectively reduce the order
ng of the identified model (1), the group-Lasso penalty [36]
Ny
rg(z) =79 I Lizll2 (6a)
i=1
can be included in (3a), where 74 > 0 and I; is the submatrix
formed by collecting the rows of the identity matrix of order n.
corresponding to the entries of z related to the initial state xg;, the
ith column and ith row of A, the ith row of B, and the ith column of
C. In the case of recurrent neural networks, the group also includes
the ith columns of the weight matrices AT and AY of the first layer
of the FNNs fz, fy, the ith row of the weight matrix Af, »» and ith
entry of the bias term by, of the last layer of fy, respectively [8].
Similarly, the group-Lasso penalty

Ny
rg(z) =743 ;22 (6b)
i=1
can be used to select the input channels that are most relevant to
describe the dynamics of the system, where now I; is the submatrix
formed by collecting the rows of the identity matrix of order n.
corresponding to the entries of z related to the ith column of B
and ¢th column of D. This could be particularly useful, for example,
when identifying Hammerstein models in which the input enters the
model through a (possibly large) set of nonlinear basis functions. In
the case of recurrent neural networks, the ith group also contains the
column of the weight matrices A7 and Al{ of the first layer of the
FNNs fz, fy related to the <th input. Clearly, group-Lasso penalties
can be combined with /2 and ¢;-regularization.
We finally remark that rather arbitrary (possibly nonconvex) dif-
ferentiable loss functions ¢ can be handled by the approach proposed
in this paper, as we use nonlinear programming to solve Problem (2).

B. Handling multiple experiments

To handle multiple experiments {ué, yé, e ugvj_l, y?vj_l}, j=
1,..., M, Problem (2) can be reformulated as in [8, Eq. (4)] by
optimizing with respect to x(l), .. .,zéw,A,B,C,D,Gx,Gy, or just
A,B,C,D,0,0, with z), = 0, Vj = 1,..., M. Alternatively, as
suggested in [5], [6], [22], we can introduce an initial-state encoder

ad = fe(v]; 6e) @)

where vg € R™ is a measured vector available at time 0, such
as a collection of n, past outputs, n; past inputs, and/or other
measurements that are known to influence the initial state of the
system, and fe : R™ x R™0e — R™* is a FNN parameterized by
a further optimization vector §. € R"% to be learned jointly with
A,B,C,D,0z,0y.

C. Stability constraints

Although system instability is largely discouraged by minimizing
the open-loop simulation error over the entire duration of the exper-
iment(s), and the regularization terms also discourage the possible
occurrence of unobservable modes, when learning linear models (4)
the identified matrix A may have eigenvalues outside the unit circle,
for example in the case of short experiments. Without loss of
generality, as justified by next Lemma 1, asymptotic stability can
be enforced by adding the following constraint

JAJI5 < 1 ®)

in (3), where || A||2 denotes the spectral norm of A.
Lemma 1: Let ¥ 2 (A, B,C, D) be an asymptotically stable
discrete-time linear system. Then there exists a transformation 7" such
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3
that the equivalent system P (A B,C, D) is such that ||A||2 < 1, and consider the following bound-constrained nonlinear program
where A=TAT !, B=TB,C=CT"',D=D. . 13

Proof: See Appendlx A. | yrgglog (¥, 2). 13

Lemma 1 proves that the simple constraint (8) does not limit the
expressivity of the linear model architecture. In our experiments, we
relax (8) by including the additional penalty

ra(z) = pamax{|| A3 — 1 +ea,0} ©)

in r(z), where pg > 1 and 0 < e4 < 1. If the identified matrix A
has eigenvalues outside the unit disk, the optimization can be repeated
with a larger value of p4 and/or €4.

D. DC gain

Assuming a set of steady-state input/output pairs (yj ) UG 55) is also
available, j = 1, ..., S, we can improve the DC gain of the identified
model by including the additional regularization term

S
Ps
§ L - O - D - R

:Ax —|—Bu + fz(z js, ],01) j=1,...,8.

The steady-state state asj can be evaluated while optimizing z by an
automatically differentiable solver, such as a linear system solver in
the case of linear models (4), or, more generally, a nonlinear solver,
e.g., the limited-memory Broyden solver [12].

1. NON-SMOOTH NONLINEAR OPTIMIZATION

When both f and r are smooth functions in (3), the system iden-
tification problem can be solved by any general-purpose derivative-
based NLP solver. The presence of ¢1 and group-Lasso regularization
requires a little care. Nonlinear non-smooth optimization solvers exist
that can deal with such penalties, see, e.g., the general purpose non-
smooth NLP solvers [14], [16], [34], generalized Gauss Newton meth-
ods combined with ADMM [8], and methods specifically introduced
for ¢1-regularized problems such as the orthant-wise limited-memory
quasi-Newton (OWL-QN) method [2]. Stochastic gradient descent
methods based on mini-batches like Adam [17] would be quite
inefficient to solve (2), due to the difficulty in splitting the learning
problem in multiple sub-experiments and the very slow convergence
of those methods compared to quasi-Newton methods, as we will
show in Section IV (see also the comparisons reported in [8]).

When dealing with large datasets (Nny > 1) and models
(nz > 1), solution methods based on Gauss-Newton and Levenberg-
Marquardt ideas, like the one suggested in [8], can be inefficient, due
to the large size Nny X n. of the required Jacobian matrices of the
residuals. In such situations, L-BFGS approaches [18] combined with
efficient automatic differentiation methods can be more effective, as
processing one epoch of data requires evaluating the gradient V . f
of the loss function plus V.

We show now how the L-BFGS-B algorithm [15], an extension of
L-BFGS to handle bound constraints, can be used to also handle ¢;
and group-Lasso regularization. To this end, we provide two simple
technical results in the remainder of this section.

Lemma 2: Consider the /¢;-regularized nonlinear programming
problem

mﬂin f@) + 7|zl + r(z) (11)

where f : R®™ — R, 7 > 0, and function r : R® — R is such
that 7(z) = > i r;(z;). In addition, let functions r; : R — R be
convex and positive semidefinite (r;(z;) > 0, Vz; > 0, 7;(0) = 0).
Let g : R" x R™ — R be defined by

9y, 2) =fly—2)+7[1 ... 1J[Y]+7r(y) +r(=2) (12

Then any solution y*, 2* of Problem (13) satisfies the complemen-
tarity condition y 2z = 0, Vi = 1,...,n, and 2* £ y* — 2" is a
solution of Problem (1 1).
Proof: See Appendix B. |

Note that, if functions r; are symmetric, i.e., 7;(x;) = r;(—x;),
Vi =1,...,n, then we can replace r(—z) with 7(z) in (12). Hence,
by applying Lemma 2 with 7(z) = p|z[|3 = p(31-, 27), we get
the following corollary:

Corollary 1: Consider the following nonlinear programming prob-
lem with elastic-net regularization

min f () + 7|1 + pll|3 (14a)
where p > 0 and 7 > 0, and let
(7] carg min fly—2)+70 .. UL +pl2]I5. (4b)
y,220

Then z* £ ¢* — 2* is a solution of Problem (14a).

Note that (14b) includes the squared Euclidean norm ||y||3 + ||z|3
instead of ||y—z||3, as it would result from a mere substitution of - —
y—z in both f and r. The regularization in (14b) provides a positive-
definite, rather than only positive-semidefinite, term on [y’ 2]’, which
in turn leads to better numerical properties of the problem, without
changing its solution.

Lemma 3: Consider the ¢1-regularized nonlinear program

min f (z) +

where f : R — R, and let r : R™ — R be convex and symmetric
with respect to each variable, i.e., satisfying

r(@) + ellz(lx (15)

r(z — 2z5e;) = r(x), Vo € R" (16a)

where e; is the ith column of the identity matrix, and increasing on
the positive orthant

r(zo +ve;) > r(zo), Vzg € R™, 29 >0, v >0 (16b)

Let € > 0 be an arbitrary (small) number, let g : R” x R” — R
defined by

fly—2)+r(y+z)+ell ... 1][Y] (17)
and consider the following bound-constrained nonlinear program

(18)

g(y, z) =

yrgglog(y, z).
Then, any solution y*, z* of Problem (18) satisfies the complemen-
tarity condition vz = 0, Vi = 1,...,n, and 2* £ y* — 2" is a
solution of Problem (15).
Proof: See Appendix C. |
Corollary 2: Consider the following nonlinear programming prob-
lem with group-Lasso regularization

g

min f(z) + ellll1 + g ) [Iizl2 (192)
i=1

where 75 > 0 and € > 0 is an arbitrary small number. Let

(V] € arg min £y —2) el UL +7 3 Iy + 2l
= i=1
' (19b)
Then z* £ y* — z* is a solution of Problem (19a).

Proof: See Appendix D. |
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Corollary 2 enable us to also handle group-Lasso regularization
terms by bound-constrained nonlinear optimization in which the
objective function admits partial derivatives on the feasible do-
main. In particular, consider a basis vector e; such that I;e; #

) £ 0)—r(0,0
0. For r(y,z) = |Li(y + 2)|l2, lim,_ o+ w =
lim,, gy 2000 _ gy el phere the limit

a — 07 is taken since y,z > 0; on the other hand, for r(z) =
| L;z||2, limg—y0 w % is not defined, where
the limit o — O is taken since there are no sign restrictions on the
components of x.

Finally, it is easy to prove that Lemma 2 and Lemma 3 extend to
the case in which only a subvector z; of = enters the non-smooth
regularization term, ;7 € R™, n; < n. In this case, we only need
to replace x; = y; — 21, Y1, 21 € R™, yr,z;r > 0.

= limy—0

A. Constraints on model parameters and initial states

Certain model structures require imposing bounds on model pa-
rameters and/or initial states, such as positive linear systems, as
mentioned in Section II-A.1, and input-convex neural networks, that
require nonnegative weight matrices [1]. General box constraints
Tmin < T < Tmax, where x € R" is the optimization vector,
can be immediately enforced in L-BFGS-B as bound constraints.
When we must split z = y — z to handle ¢; and group-Lasso
regularization, if Zmax; > 0 we can bound the corresponding
positive part 0 < y; < Tiax,is OF if Tmaxi < 0, constrain the
negative part z; > —Tmax,i and remove y; from the optimization
vector. Similarly, if Zpyin; < 0 one can limit the corresponding
negative part by 0 < z; < —Tpyin,i, OF, if Tyin,i > 0, constrain
Yi 2 —Tmin,; and remove z;.

General constraints hy(z) < 0, hg(z) = 0, h : R"* — R"AI,
h : R™ — R™E as shown in (9) for stability constraints, can be
addressed in the learning problem (3a) via penalty functions, such as

Npr NhE
min f(2) +7(2) + pn | D max{hri(2),08° + D hg;(2)?
i=1 j=1

(20)
where pp, > 0 is a (large) penalty parameter.

B. Preventing numerical overflows

Solving (2) directly from an arbitrary initial condition zg
can lead to numerical instabilities during the initial optimiza-
tion steps. During training, to prevent such an effect, when
evaluating the loss f(z) we saturate the state vector zj41 =
sat(Azp + Bup + fo(zp,ur;0z), Tsat), where sat(x,Zsat) =
min{max{z, —Zsat }, Tsat },» vector zgsat € R", and the min and
max functions are applied componentwise. As minimizing the open-
loop simulation error f(z) in (3b) and regularizing x¢ and the model
coefficients discourage the presence of unstable dynamics, in most
cases the saturation term will not be active at the optimal solution if
Tsat 1S chosen large enough. After identifying the model, it is easy
to test on training data whether the saturation constraint is inactive,
so to prove the redundancy of the saturation function.

At the price of additional numerical burden, to avoid introducing

non-smooth terms in the problem formulation, the soft-saturation
1+e*7<z+zsat>
1+e—’Y(m_7f’sat)
as an alternative to sat(x, Tsat), Where the larger v > 0 the closer
the function is to hard saturation.

function sat~ (x, Tsat) = Tsat + % log could be used

C. Initial state reconstruction for validation

To wvalidate a given trained model on new test data
{u(0),%(0),...,a(N — 1),5(N — 1)}, we need a proper initial
condition Zg for computing open-loop output predictions. Clearly, if
an initial state encoder as described in (7) was also trained, we can
simply set Tg = fe(¥p;0e). Otherwise, as we suggested in [6], we
can solve the nonlinear optimization problem of dimension 7,

N-1
minr(50) + 5 3 H5(R)9(K) @1
k=0
via, e.g., global optimizers such as Particle Swarm Optimization
(PSO), where (k) are generated by iterating (1) from z(0) = Zg.
In this paper, in alternative, we propose to run an EKF (forward
in time) and Rauch-Tung-Striebel (RTS) smoothing [30, p. 268]
(backward in time), based on the learned model, for N, times. The
approach is summarized in Appendix E for completeness. Clearly,
for further refinement, the initial state obtained by the EKF/RTS pass
can be used as the initial guess of a local optimizer (like L-BFGS)
solving (21).

IV. NUMERICAL RESULTS

We apply the nonlinear programming formulations described in
Section III to identify linear state-space models and train recurrent
neural networks on synthetic and real-world datasets. All experiments
are run in Python 3.11 on an Apple M1 Max machine using
JAX [11] for automatic differentiation. The L-BFGS-B solver [18]
is used via the JAXopt interface [9] to solve bound-constrained
nonlinear programs. When using group-Lasso penalties as in (19b),
we constrain y, z > € to avoid possible numerical issues in JAX while
computing partial derivatives when y = z = 0, with € = 10716,
We apply standard scaling z < (z — Z)/oz to each input and
output signal, where Z and o, are, respectively, the empirical mean
and standard deviation computed on training data. When learning
linear models, initial states are reconstructed using the EKF+RTS
method described in Appendix E, running a single forward EKF and
backward RTS pass (Ne = 1). Unless stated differently, matrix A
is initialized as 0.5], the remaining coefficients are initialized by
drawing random numbers from the normal distribution with standard
deviation 0.1. When running Adam as a gradient-descent method,
due to the absence of line search, we store the model corresponding
to the best loss found during the iterations.

For single-output systems, the quality of fit is measured by
the classical R%-score, RZ = 100 ( 1 — il we—ik)’

, , S iy it ve)? )’
where ¢, is the output simulated in open-loop from wq. In the

case of multiple outputs, we consider the average R?-score R2 £
ni Z?:Ul R?, where R? is the R2-score measuring the quality of fit
oty the ith component of the output.

A. Identification of linear models

1) Cascaded-Tanks benchmark: We consider the single-
input/single-output Cascaded-Tanks benchmark problem described
in [33]. The dataset consists of 1024 training and 1024 test standard-
scaled samples. L-BFGS-B is run for a maximum of 1000 function
evaluations, after being initialized by 1000 Adam iterations. Due to
the lack of line search, which may reduce the step size considerably
and trap the algorithm into a local minimum, we found that Adam
is a good way to initially explore the optimization-vector space and
provide a good initial guess to L-BFGS-B for refining the solution,
without suffering from the slow convergence of gradient descent
methods. We select the model with the best R? on training data
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R2? (training) R2 (test)

ng| lbfgs sippy M 1lbfgs sippy M

1 87.43 56.24 87.06 83.22 52.38 83.18 (ssest)
2 94.07 28.97 93.81 92.16 23.70 92.17 (ssest)
3 94.07 74.09 93.63 92.16 68.74 91.56 (ssest)
4| 94.07 48.34 92.34 92.16 45.50 90.33 (ssest)
5 94.07 90.70 93.40 92.16 89.51 80.22 (ssest)
6 94.07 94.00 93.99 92.17 92.32 88.49 (n4sid)
7 94.07 92.47 93.82 92.17 90.81 <0 (ssest)
8 94.49 <0 94.00 89.49 <0 <0 (n4sid)
9 94.07 <0 <0 92.17 <0 <0 (ssest)
10| 94.08 93.39 <0 92.17 92.35 <0 (ssest)

TABLE |: Cascaded-tanks benchmark: R2-scores on training and
test data obtained by running Adam followed by L-BFGS from 5
different initial conditions and selecting the model with best R2-
score on training data (1bfgs), by Sippy [4] (sippy), and by the
System Identification Toolbox for MATLAB, selecting the best model
obtained by running both n4sid and ssest.

obtained out of 5 runs from different initial conditions. We also
run the N4SID method implemented in Sippy [4] (sippy), and the
n4dsid method (with both focus on prediction and simulation) and
ssest (prediction error method, with focus on simulation) of the
System Identification Toolbox for MATLAB (M), all with stability
enforcement enabled. Table I summarizes the obtained results. The
average CPU time spent per run is about 2.4 s (1bfgs), 30 ms
(sippy), 50 ms (n4sid with focus on prediction), 0.3 s (n4sid
with focus on simulation), 0.5 s (ssest).

It is apparent from the table that, while our approach always
provides reliable results, the other methods fail in some cases. We
observed that the main reason for failure is due to numerical insta-
bilities of the N4SID method (used by n4sid and, for initialization,
by ssest).

2) Group-Lasso regularization for model-order reduction: To
illustrate the effectiveness of group-Lasso regularization in reducing
the model order, we generated 2000 training data from the following
linear system

0.96 0.26 0.04 0 0 0 0 o
—0.26 0.70 0.26 0 0 0 0 0
_ 0 0 0.93 0.32 0.07 0 0.07 0
Th+1= 0 0 —032061 032 0 |Tk+ |03z 0 |tk
0 0 0 0 0.90 0.38 0 0.10
0 0 0 0 —0.380.52 0 0.38

yk=\os | 7k

where £, and 7, are vectors whose entries are zero-mean Gaussian
independent noise signals with standard deviation 0.01.

Figure 1 shows the R2-score on training data and the corresponding
model order obtained by running 1000 Adam iterations followed
by at most 1000 L-BFGS-B function evaluations to handle the
regularization term (6a) for different values of the group-Lasso
penalty 74. The remaining penalties are pg = px = 1073, and
7 = ¢ = 1070, For each value of 74, the best model in terms
of R%-score on training data is selected out of 10 runs from different
initial conditions. The figure clearly shows the effect of 74 in trading
off the quality of fit and the model order. The CPU time is about
3.85 s per run.

3) Group-Lasso regularization for input selection: To illustrate
the effectiveness of group-Lasso regularization in reducing the num-
ber of inputs of the system, we generate 10000 training data from
a randomly generated stable linear system with 3 states, one output,
10 inputs, and zero-mean Gaussian process and measurement noise
with standard deviation 0.01. The last 5 columns of the B matrix are
divided by 1000 to make the last 5 inputs almost redundant.

Figure 2 shows the R2-score on training data and the corresponding
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Fig. 1: R2-score on training data and resulting model order obtained
with the group-Lasso penalty (6a) for different values of 7.
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Fig. 2: R2-score on training data and resulting number of model
inputs under the group-Lasso penalty (6b) for different values of 7.

number of nonzero columns in the B matrix obtained by running
1000 Adam iterations followed by a maximum of 1000 L-BFGS-B
function evaluations to handle the term (6b) with pg = pz = 1078,
7 =€ =101, and different values of the group-Lasso penalty 4.
For each value of 74, the best model in terms of RZ-score on training
data is selected out of 10 runs from different initial conditions. The
figure clearly shows the effect of 74 in trading off the quality of fit
and the number of inputs kept in the model. The CPU time is about
3.71 s per run.

B. Stability constraint

To test the effectiveness of the approach to enforce stability via (8),
we generated 1000 training and test data from the following sightly
unstable linear system
[ 0 0 0.'7] Tt |:72:1§62:| k7 &k
[1.6403 —1.7934 —0.8417 ] 2}, + M,

Tp+1 =
Y =

where &, ~ N(0,0.01%1), n ~ N(0,0.05%). The training problem
is solved in 6.4 s under the additional penalty (9) with p4 = 103
and e4 = 1073, The obtained R2-score is 92.27 on training data
and 91.41 on test data, the eigenvalues of the identified A matrix are
0.57871687, 0.99996862, and 0.92904764.

C. Industrial robot benchmark

1) Nonlinear system identification problem: The dataset de-
scribed in [35] contains input and output samples collected from
KUKA KR300 R2500 ultra SE industrial robot movements, resam-
pled at 10 Hz, where the input u € RS collects motor torques (Nm)
and the output y € RS joint angles (deg). The dataset contains two
experimental traces: a training dataset of N = 39988 samples and a
test dataset of Ny = 3636 samples. Our aim is to obtain a discrete-
time recurrent neural network (RNN) model in residual form (1), with
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sample time 75 = 100 ms, by minimizing the mean squared error
(MSE) between the measured output y;, and the open-loop prediction
¢ obtained by simulating (1). Standard scaling is applied on both
input and output signals.

The industrial robot identification benchmark introduces multiple
challenges, as the system generating the data is highly nonlinear,
multi-input multi-output, data are slightly over-sampled (i.e., ||yx —
yr_1|| is often very small), and the training dataset contains a large
number of samples, that complicates solving the training problem.
As a result, minimizing the open-loop simulation error on training
data is rather challenging from a computational viewpoint. We select
the model order ny = 12 and shallow neural networks fz, fy
with, respectively, 36 and 24 neurons, and swish activation function

We first identify matrices A, B, C and a corresponding initial state
zo on training data by solving problem (4) with pg = p, = 0.001,
7 = 01in (5), which takes 9.12 s by running 1000 L-BFGS-B function
evaluations, starting from the initial guess A = 0.997 and with all the
entries of B and C' normally distributed with zero mean and standard
deviation equal to 0.1. The largest absolute value of the eigenvalues
of matrix A is approximately 0.9776.

The average R2-score on all outputs is B2 = 48.2789 on training
data and R? = 43.8573 on test data. For training data, the initial state
xo is taken from the optimal solution of the NLP problem (3), while
for test data we reconstruct xg by running EKF+RTS based on the
obtained model for Ne = 10 epochs.

For comparison, we also trained the same model structure using the
N4SID method [25] implemented in the System Identification Tool-
box for MATLAB R2023b [20] with focus on open-loop simulation.
This took 36.21 s on the same machine and provided the lower-
quality result R2 = 39.2822 on training data and R2 = 32.0410 on
test data. The N4SID algorithm in sippy with default options did
not succeed in providing meaningful results on the training dataset.

After fixing A, B, C, we train 0, 0y, z¢ by minimizing the MSE
open-loop prediction loss under the elastic net regularization (5) to
limit overfitting and possibly reduce the number of nonzero entries
in 0z, 0y, with regularization coefficients pg = 0.01 and p; = 0.001
in (5), and different values of 7. The total number of parameters
to optimize is 1650, ie., dim(f;) + dim(8y) = 1590 plus 12
components of the initial state xg. This amounts to 2 - 1590 4 12 =
3192 optimization variables when applying the method of Lemma 2.
We achieved the best results by randomly sampling 100 initial
conditions for the model parameters and picking up the best one in
terms of loss f(z) as defined in (3b) before running Adam for 2000
iterations; then, we refined the solution by running a maximum of
2000 L-BFGS-B function evaluations. For a given value of 7, solving
the training problem took an average of 92 ms per iteration on a single
core of the CPU. Solving directly the same ¢1-regularized nonlinear
programming problem as in (11) via Adam [17] (1590 variables) with
constant learning rate 7 = 0.01 took about 66 ms per iteration, where
n is chosen to have a good tradeoff between the expected decrease
and the variance of the function values generated by the optimizer.

The average R?-score (R2) as a function of the ¢ -regularization
parameter 7 is shown in Figure 3. For each value of 7, we identified
a model and its initial state starting from 30 different initial best-cost
values of the model parameters and z¢ = 0, and the model with best
R? on test data is plotted for each 7. It is apparent from the figure
that the better the corresponding R2 is on training data, the worse it
is on test data; this denotes that the training dataset is not informative
enough, as overfitting occurs.

The model obtained that leads to the best R2 on test data
corresponds to setting 7=0.008. Table II shows the resulting R2-

= R2 (test data)
——— R2 (training data)
——— percentage of zerosin 6 |60

percentage of zeros

1074 1073 1072 107t 10°

Fig. 3: Average R2-score of open-loop predictions on training/test
data and model sparsity, as a function of 7. For each value of 7, we
show the best R2-score obtained on test data out of 30 runs and the
corresponding R2-score on training data and model sparsity.
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Fig. 4: Average R2-score of open-loop predictions on test data from
state estimates &y, obtained by EKF (7=0.008).

scores obtained by running such a model in open-loop simulation
for each output, along with the scores obtained by running the linear
model (A, B, C). The latter coincide with the R?-scores shown in
Figure 3 for large values of 7, which lead to 6, =0, 6 = 0.

R2 (training) R2 (test) R2 (training) R2 (test)

RNN model RNN model | linear model linear model
Y1 86.0482 68.6886 63.0454 63.9364
Y2 77.4169 70.5481 53.1470 35.2374
Y3 72.3625 64.9590 63.7287 55.7936
Y4 75.7727 36.4175 29.9444 27.2043
Y5 65.1283 32.0540 35.4554 44.2490
Y6 86.1674 70.4031 44.3523 36.7233
average 77.1493 57.1784 48.2789 43.8573

TABLE II: Open-loop simulation: R?-scores (7=0.008).

To assess the benefits introduced by running L-BFGS-B, Table III
compares the results obtained by running: (¢) 2000 Adam iterations
followed by 2000 L-BFGS-B function evaluations, (:z) 2000 OWL-
QN function evaluations, (¢¢%) only Adam for 6000 iterations, which
is long enough to achieve a similar quality of fit, and (iv) 4000
L-BFGS-B iterations without first warm-starting with Adam (“No-
Adam”). The table shows the best result obtained out of 10 runs in
terms of the largest R? on test data. Model coefficients are considered
zero if the absolute value is less than 1075, It is apparent that L-
BFGS-B or OWL-QN iterations, compared to pure Adam, better
minimize the training loss and lead to much sparser models, providing
similar results in terms of both model sparsity and training loss,
with slightly different tradeoffs. We remark that, however, OWL-QN
would not be capable of handling group-Lasso penalties (6). It also
evident the benefit of warm-starting L-BFGS-B with Adam.

Finally, we run an extended Kalman filter based on model (1)
(with 0,0, obtained with 7=0.008) and, for comparison, on the
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linear model (A, B, C) to estimate the hidden states Zj;. In both
cases, as routinely done in MPC practice [26], we computed EKF
estimates on the model augmented by the output disturbance model
gk+1 = q plus white noise, with g, € RS, The average R%-score
of the p-step ahead predictions §, (s are shown in Figure 4. This
is a more relevant indicator of model quality for MPC purposes than
the open-loop simulation error §j|g — yj, considered in Figure 3.

adam | fen R2 RZ | # zeros CPU
solver iters | evals | training test | (0g,0y) | time (s)
L-BFGS-B | 2000 | 2000 | 77.1493 | 57.1784 | 556/1590 | 309.87
OWL-QN | 2000 | 2000 | 74.7816 | 54.0531 | 736/1590 | 449.17
Adam 6000 0 | 71.0687 | 54.3636 1/1590 | 389.39
No-Adam 0 | 4000 | 66.8804 | 55.6671 | 302/1590 | 1361.08

TABLE IlI: Training results obtained by running L-BFGS-B or OWL-
QN iterations after Adam iterations, just Adam, and without running
Adam first (7=0.008). The table shows the result out of 10 runs
corresponding to the best Ra-score achieved on test data.

V. CONCLUSIONS

The proposed approach based on bound-constrained nonlinear
programming can solve a very broad class of nonlinear system identi-
fication problems, possibly under #; and group-Lasso regularization.
It is very general and can handle a wide range of smooth loss
and regularization terms, bounds on model coefficients, and model
structures. As shown in numerical experiments, the approach is also
valid for the identification of linear models, as it seems more stable
from a numerical point of view and often provides better results than
classical linear subspace methods, possibly at the price of higher
computations and the need to rerun the problem from different initial
guesses due to local minima.
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A. Proof of Lemma 1

Since ¥ is asymptotically stable, there exist symmetric and positive
deﬁnite matrices P,Q € R™*™= guch that the Lyapunov equation
— ATPA = Q is satisfied. Let 7T = P be a Cholesky
decomposmon of P. Then T~ T(T'T — A T'TA)T_ = Q, where
Q £ T_TQT_ > 0. Hence, I — A’A = (), and therefore
'z — o' A Az = &' Qx> a|z||3, Y # 0, Where o is the smallest
eigenvalue of Q, o > 0, or equivalently 1 — || Az||3/||#]|3 < o and

hence H”ATle < /1 = a. Therefore, | Al = SUP|| |50 I Az]lz

Tzl =
V1i—a<l1. [ ]

B. Proof of Lemma 2

By contradiction, assume that y; 2] # 0 for some index 4, 1 <
i < n. Since y],z} > 0 thls 1mplles that y* >0 Let a £
min{y}, 2z} and set § £ y* — ae;, 2 £ 2* — ae;, where e; is
the ith column of the identity matrix and clearly o > 0. By setting

a 5,4 ;i, we can rewrite § = (1 — By)y* + By(v* —
Y3 ez) =(1- Bz)z + Bz(z" — z7e;), where clearly 8y, 3. €
(0,1]. Since r; are convex functions, 7 is also convex and satisfies
Jensen’s inequality: 7(g) = r((1 — By)y™ + By(y™ —yie;)) < (1 —
By)r(y™) + Byr(y* — yie;). Since r is separable, r;(0) = 0, and
rily?) 2 0, we also get r(g) < r(u*) =y (rly*) —r(u” ~vie:) =
r(y") — Bura(u7) — ri(0)) < rly"). Similarly, r(~) = r((1 -
B) (=27 4Bz (2" + zieq)) < (1= Bo)r(=2")+Bzr(=2" + 27 eq)
= r(—2")-Bz(ri(—2]) — r;(0))<r(—z"). Then, since o > 0 and
7> 0, we obtain g(7,2) = f(5* —2*)+7[1 ... 1] [y] —onra+t

@) +r(=2) < S =) 7l 1 [ ] ) (-2t =
g(y*,2"). This contradicts (y*,2*) € argmin (13) and therefore
the initial assumption y; z; # 0.

Now let z* £ y* — 2* and assume by contradiction that z* ¢
argmin (11). Let Z € argmin (11) and set § 2 max{Z,0},
Z £ max{—%,0}. Then, since %;Z; = 0 and 7;(0) = 0, Vi =
L...,n wegetg(y, 2) = f(@)+7(| 2|1 +220 ri(5i) +ri(=2) =
F@) + Tl + Sy ra(@s) < F@) e+ Sy () =
g(y*,2*). This contradicts (y*,z*) € argmin (13) and hence the
assumption z* ¢ argmin (11). ]

C. Proof of Lemma 3

Similarly to the proof of Lemma 2, assume by contradiction that
y;z; # 0 for some index 4, 1 < ¢ < n. Since y;,z; > 0, this
implies y; 2 > 0. Let @ = min{y}, 2]} and set § = y* — ae;,

y*oz¥ [

Z £ 2* — ae;, where clearly o > 0. By setting 8 £ min
we can rewrite § = (1 — B)y* + B(y* —yiei), z = (1 flﬂ)zzk +
B(z* — z7e;), where clearly 8 € (0,1]. Then, r(g + z) = r((1 —
By +2") +By" + 2" — (i +27)ei)) < (1= By)r(y” +27) +
Br(y™ + 2" — (v +2)e;) < r(y* + 2*), where the first inequality
follows from Jensen’s inequality due to the convexity of r and the
second inequality from (16b). Then, since a > 0, we obtain g(7, Z) =
F@ =Z")+r(G+2)+el ... 1] [Z*]—Qnea < fT =2 )+ry*+
2) + el ... 1] [Z: = g(y*,2"). This contradicts (y*,z")
arg min (18) and therefore the initial assumption y; z; # 0.
* & y* — 2* and assume by contradiction that z* ¢
s

m

Now let ™ = y
argmin (11). Let Z € argmin (11) and set § £ max{z, 0}, z
max{—Z,0}. Then, since ;Z; =0,Vi =1,...,n, we get g(§, 2) =
JG=2)br(ra)tell .. 1] [1] = f@)+r@) ezl < [+
r@) +elle* = " = 2 Al -2 el 1[N ] =
Fly* —2")+r@y" +2")+e€l ... 1] [7{: ] , where the equivalences
G+ 2) = 1@ - 2) = r(@) and r{y* + 2%) = r(y" — 2%) =

r(z*) follow by (16a) and the complimentarity conditions g;z; = 0,
ysz! = 0, respectively. This contradicts (y*,2*) € argmin (13)
and hence the assumption z* ¢ arg min (11). |

D. Proof of Corollary 2

By the triangle inequality, we have that || [; (axz1 +(1—a)z2)||2 <
lalizillz + |(1 — ) Lizzll2 = afLizill2 + (1 — )| liz2]|2, for
all 0 < a < landi=1,...,ng. Hence, g(z) = > 1% ||Liz|2
satisfies Jensen’s inequality and is therefore convex. Moreover, since
|Lz||3 = ZjeJ 7» where J; is the set of indices of the compo-
nents of x correspondmg to the ith group, g(x) is clearly symmetric
with respect to each variable x;. Finally, for all vectors o > 0
and v > 0, we clearly have that zo; + v > zo;, and therefore
[lI;(xo +ve;)ll2 > |[Lixo||2, proving that g is also increasing on the
positive orthant. Hence, the corollary follows by applying Lemma 3.
]

E. EKF and RTS smoother for initial state reconstruction

Algorithm 1 reports the procedure used to estimate the initial state
xo of a generic nonlinear parametric model

Tpt1 = f(@g, ug; 0) 22)
Uk = g(zk, ug; 0)
for a given input/output dataset (uo,yo), ..., (uny_1,yn—1) based
on multiple runs of EKF with Joseph stabilized covariance up-
dates [13, Eq. (4.26)] and RTS smoothing, where 6 is the learned
vector of parameters.

The procedure requires storing {xk‘k, Tpi1)ks Prks Pk+1\k}kN:701
and, in the case of nonlinear models, also the Jacobian matrices
A, 2 AEwe®) id ting them twice. In th

k For o avoid recomputing them twice. In the
reported examples we used 2 = 0, 5 = - —L 1, which is equivalent
to the regularization term 52 HxOHQ (cf. Eq. (12) in [6]), and we set
Q=10°LR=1.

Algorithm 1 Initial state reconstruction by EKF and RTS smoothing

N — 1; number Ne > 1 of
anan.

Input: Dataset (ug,yx), k =0,...,
epochs; initial state g € R™® and covariance matrix Py €
output noise covariance matrix R € R™*™ and process noise
covariance matrix QQ € R™= X"z

1. Fore=1,..., N do:
2. m0|_1 “— xS, Pol_l — POS’
21. For k=0,...,N —1 do:
2.1.1. Cp + ax(xklk 1, ug; 0);
2.1.2. My, + Py 1Cp(R+ CiPyjj—1Ch) ™
2.1.3. e + yi — g($k|k 1, ug;0);
2.14. T|k < Tklk—1 + Myeyg;
2.15. Pyjj + (I = MyCp)Pyjj—1 (I — MyCy)' + My RMy;
d
2.1.6. A, + a—i(azmk,uk;?);
217, Pppq, < ApPrp Ay + Qs
218, gy < F(@ppp u 0):
22. oy < TyN-_1; Pﬁf ~ Pnin-13
23. For k=N —1,. O do: [backward RTS smoother]
23.1. Gy + PklkAk i
2.3.2. .Tk <—$k|k+Gk($k+1 _$k+1|k) ,
233. P; <—Pk|k+Gk(Pk+1 Pk+1\k)Gk;
3. End.

[forward EKF]

Output: Initial state estimate ().
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