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Variable Elimination in Model Predictive Control
Based on K-SVD and QR Factorization

A. Bemporad and G. Cimini

Abstract—For linearly constrained least-squares problems that
depend on a vector of parameters, this paper proposes techniques
for reducing the number of involved optimization variables. After
first eliminating equality constraints in a numerically robust way
by QR factorization, we propose a technique based on singular
value decomposition (SVD) and unsupervised learning, that we
call K-SVD, and neural classifiers to automatically partition
the set of parameter vectors in K nonlinear regions in which
the original problem is approximated by using a smaller set
of variables. For the special case of parametric constrained
least-squares problems that arise from model predictive control
(MPC) formulations, we propose a novel and very efficient QR
factorization method for eliminating equality constraints. To-
gether with SVD or K-SVD, the method provides a numerically
robust alternative to standard condensing and move blocking,
and to other complexity reduction methods for MPC based on
basis functions. We show the good performance of the proposed
techniques in numerical tests and in a problem of linearized MPC
of a nonlinear benchmark process.

Index Terms—Constrained least squares, model predictive
control, variable elimination, singular value decomposition, un-
supervised learning.

I. INTRODUCTION

Several problems in engineering can be reformulated as
parametric constrained least-squares (pCLS) problems in
which the matrices defining the cost function and the equality
and inequality constraints depend on a set of parameters.
Examples range from control engineering, in particular model
predictive control (MPC) [1], filtering and smoothing [2],
financial engineering [3]–[5], to mention a few. A common
feature in such applications is that the pCLS problem must be
solved quickly and in a numerically robust way, often in simple
embedded devices. This asks for methods that can reformulate,
and possibly approximate, the problem by reducing the number
of optimization variables, and that aim at good numerical
conditioning, so to ease the numerical procedure employed
to solve the reduced problem.

In particular, in MPC formulations the equality constraints
are usually eliminated by substituting the predicted state as a
function of the applied inputs, a.k.a. condensing [6], that, as we
will discuss later, can lead to very badly conditioned problems.
In addition, the number of optimization variables is typically
reduced by using move blocking [7]–[10]. This corresponds
to keeping the input signal constant (“blocked”) between
pre-specified prediction steps; typically the input signal is
free to move during the first few prediction steps and then
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kept constant. The blocking scheme could be also modified
in real-time, such as with the heuristic method proposed
in [11]. Blocking moves, however, complicate the recursive
structure of the problem, therefore making efficient solution
methods conceived for the non-condensed problem [12] not
directly applicable. Moreover, move blocking may prevent
the application of involved blocking strategies such as the
aforementioned [11].

The so-called partial condensing [13] lies in between the
condensed and non-condensed forms. It is a reformulation
of the MPC optimization problem in which just a subset
of the equality constraints are eliminated by replacing some
of the states with the corresponding state responses. Such a
reformulated quadratic programming (QP) problem has a block
sparse structure, which reduces the number of optimization
variables while still allowing the exploitation of efficient
sparse linear algebra. For a benchmark comparison between
partial condensed and non-condensed forms, the reader is
referred to [14], where improvements are shown for open-
source solvers commonly used in sparse problems.

Alternatives to the standard condensing methods have been
investigated with the aim of preserving the sparsity of the
lower dimensional problem, so to exploit tailored solvers. This
is typically denoted as sparse condensing. For instance, in [15]
the authors propose the use of Turnback algorithm [16] to
find a banded null basis, and suggest to perform a open-
loop simulation with a zero input excitation to get a partic-
ular solution. In [17], a banded formulation is obtained by
computing the deadbeat feedback gain, under the assumption
of null controllability. The method proposed in [18] relaxes
such an assumption and the basis for equality constraints is
computed through deadbeat responses. One drawback of these
approaches is that in case of unstable models the generated
open-loop solution may contain numbers that exponentially
increase with the prediction horizon.

Principal Component Analysis (PCA) was also proposed
for input trajectory parameterization in MPC formulations.
In [19], the authors propose to construct a basis from the
principal components of the Hessian of the condensed form.
Alternatively, such a basis can be derived from the principal
components of the open-loop response matrix, as in [20],
which however limits its application to the only case where
standard condensing is used to eliminate equality constraints.
A different approach, proposed in [21], is to apply PCA to a
matrix that collects the snapshots of previous control inputs
already applied to the real plant, or to a simulation model.
A drawback of all the above methods is that, if the matrices
of the linear prediction model are time-varying, PCA must be
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performed in real-time, making the execution of the overall
MPC algorithm computationally intractable in many appli-
cations. Additionally, the method does not extend to pCLS
problems in which the equality constraints are eliminated by
using more general numerical methods, like the ones described
in [22, Ch. 20–22].

A. Contribution

This paper addresses the issue of reducing the number
of optimization variables in pCLS problems by eliminating
equality constraints, and of further eliminating degrees of free-
dom, possibly sacrificing optimality, to simplify the resulting
optimization problem. First, we propose a method based on
a computationally efficient QR factorization of the matrix
associated with equality constraints, that in case of pCLS
problems arising from MPC is a much more numerically stable
method to eliminate equalities than standard condensing, in
particular when the dynamics given by the prediction model
are unstable.

A second contribution is an offline procedure based on PCA,
unsupervised learning, and multiclass classification to reduce
the number of remaining optimization variables. We call the
unsupervised learning procedure K-SVD, as it is an extension
of SVD to determine K different sets of principal directions,
rather than just one as in standard linear PCA. As each sample
vector is associated with a corresponding parameter vector, K-
SVD determines a nonlinear partition of the parameter space
into regions, and provides a set of principal directions in each
region. When K-SVD is applied to pCLS problems, each
sample vector is an optimal solution of the pCLS problem
for a corresponding value of the parameter vector, and the
method returns K different approximate reformulations of the
pCLS problem.

For pCLS problems arising from MPC, we also address
issues of recursive feasibility of the proposed scheme, in order
to make sure that reducing the number of free optimization
variables does not lead to infeasible reduced-order problems,
which is particularly important in an MPC setting.

Finally, we provide evidence of the benefits of the proposed
methods in numerical experiments.

B. Notation

Given a finite set I = {i1, . . . , iN}, card(I) denotes its
number N of elements (cardinality). Given a vector v ∈ Rn,
‖v‖2 is the Euclidean norm of v, |v| is the component-wise
absolute value of v,

[
v
]
+

is the projection of v onto the non-
negative orthant, and diag(v) is the diagonal matrix of Rn×n
formed from v. Given a matrix A ∈ Rn×m, ‖A‖F is the
Frobenius norm of A, ‖A‖2F =

∑n
i=1

∑m
j=1A

2
ij , ker(A) is the

null space of A, Im(A) the range space of A, and rank(A)
the rank of A. The sub-matrix of A obtained by collecting
its entries whose row-index ranges from i to j and column-
index from h to k is denoted by Ai:j,k:h. We define as κ(A) =
‖A‖‖A+‖ the generalized condition number of A with respect
to the spectral norm, with A+ the Moore-Penrose inverse of A.
The matrix 0m ∈ Rn×m is the zero matrix with m columns,
or the zero row vector if n = 1. The matrix In ∈ Rn×n is

the identity matrix of dimension n. We denote by U(a, b),
a, b ∈ R, b > a, the uniform distribution of real numbers in
the interval [a, b], and by D(c, d), c, d ∈ N0, d > c the uniform
discrete distribution in the interval [c, d].

II. PROBLEM FORMULATION

Consider the following parameter-dependent constrained
least-squares (CLS) problem

min
z

1

2
‖A(θ)z − b(θ)‖22 (1a)

s.t. C(θ)z = e(θ) (1b)
G(θ)z ≤ g(θ) (1c)

where z ∈ R` is the optimization vector and θ ∈ Rp
is the vector of parameters defining the problem instance,
A(θ) ∈ Rnc×`, b(θ) ∈ Rnc , C(θ) ∈ Rne×`, e(θ) ∈ Rne ,
G(θ) ∈ Rni×`, and g(θ) ∈ Rni . For simplicity, we assume
that rank(C(θ)) = ne, ∀θ ∈ Rp, although this assumption
can be easily relaxed (see Remark 2.1 below). Our goal is
to find numerically efficient and robust ways to solve (1),
including methods to approximate the problem so that it can
be solved with respect to a reduced number of optimization
variables. From now on, for simplicity of notation we will
drop the dependence on θ where obvious.

A. Variable reduction by elimination of equality constraints

We start reducing the number of variables by eliminating
the equality constraints (1b). Several methods exist to han-
dle equality-constrained least squares problems [22, Ch. 20–
22]. We consider the following numerically-robust variable-
elimination method based on the QR factorization

C ′ = QR, Q =
[
Q1 Q2

]
, R =

[
R1

0

]
(2)

where Q is an orthogonal matrix, Q′Q = I , Q1 ∈ R`×ne ,
Q2 ∈ R`×(`−ne), and R is upper triangular, with R1 ∈
Rne×ne . The columns of matrix Q2 provide a basis of ker(C),
as

CQ2 =
[
R′1 0

] [Q′1
Q′2

]
Q2 =

[
R′1 0

] [ 0
I

]
= 0

Consider now the change of variables

y =

[
s̄
s

]
, s̄ = Q′1z, s = Q′2z

Since z = Qy, we get Cz = R′Q′Qy =
[
R′1 0

]
y = R′1s̄ =

e. As we assumed rank(C) = ne, matrix R1 is nonsingular
and hence

s̄ = (R′1)−1e, s free (3)

where s ∈ R`−ne is the vector of remaining optimization
variables. By substituting

z = Q2s+ z̄ (4a)
z̄ , Q1s̄ (4b)

the following CLS problem without equality constraints

min
s

1

2
‖AQ2s− (b−Az̄)‖22 (5a)

s.t. GQ2s ≤ g −Gz̄ (5b)
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is equivalent to (1), where in (5) all constant matrices/vectors
are in general a function of θ. Clearly, z̄ satisfies (1b).

The QR elimination method described above enjoys the
following property:

Proposition 2.1: Vector z̄ solves the minimum norm problem

z̄ = arg min
z
‖z‖2 subject to Cz = e (6)

Proof: The optimality conditions from Problem (6)
are 2z + C ′zD = 0, Cz = e, which gives zD =
−2(CC ′)−1e, and hence z = C ′(CC ′)−1e = QR(R′R)−1e
= Q1R1R

−1
1 (R′1)−1e = z̄.

The orthogonal unit vectors given by the columns of[
Q1 Q2

]
and the associated coordinate transformation z =

z̄+Q2s are ideal for numerical robustness. Consider a generic
coordinate transformation z = Y sy + Zs, where Y and
Z denote any matrices whose columns form a basis for
Im(C) and ker(C), respectively. As CY is non-singular,
any vector z = Y (CY )−1e + Zs satisfies (1b), and one
must select Y in such a way that CY is well conditioned.
Proposition 2.1 shows that if Y (CY )−1e solves (6) then
Y (CY )−1 = C ′(CC ′)−1 which makes the condition number
of CY independent from the basis selection. The pair (Y,Z)
such that Proposition 2.1 holds true is not unique. Among the
possible choices, letting (Y, Z) , (Q1, Q2) guarantees also
the best bound on i) κ(CY ) as κ(CQ1) = κ(R1) = κ(C),
ii) κ(AZ) as κ(AQ2) ≤ κ(A) if nc ≥ ` and A is full column
rank, iii) κ(GZ) as κ(GQ2) ≤ κ(G) if ni ≥ ` and G is
full row rank. We note that AZ and GZ are the matrices
forming the reduced CLS problem (5), therefore the coordinate
transformation z = z̄+Q2s improves the numerical robustness
of both variable elimination and CLS problem optimization.

Remark 2.1: The variable elimination method for equality
constraints can be easily generalized to the case in which

rank(C) = n3 < ne. Let C ′P = Q

[
R11 R12

0 R22

]
be a

rank-revealing QR factorization of C ′, with R11 ∈ Rn3×n3 ,
R22 ∈ R(ne−n3)×(ne−n3) and P ∈ Rne×ne a permutation ma-
trix such that ||R2,2|| ≤ ε, with ε an arbitrary small tolerance.
Let P =

[
P1 P2

]
with P1 ∈ Rne×n3 and P2 ∈ Rne×(n3−ne).

Then, equality constraints can be eliminated by replacing the
fixed variables in (3) with s̄ = (R′11)−1P ′1e. Similarly, the
method can be also generalized to the less common case in
which ` ≤ ne and, possibly, rank(C) < ne. �

III. VARIABLE REDUCTION BY SVD

After eliminating equality constraints, we want to attempt
to further reduce the complexity of solving (5) by lowering
the number of optimization variables from n to m, possibly
at the price of introducing suboptimality and infeasibility (we
will handle feasibility issues in Section III-B). To this end, let
us consider a basis Φ = [φ1 . . . φm] ∈ Rn×m and a constant
vector φ0 ∈ Rn that we use to parameterize the vector s of
free variables as an affine function of a new vector v ∈ Rm
of free optimization variables

s = φ0 +

m∑
i=1

φivi = φ0 + Φv (7)

We assume that matrix Φ is full column rank, otherwise some
degrees of freedom vi would be wasted.

In the presence of inequality constraints (1c), after substi-
tuting (7) and optimizing with respect to v, we would like to
recover the solution s∗ of the original inequality-constrained
least-squares problem (5) at best. However, we also want
to recover the exact solution of (1) when all inequality
constraints (1c) are inactive and m < n. Therefore, for any
given new value of θ, before applying (7) we first compute
the unconstrained solution of (5a)

s∗u = (Q′2A
′AQ2)−1Q′2(b−Az̄) (8)

and check if constraints (5b) are satisfied for s = s∗u. In case
they are, we can immediately retrieve the optimal solution
z∗u = z̄ +Q2s

∗
u. Otherwise, we substitute (7) in (5) and solve

the reduced CLS problem

v∗ = arg min
v∈Rm

1
2‖AQ2Φv − (b−Az0)‖22 (9a)

s.t. GQ2Φv ≤ g −Gz0 (9b)

where z0 = z̄ +Q2φ0, and then set

z∗ = Q2Φv∗ + z0 (10)

A. Choice of basis
Let us focus on finding a basis Φ that enables us to

reconstruct s∗ under inequality constraints (5b) at best when
the unconstrained solution s∗u in (8) is infeasible. Due to the
dependence of (1) on the vector θ of parameters, s∗ is also a
function of θ.

A standard approach for dimensionality reduction is to
resort to principal component analysis (PCA) to identify an
optimal basis Φ for a given set of values θi of the parameter
vector, i = 1, . . . ,M , as follows. For each θi, let s∗i be
the constrained solution of (5) when θ = θi. Let s̄m =
1
M

∑M
i=1 s

∗
i be the mean of the collected vectors s∗i , and let

S = [s∗1 − s̄m . . . s∗M − s̄m]′, S ∈ RM×n. Consider the
economy-size singular value decomposition (SVD) of S

S = UΣV ′ (11)

where Σ = diag([σ1 . . . σn]′), σi ≥ σj for i ≤ j. Matrix
V = [V1 . . . Vn] ∈ Rn×n is orthogonal, V ′V = I , and
provides the principal directions. Matrix U ∈ RM×n collects
n columns of an orthogonal matrix, such that UiΣ are the
principal components of s∗i − s̄m along the principal directions
V1, . . ., Vm, and Ui is the i-th row of U . Given the number
m of degrees of freedom we want to allow in the constrained
least-squares problem (9b) by restricting s as in (7), we set

Φ = [V1 . . . Vm] (12a)
φ0 = s̄m (12b)

Note that, as suggested above, problem (9) is not solved
when the solution s∗u is already feasible with respect to the
constraints (9b), and therefore the basis vectors in (12) will not
be used in such a case. Hence, to form matrix S we only need
to collect samples θi such that the corresponding unconstrained
optimizer s∗u violates (9b). To this end, we select vectors θi
such that the corresponding optimal Lagrange multipliers λi
associated with the inequality constraints (5b) are above a
certain threshold ελ > 0.
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B. Feasibility

Because of the reduction of the number of degrees of
freedom, even if problem (1) is feasible it might happen
that (9) is infeasible. In this section we discuss a few ways to
address this issue.

First, assuming that we have a feasible vector zf available
with respect to the constraints (1b)–(1c), or equivalently a
solution sf satisfying (5b), we want to be able to obtain zf
from the parameterization (7) in spite of the reduction of the
number of degrees of freedom. To achieve this, one can set
φ0 = sf instead of φ0 as in (12b) in order to guarantee that
v = 0 is a feasible solution. A more flexible approach is to
add s̄m − sf in the basis and parameterize s as

s = sf + v0(s̄m − sf ) +

m∑
i=1

viφi (13)

where v0 ∈ R is an extra degree of freedom. Again, the result-
ing reduced CLS problem is feasible for v = 0, where now
v ∈ Rm+1, and maintains the optimal principal component
decomposition (12) for v0 = 1.

A second approach is to replace (1c) with the following soft
constraints

G(θ)z ≤ g(θ) + Vg(θ)ζ (14)

where Vg(θ) ∈ Rni×nζ is a matrix whose entries are all zero
except one per row which is positive. The vector of slack
variables ζ ∈ Rnζ is penalized by changing (1a) to

min
z

1

2

∥∥∥∥[A(θ) 0
0 Λζ(θ)

] [
z
ζ

]
−
[
b(θ)

0

]∥∥∥∥2

2

(15)

where Λζ(θ) ∈ Rnζ×nζ . In this case, constraints (14) become

G(θ)Q2(θ)Φv ≤ g(θ)−G(θ)z0 + Vg(θ)ζ (16)

When the original CLS problem is formulated with soft-
constraints (14), an alternative approach is to adopt the pa-
rameterization introduced in (12) and keep both v and ζ
as optimization variables. In case ζ is a vector (nζ > 1),
the number of slacks can be also arbitrarily shrunk to n̄ζ ,
1 ≤ n̄ζ < nζ , by right multiplying matrix Vg(θ) by a binary
matrix Eζ , Eζ ∈ {0, 1}nζ×n̄ζ , with all columns of Eζ being
nonzero. For instance, for the minimum value n̄ζ = 1, we set
Eζ = [1 . . . 1]′.

Remark 3.1: Problem (15) can be modified to account for
a linear penalty on ζ, so to achieve an exact penalty function
on ζ [23, Sect. 14.3]. Let γζ(θ) a vector of (positive and large
enough) linear weights on ζ and Γζ(θ) = diag(γζ(θ)). If
Λζ(θ) is invertible, (15) can be changed to

min
z

1

2

∥∥∥∥[A(θ) 0
0 Λζ(θ)

] [
z
ζ

]
−
[

b(θ)
Λ−1
ζ (θ)′Γζ(θ)eζ

]∥∥∥∥2

2

(17)

with eζ = −[1 . . . 1]′, and solved subject to (16) and the
additional constraints ζi ≥ 0, i = 1, . . . , nζ .

Example 3.1: Consider a parameter-dependent CLS prob-
lem with n = 20, nθ = 3, nc = 20, A(θ) ≡ A, b(θ) = b+Fθ,
with the entries of A, b, and F randomly generated from a
normal distribution, and G(θ) = [I − I]′, gi(θ) = [1 . . . 1]′

(box constraints). After generating M = 5000 random samples

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

10-5

100
relative suboptimality

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
10-5

100
relative optimizer error

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
m

10-16

10-15

relative constraint violation

Fig. 1. Distribution of the errors induced by using (12), as a function of
m: relative optimality error (top plot), relative difference of optimizers (mid
plot), relative maximum violation of the inequality constraints (bottom plot)
over 500 validation tests.

of θ, such that θi ∼ U(−1, 1), and collecting the corresponding
optimal solutions we apply the SVD decomposition (12)
for values of m ranging between 1 and n − 1. Then, we
generate further Nval = 500 vectors θ for validation. In both
cases, in collecting the parameter vectors θi we discard those
whose associated optimal dual variables are all smaller than
ελ = 10−5, to ensure that at least one inequality constraint
is active at optimum. For each θ, we solve the reduced CLS
problem (9) with respect to v ∈ Rm and to the additional
slack variable ζ ∈ R as in (17) with Λζ = 105, Γζ = 105, and
Vg = [1 . . . 1]′ in (14).

Figure 1 shows the results obtained in terms of the rel-
ative optimality error ‖Az

∗−b−Fθ‖−‖Az∗r−b−Fθ‖
‖Az∗−b−Fθ‖ , the relative

error ‖z
∗−z∗r‖
‖z∗‖ , and the maximum relative constraint violation

maxi

{
Giz
∗
r−gi
|gi|

}
, where all norms are Euclidean norms. As

expected, the higher the number m of basis vectors selected in
order of decreasing eigenvalue, the better is the quality of the
approximation zr. In particular the relative optimizer error is
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Algorithm 1 K-means in optimizer space.
Input: Optimizer samples s∗1, . . . , s

∗
M ∈ Rn, number K of

clusters, number m of basis elements.

1. Create random partition I1, . . . , IK , ∪Ki=1Ii =
{1, . . . ,M}, Ii ∩ Ij = ∅, ∀i, j = 1, . . . ,K, i 6= j;

2. repeat:
2.1. for j = 1, . . . ,K do:

2.1.1. Mj ← number of elements of Ij ;
2.1.2. φj0 ← 1

Mj

∑
i∈Ij s

∗
i ;

2.2. for i = 1, . . . ,M do:
2.2.1. Reassign s∗i to cluster j such that

j = arg min
j∈{1,...,K}

‖s∗i − φ
j
0‖22 (18)

3. until convergence;
4. for j = 1, . . . ,K do:
4.1. Compute basis Φj ∈ Rn×m using SVD of matrix Sj

obtained by collecting s∗i − φ
j
0 for i ∈ Ij ;

5. end.

Output: Clusters I1, . . . , IK , corresponding basis
Φ1, . . . ,ΦK and offset vectors φ1

0, . . . , φ
K
0 .

monotonically decreasing with respect to m, as reducing m to
m−k1 is equivalent to imposing vi = 0, i = m−k1+1, . . . ,m
in (7). Therefore a reduction to m− k2 with k2 < k1 leads to
a larger variance explained. �

IV. GENERALIZATION TO PARAMETER-DEPENDENT BASES

The method described in Section III determines a basis Φ
to use for all parameter vectors θ ∈ Rp. In order to gain
more flexibility, we propose to make Φ a piecewise-constant
function of θ by using unsupervised learning and multiclass
classification methods, as we describe next.

Assume M samples s∗i have been collected for the corre-
sponding set Θ = {θi}Mi=1 of parameter vectors, as described
in Section III, and that we only allow K different matrices
Φ1, . . . ,ΦK ∈ Rn×m and vectors φ1

0, . . . , φ
K
0 ∈ Rn for the

parameterization of s. A first method is to simply perform
K-means [24, Algorithm 14.1] on Θ to get K clusters and
repeat the approach of Section III on each cluster. Then, the
clusters can be separated for example by using piecewise
linear separation (the Voronoi diagram of the centroid of the
clusters, robust linear programming [25], or one of the efficient
algorithms proposed in [26]) in order to define a function that,
for each given θ ∈ Rp, returns the corresponding basis Φj
and φj0 to use. The main drawback of this approach is that
clustering would be done only based on the Euclidean distance
between two parameter vectors, independently on the values
of the corresponding optimizer s∗.

Alternatively, one can perform K-means on the set {s∗i }Mi=1

to get K clusters I1, . . . , Ik of indices, ∪Ki=1Ii = {1, . . . ,M},
Ii ∩ Ij = ∅, ∀i, j = 1, . . . ,K, i 6= j, as described in
Algorithm 1. This is a classical K-means algorithm with
random initialization of the clusters Ij , j = 1, . . . ,K, whose
convergence is tested when the set {Ij} of clusters is not
changing between two consecutive iterations. After executing

Algorithm 2 K-SVD for parameter-dependent PCA.
Input: Optimizer samples s∗1, . . . , s

∗
M ∈ Rn, number

m of basis elements, initial clusters I1, . . . , IK , ∪Ki=1Ii =
{1, . . . ,M}, Ii ∩ Ij = ∅, ∀i, j = 1, . . . ,K, i 6= j.

1. repeat:
1.1. for j = 1, . . . ,K do:

1.1.1. Mj ← number of elements of Ij ;
1.1.2. φj0 ← 1

Mj

∑
i∈Ij s

∗
i ;

1.1.3. Compute basis Φj ∈ Rn×m using the economy-
size SVD

Sj = [U j1 U j2 ]

[
Σj1 0

0 Σj2

]
[Φj V

j
2 ] (19)

where the rows of Sj are (s∗i − φ
j
0)′, i ∈ Ij ;

1.2. for i = 1, . . . ,M do:
1.2.1. Reassign s∗i to cluster j such that

j = arg min
j∈{1,...,K}

{
min
v
‖s∗i − Φjv − φj0‖22

}
(20)

2. until convergence;
3. end.

Output: Clusters I1, . . . , IK , corresponding bases
Φ1, . . . ,ΦK of orthogonal vectors and offset vectors
φ1

0, . . . , φ
K
0 .

Algorithm 1, we compute a matrix Φj for each cluster by
SVD. The cluster indices {Ij} determined by Algorithm 1
also induce a partition of Θ in corresponding K sets. Finding
a (nonlinear) separation function in the θ-space Rp is a
multiclass classification problem [27] (or binary classification
if K = 2), that is the problem of determining a function
ψ : Rp → {1, . . . ,K} that associates to any vector θ its
corresponding class j = ψ(θ).

The main drawback of running K-means in the space
of optimization vectors s is that a small distance between
two optimizers s∗i , s∗j does not necessarily implies that they
can be well approximated by the same basis. For example,
s∗i = [10 0 . . . 0]′ is much “closer” to s∗j = [100 0 . . . 0]′

than to s∗h = [10 1 . . . 0]′, as s∗i , s
∗
j are both multiple of the

same vector. In light of the above considerations, we propose
the variant of K-means described in Algorithm 2, that we
call K-SVD algorithm, to perform clustering of the index set
{1, . . . ,M} by reassigning each vector s∗i to the cluster Ij
whose current basis Φj and offset φ0 best represent it in a
least-squares sense.
K-SVD requires an initial partition of {1, . . . ,M} in K

clusters. A possible approach is to create random clusters
I1, . . . , IK as in Step 1 of Algorithm 1, or to get I1, . . . , IK
by fully executing the K-means Algorithm 1 on s∗1, . . . , s

∗
M .

The following result proves that Algorithm 2 is indeed an
algorithm, in that it terminates in a finite number of steps to a
local minimum of the problem of finding the K “best” bases.

Theorem 4.1: Let M > n > m. K-SVD converges in a
finite number of steps to a local minimum of the following
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optimization problem

min
J,{Φj ,φj0}Kj=1

M∑
i=1

min
v
‖s∗i − ΦJ(i)v − φ

J(i)
0 ‖22 (21a)

s.t. φj0 =
1

Mj

∑
i∈Ij

s∗i , j = 1, . . . ,K (21b)

where J ∈ {1, . . . ,K}M is a sequence of cluster labels,
namely J(i) = j implies that s∗i belongs to cluster #j,
Ij , {i ∈ {1, . . . ,M} : J(i) = j}, Mi = card(Ij), and
where the columns of each matrix Φj are orthogonal.

Proof: We want to show that Algorithm 2 is a coordinate-
descent method that solves problem (21a) by iterating between
minimizing w.r.t. {φj0}Kj=1, then {Φj}Kj=1, and then J .

Consider first the label vector J and {Φj}Kj=1 fixed.
Step 1.1.2 determines the vectors {φj0}Kj=1 such that the
equality constraints (21b) are satisfied. Now consider both the
label vector J and {φj0}Kj=1 fixed. We need to solve (21a) with
respect to the bases {Φj}Kj=1, which is equivalent to solving
the following problem

min
{Φj}Kj=1

K∑
j=1

∑
i∈Ij

min
v
‖s∗i − Φjv − φj0‖22

 (22)

Clearly problem (22) is separable in the K independent
minimization problems

min
Φ,{vi}i∈Ij

∑
i∈Ij

‖s̄i − Φvi‖22 (23)

where vi ∈ Rm and we have introduced the simplified notation
s̄i , s∗i − φ

J(i)
0 . Let S̄ = [s̄i1 . . . s̄iMj ]′, S̄ ∈ RMj×n, be the

matrix collecting the Mj samples s̄′i of cluster j as its rows,
where {i1, . . . , iMj

} = Ij , and let D = [vi1 . . . viMj ]′ be the
corresponding matrix of optimal coordinates, D ∈ RMj×m.
By Eckart-Young-Mirsky theorem [28], the following matrix
optimization problem

Ŝ = arg min
rank Ŝ≤m

‖S̄ − Ŝ‖2F (24)

is solved by Ŝ = U1Σ1V
′
1 , where UΣV ′ is the SVD decompo-

sition of S̄, U = [U1 U2 U3], U1 ∈ RMj×m, U2 ∈ RMj×n−m,
U3 ∈ RMj×(Mj−n), U ′U = I , Σ =

[
Σ1 0
0 Σ2
0 0

]
is the

matrix of singular values, Σ ∈ RMj×n, and Σ1 ∈ Rm×m,
Σ2 ∈ R(n−m)×(n−m), while V = [V1 V2], V1 ∈ Rn×m
V2 ∈ Rn×(n−m), V ′V = I . By setting Φj = V1 and
D = U1Σ1 ∈ RMj×m, we get

‖S̄ − Ŝ‖2F =
∑
i∈Ij

‖s̄i − Φjvi‖22

and therefore Φj is a matrix of Rn×m with orthogonal columns
that solves problem (23).

For fixed {Φj}Kj=1 and {φj0}Kj=1, clearly (20) determines the
vector J of labels that minimizes (21a), as for each sample s∗i
the basis Φj and bias φj0 are chosen that give the least value
of minv ‖s∗i − Φjv − φj0‖22.

Having shown that K-SVD is a coordinate-descent algo-
rithm, the cost function (21a) is monotonically non-increasing

at each iteration and lower-bounded by zero, so it converges
asymptotically. Moreover, as the number of possible combi-
nations J are finite, Algorithm 2 always terminates after a
finite number of steps, under the assumption that in case of
multiple optima at Step 1.2.1 the optimizer J is always chosen
in accordance with a predefined criterion, and that the SVD
algorithm used at Step 1.1.3 returns the same matrices U,Σ, V
for the same given input matrix S̄. �

Due to the finite termination property shown in Theo-
rem 4.1, a termination criterion at Step 2 is to stop when
the label vector J does not change after one iteration. Note
that Algorithm 2 is only guaranteed to convergence to a local
minimum, whether this is also a global one depends on the
initial guess J . Moreover, the decrease of the cost function
in (21a) can be easily monitored. In fact, from the proof of
Eckart-Young-Mirsky theorem for the Frobenius norm, we
have that for a given label sequence I the corresponding
optimal cost (22) is

K∑
j=1

∑
i∈Ij

min
v
‖s∗i − Φjv − φj0‖22

 =

K∑
j=1

n∑
h=m+1

(Σj2ii)
2,

that is a value that can be immediately computed as a
byproduct of the SVDs in (19).

After running K-SVD, the samples θi get also labelled
by the index sets I1, . . . , IK . Several multiclass classification
methods can be then used to determine the classification
function ψ, such as multicategory proximal support vector
machines [29] or neural networks [30]. In this paper we use
K one-to-all neural classifiers ψi : Rp → [0, 1], i = 1, . . . ,K,
and then define the nonlinear separation function ψ : Rp →
[0, 1] such that ψ(θ) = arg maxj=1...K{ψj(θ)}.

In embedded applications the hyper-parameter K is most
often dictated by the limitations imposed by the controller unit,
in terms of the memory needed to store the K parameteriza-
tions and the throughput required to compute φi, i = 1, . . . ,K.
However, if the application allows tuning K, one can use any
heuristic for cluster analysis, for instance the “elbow method”.

Remark 4.1: A justification for associating a basis Φ,
φ0 to a region of the space of parameters θ stems from the
multiparametric analysis of problem (5). For instance, in case
matrices A and G do not depend on θ and b(θ), g(θ) are
affine, (5) is a multiparametric quadratic programming (mpQP)
problem [31], whose optimal solution s∗(θ) is piecewise
affine. Therefore, s(θ) = Hjθ + hj on each polyhedral
region Pj of the set of parameters θ get partitioned by the
mpQP algorithm, j = 1, . . . , np. If the parametric solution
s(θ) were known, np ≤ K, m ≥ p, for all θ ∈ Pj the
parameterization (7) would reproduce the optimal solution if
one computes the QR factorization of Hj = QjRj and sets
Φj = [Qj 0p−m], φj0 = hj , and v = [(Rjθ)

′ 0p−m]′. �

Remark 4.2: In K-SVD one may generalize and assign a
different number of basis elements to each of the K clusters.
The proof of Theorem 4.1 immediately extends to such a more
general case, as in (21), as the proof is independent on the
number mj of columns each matrix Φj has, as long as those
numbers mj are fixed.
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Fig. 2. Distribution of the errors induced by using Algorithm 2 and one-to-
all neural classifiers: relative optimality error (top plot), relative difference of
optimizers (mid plot), relative maximum violation of the inequality constraints
(bottom plot) over 500 validation tests. The case K = 1 corresponds to using
a single SVD decomposition and to the results shown in Figure 1.

As a further improvement one could also replace the Eu-
clidean distance in (20) with any other reassignment criterion,
that can be tailored to modeling assumptions specific for
the optimization problem at hand. The theory and methods
described in the paper will remain the same. �

Example 4.1: We consider again the parametric constrained
least-squares problem defined in Example 3.1. Using the same
M = 5000 samples, we run K-SVD for different values of
K (number of clusters) and m (number of basis vectors),
where the case K = 1 corresponds to the single SVD
decomposition (11). The clusters generated by K-SVD are
separated by training K neural one-to-all classifiers. Each
classifier is a neural network composed by 2 layers of 3
neurons each with sigmoidal activation function 1

1+e−x , cas-
caded by a sigmoidal output function, corresponding to 28
coefficients. For each cluster h, h = 1, . . . ,K, if the training
sample θi belongs to that cluster then the corresponding label
ji = 1, otherwise ji = 0. The standard cross-entropy loss

−(j log(ĵ)+(1−j) log(1−ĵ)) is used for training the network
using the batch nonlinear programming solver implemented in
the ODYS Deep Learning Toolset [32]. The total CPU time
to run K-SVD and train the neural classifiers in MATLAB
R2020a ranges between 12 and 26 seconds on an Intel Core
i9-10885H 2.40 GHz machine, with roughly 0.4% to 1.8% of
the time spent to run K-SVD.

The obtained results in terms of relative optimality error,
relative error, and maximum relative constraint violation are
shown in Figure 2. As expected, the quality of the approxima-
tion zr increases if more basis vectors m and partitions K are
available. Moreover, increasing K up to 5 or 7 is comparable
or superior for some dimensions than adding 3 basis vectors
to the K = 1 approach. That is an interesting result because
increasing the number of optimization variables of the pCLS
problem (9) for improving the performance is computationally
more intense than evaluate reasonably small neural classifiers
while maintaining m unaltered. �

A. Preservation of selected optimization variables

The approximation method described in the previous sec-
tions aims at approximating the reduced vector s of variables
obtained after eliminating the equality constraints (1b). On
the other hand, an approximation error ∆s with respect to
s∗ propagates on the original equality-constrained vector z as
Q2∆s, see (4a). It might be desirable to reduce the approx-
imation error on certain components of z of main interest,
say without loss of generality the first k ≤ m components
z1 = [z1 . . . zk]′ of z.

Using weighted low-rank approximation methods instead of
SVD in Step 4.1 of Algorithm 1 or in Step 1.1.3 of K-SVD to
take into account matrix Q2 in (4) would not be convenient, as
it would involve iterative procedures [33]. Instead, we propose
to compute a different QR factorization than in (2).

Let z = [ z1z2 ], z2 = [z1 . . . zk]′, z2 ∈ R`−k. Accordingly,
the equality constraints Cz = e become C1z1 + C2z2 = e.
Let us compute the QR factorization of C ′2

C ′2 = Q̄

[
R̄1

0

]
, Q̄ = [Q̄1 Q̄2] (25)

and consider the change of variables

y =

[
y1

y2

]
=

[
I 0
0 Q̄′

]
z, z =

[
I 0
0 Q̄

]
y

Then, by further splitting y2 = [s′3 s′2]′, s3 ∈ Rne , s2 ∈
R`−k−ne , we get e = Cz = C1y1 + [R̄′1 0]Q̄′[0 Q̄] [ y1y2 ] =
C1z1 + R̄′1s3 from which we obtain

s3 = (R̄′1)−1(e− C1z1) (26a)

s =

[
z1

s2

]
free (26b)

Finally, we get the following transformation from s to z

z =

[
y1

Q̄y2

]
=

[
z1

Q̄1s3 + Q̄2s2

]
= Q2s+ z̄ (27)

where

Q2 ,

[
I 0

−Q̄1(R̄′1)−1C1 Q̄2

]
, z̄ =

[
0

Q̄1(R̄′1)−1e

]
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Therefore, we can apply K-SVD or Algorithm 1 to the sam-
ples s∗i obtained from (26b) after substituting z as in (27) in
the constrained parametric LS problem. In order to emphasize
that the components z1 of s are better approximated than the
remaining components s2, we can replace the samples s∗i with[
τz∗1
s∗2

]
in computing the bias terms and SVDs, where τ > 1 is

a scalar parameter. After executing K-SVD (or Algorithm 1),
the bias term φ0 (or φj0) needs to be scaled back by dividing
its first k components by τ .

V. VARIABLE-REDUCTION METHODS FOR MPC

We now want to adopt the methods developed in the
previous sections to address the pCLS problems that arise
specifically in model predictive control formulations, and to
further refine such methods to exploit the particular structure
of those problems.

Let us assume that the dynamics of the process are modeled
by the linear state-space model

xk+1 = Ak(θ)xk + Bk(θ)uk (28)

with A ∈ Rnx×nx and B ∈ Rnx×nu . Most often, model (28)
is obtained by linearizing a nonlinear model of the process
around a nominal trajectory, and xk, uk represent the predicted
deviations from such a trajectory. Typically the nominal state
trajectory is the one obtained by applying the sequence of ma-
nipulated variables optimized at the previous MPC execution,
starting from the current state.

Let z = [u′0 x1 . . . uT−1 xT ]′ be the vector of optimization
variables collecting the sequence of manipulated variables
uk ∈ Rnu and the corresponding state variables xk ∈ Rnx
over a prediction horizon of future T steps, with z ∈ R`,
` = T (nx + nu). Vector θ ∈ Rp collects the current estimate
x(t) of the plant to control, the current (and possibly future)
reference signals to track, and other parameters affecting the
prediction model, the performance index, and the constraints.

The equality constraints (1b) embedding model (28) have
the following band-matrix form
B0 −I 0 . . . 0
0 A1 B1 −I 0 . . . 0
...

...
...

0 . . . 0 AT−1 BT−1 −I

 z=


−A0x0

0
...
0


(29)

where in (29) we have omitted the possible dependence of
Ak, Bk on θ for simplicity. Constraints (29) are a special case
of (1c) in which ne = Tnx, ` = T (nx +nu). We assume that
rank(C) = Tnx.

In MPC problems, the cost function (1a) is usually defined
as

A(θ) = blockdiag(Ru0 , Rx1 , . . . , Ru(T−1)
, RxT )

b(θ) =


Ru0ur0
Rx1xr1

...
Ru(T−1)ur(T−1)

RxTxrT


(30)

where blockdiag() is the block-diagonal matrix of its argu-
ments, A(θ) ∈ R`×`, b(θ) ∈ R`, ‖Ruk(ūk − uk)‖22 is the
penalty on inputs and ūk ∈ Rnu is the input reference, and
similarly ‖Rxk(x̄k − xk)‖22 penalizes the deviation of the
states from their reference x̄k ∈ Rnx . Penalties on outputs
‖Ryk(ȳk − yk)‖22, with yk = Ckxk, yk ∈ Rny , are a special
case in which Rxk = RykCk, and Rxk x̄k is replaced by
Ryk ȳk in (30). Mixed input/state costs involving both uk, xk
could be also considered, which would lead to having off-
diagonal blocks in A(θ). Note that the weights in (30) may
be rectangular matrices, for example in case some input is not
weighted Ruk would have less than nu rows.

The inequality constraints (1c) can collect ni constraints on
inputs, input increments, states, and any other linear constraint
involving a linear combination of such variables. In most
practical MPC applications, it is customary to treat some of the
inequality constraints as soft, by introducing a vector ζ ∈ Rnζ
of additional slack variables as in (14).

In deploying MPC laws in embedded platforms, solving
problem (1) efficiently in real time poses two main challenges:
C1. How to deal with equality constraints (1b) and possibly

eliminate them in a numerically robust way, reducing the
number of optimization variables (excluding slacks) from
` to n = Tnu;

C2. How to further reduce the number of degrees of freedom
from n to m, m < n, possibly sacrificing optimality in
favor of lighter computations.

Regarding (C1), the pCLS problem (1) is typically refor-
mulated in the so-called condensed form by replacing the
predicted states xk with the corresponding prediction

xk =

k−1∏
i=0

Aix0 +

k−1∑
i=0

k−1∏
j=i+1

AjBiui (31)

where
∏j+k
i=j Ai = Aj+k . . .Aj if k ≥ 1, or Aj if k = 0, or

the identity Inx if k < 0. Such a condensing procedure allows
one to recast (1) to a smaller pCLS problem with only n (or
n+nζ) variables. The main drawback of the condensing (31)
is its potentially poor numerical robustness: for example in
case of unstable dynamics the substitution (31) easily blows
up numerically.

A possible remedy is to prestabilize the dynamical sys-
tem (28) by setting

uk = Kk(θ)xk + uck (32)

and then treat uc0, . . ., ucT−1 as new optimization variables.
While this can be easily accomplished offline for linear time-
invariant (LTI) systems, in case of linear parameter-varying
(LPV) or linear time-varying (LTV) systems the stabilizing
set of feedback gains {Kk}T−1

k=0 must be computed online for
the given value of θ. A way to compute such gains is to solve
a finite-horizon unconstrained linear-quadratic (LQ) optimal
control problem using the Riccati iterations

Pk = Qk −A′kPk+1Bk(Rk + B′kPk+1Bk)−1B′kPk+1Ak
+A′kPk+1Ak

Kk = −(Rk + B′kPkBk)−1B′kPkAk
(33)
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for k = T − 1, . . . , 0, where Qk = R′xkRxk , Rk = R′ukRuk ,
and PT = R′xTRxT .

Solution methods based on the non-condensed form, in
which the states x1, . . ., xT are kept as optimization variables,
have the drawback of requiring general purpose sparse linear-
algebra libraries to solve (1) efficiently, or ad-hoc algorithms
exploiting the special structure (29), for example when using
interior-point methods [12]. A drawback of such an approach
comes when one wants to address the second challenge (C2),
that is to reduce the number of optimization variables to
simplify the mathematical programming problem to solve
online, which alters the structure of (29).

The variable elimination method in Section II-A, based on
the QR factorization of C ′(θ), offers a numerically robust way
to cope with (C1), even when the dynamics (28) is unstable,
while preserving the possibility to further reduce the degrees
of freedom by means of advanced algorithms such as K-SVD.

The next example shows the numerical properties of the
different variable elimination methods mentioned above.

Example 5.1: Consider random linear systems with
nx = 5 states, nu = 3 inputs, and prediction horizons
T ∈ {10, 20, 30, 40}. We first consider stable systems, with
eigenvalues λ(A) such that λi ∼ U(0.499, 0.999), i =
1, . . . , nx, and then unstable systems with real eigenvalues
λi ∼ U(1, 1.25), i = 1, . . . , nx. For each prediction horizon
T , a total of 1000 stable and unstable random systems are
generated. The weight matrices Rui , Rxi , i = 1, . . . , T for
input and state penalties are constant along the horizon, and
change for each problem with their structure chosen such that
rank(A) ∼ D(bTnx3 c + Tnu, `), and their non-zero elements
drawn from U(1, 10). Figure 3 shows the condition number of
the Hessian matrix A′rAr associated with the LS problem

min
s

1

2
‖Ars− br‖22 s.t. Grs ≤ gr (34)

obtained from (1) by eliminating Tnx variables by standard
condensing (31) (s = [u′0 . . . u′T−1]′), by prestabilization
using dynamic programming (33) (s = [(uc0)′ . . . (ucT−1)′]′,
see (32)), and by QR factorization (2) (s such that z =
z̄ + Q2s). The relation κ(A′rAr) = κ2(A) clearly holds.
While standard condensing numerically explodes (even for
moderately unstable systems), both the LQ prestabilizer and
the QR factorization deal effectively with unstable systems,
although the latter is considerably more robust. �

Note that advanced pre-conditioning methods for C(θ),
among which we cite geometric mean scale [34], can be
used to improve the numerical robustness of the methods in
Example 5.1. However, such an improvement is only marginal
and, more importantly, standard condensing would blow up
numerically anyway.

A. Efficient elimination of equality constraints

When applied to an MPC setting, the numerical robustness
of the elimination method in Section II-A comes at the expense
of a substantially less efficient MPC routine if compared
to (31). A standard QR decomposition algorithm, with full Q
computation, introduces anO(5T 3n3

x) complexity term. In this
section we present an algorithm tailored to computing the QR
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Fig. 3. Distributions of the condition number of A′rAr , the Hessian matrix of
the reduced LS problem after eliminating equality constraints (1b), comparing
different condensing techniques. The distribution for each prediction horizon
is obtained on a set of 1000 random linear systems. Both stable (left) and
unstable (right) systems are tested, the latter with real eigenvalues between 1
and 1.25.

decomposition of C ′(θ) very efficiently. Afterwards, we derive
a rigorous analysis of the flops (floating-point operations)
required by the standard and the proposed QR condensing.

We start by noting that matrix C(θ) is very sparse. In such
a scenario it is preferred to annihilate the columns of R1 by
means of Givens rotations, which selectively introduce zeros
below the diagonal, one element at a time [35], [36]. Let x =[
a b

]′
be a vector with ‖x‖2 = r > 0; a Givens rotation is a

2-by-2 matrix Gr such that Gr [ ab ] = [ r0 ]. It is easy to show
that the Q and R1 factors of the decomposition of C ′(θ) are
sparse as well and such that

R1 =


U1 R̃1 0 0

0
. . . . . . 0

...
. . . . . . R̃T−1

0 . . . 0 UT

 (35a)

[
Q1 |Q2

]
=
[
Q1,1 . . . Q1,T |Q2,1 . . . Q2,T

]
(35b)

where Ui ∈ Rnx×nx is an upper triangular matrix,
R̃j ∈ Rnx×nx is dense, Q1,i =

[
Q̃′1,i Ũ ′i 0

]′
, Q2,i =[

0 L′i Q̃′2,i
]′

, with Q̃1,i ∈ R(nui+nx(i−1))×nx dense, Ũi ∈
Rnx×nx upper triangular, Li ∈ Rnu×nu lower triangular,
Q̃2,i ∈ R(nu+(nx+nu)(T−i))×nu dense, and i = 1, . . . , T ,
j=1, . . . , T−1. The sparsity pattern of (29) and (35) provides
the basis for developing Algorithm 3, that we call QR-
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MPC. Its computational analysis is described by the following
lemma, which highlights the efficiency of the method.

Lemma 5.1: Let C ∈ RTnx×` be the matrix of equality
constraints for problem (1) defined as in (29). QR-MPC
computes the QR decomposition [Q1 Q2 ]

[
R1
0

]
= C ′ used for

the numerically robust condensing of problem (1), and enjoys
the following properties:
i) The serial complexity χQR of QR-MPC, namely the total

number of flops required for termination without any
parallel computation, is

χQR =T 3(n2
xnu+nxn

2
u)+3T 2nunx(2nx+nu+1)+O(T )

(36)
ii) QR-MPC saves a total of

χQRS−χQR = T 3(5n3
x+11n2

xnu+5nxn
2
u)−O(T 2) (37)

flops, with χQRS the complexity of a standard non-
economy QR decomposition algorithm relying on Givens
rotations for columns annihilation.
Proof: i) The complexity of the factorization can be

expressed as the sum of terms χQR = χ(R) + χ(Q), where
we denote by χ(Y ) the complexity of computing matrix Y .
Clearly χ(R) comes from the iterative execution of Step 3.4.3,
and χ(Q) from Step 3.4.4. Let mp(2n−1) be the complexity
of the matrix vector product M = Y D̄ with Y ∈ Rm×n,
D̄ ∈ Rn×p, then

χ(R) =

Tnx∑
j=1

r1∑
i=j+1

6
(
nx min

(
b j−1
nx
c+ 2, T

)
− j + 1

)
(38)

Let us define the integral operators I0(n) ,
∫ n

0
τ dτ , I1(n) ,∫ n

0
(τ+1) dτ and I2(n) ,

∫ n
0

(τ+1)2 dτ ; we can get rid of the
minimum and integer part operations in (38) by rearranging
the summations such that

χ(R)=6

T∑
k=1

nx∑
j=1

knu∑
i=1

(2nx−j+1)−6

nx∑
j=1

Tnu∑
i=1

(nx−j+1) ≈

≈ 6nu

(
I1(T ) (2n2

x−I0(nx))−T (n2
x−I0(nx))

)
=

=
9

2
T 2n2

xnu (39)

On the other hand, the complexity of χ(Q) is

χ(Q)=

Tnx∑
j=1

r1∑
i=j+1

6
(
j + nu(1 + b j−1

nx
c)− (nx + nu)b i−j−1

nu
c
)

(40)
Let us define w = nx + nu, by expanding the summations
in (40) similarly to the contribution of χ(R), χ(Q) can be
rewritten as

χ(Q)=6

T∑
k=1

nx∑
j=1

k∑
h=1

nu∑
i=1

(
(k − h)w + nu + j

)
≈

≈ 6nu

T∑
k=1

(
k2nxw − kn2

x + kI1(nx)− w
nx∑
j=1

I0(k)
)
≈

≈ 6nu
(nx

2
wI2(T ) + nx(1− nx

2
)I1(T )

)
=

=T 3(n2
xnu+nxn

2
u)+3Tnxnu

(
T (
nx
2

+nu+1) + (nu+3)
)

(41)

From (39) and (41) we get that χQR = χ(R) + χ(Q) =
T 3(n2

xnu+nxn
2
u) + 3T 2nunx(2nx+nu+ 1) +O(T ), which

proves i).
ii) Let C ∈ Rm×n be a full-rank matrix, the serial

complexity χQRS of a standard QR decomposition algorithm
based on Givens rotations, and forming Q matrix explicitly
(non-economy version) is

χQRS =

n∑
j=1

m∑
i=j+1

6(m+ n−j+1) ≈ 6n(m2−m−n
2

6
) (42)

By replacing m = T (nx+nu) and n = Tnx in (42) we obtain

χQRS = T 3(5n3
x+6nxn

2
u+12n2

xnu)−6T 2(n2
x+nunx) (43)

From (36) and (43) it follows that χQRS − χQR = T 3(5n3
x +

11n2
xnu + 5nxn

2
u)−O(T 2), which proves ii).

Theorem 5.1: Let (1a)–(1b) be the equality constrained
least-squares formulation of an MPC problem with nx states,
nu inputs, a prediction horizon of T steps, C(θ), e(θ) as
in (29), and A(θ), b(θ) as in (30). Let

min
s

1

2
‖Ar(θ)s− br(θ)‖22 (44)

be the reformulation of (1a)–(1b) in condensed form after
removing equalities (1b), where s ∈ RTnu , Ar(θ) ∈ R`×Tnu
and br(θ) ∈ R`. Then, the serial complexity for computing
Ar(θ), br(θ) is
i) χs in case of standard condensing, with

χs = T 2(n2
xnu −

nxnu
2

) +O(T ) (45)

ii) χq in the case of QR condensing, with

χq=T 3(n2
xnu+nxn

2
u)+T 2(n2

x(6nu+2)+n2
u(3nx+1)+

+2nunx−2(nx+nu))+O(T ) (46)

Proof: i) We first note that the states replacement (31) is
equivalent to impose the coordinate transformation z = Fs+f
with F ∈ R`×Tnu , f ∈ R` defined as

F =



Inu 0 . . . . . . 0
B 0 . . . . . . 0
0 Inu 0 . . . 0
AB B 0 . . . 0

...
. . . . . . . . .

...
0 . . . . . . 0 Inu

AT−1B AT−2B . . . AB B


, f=



0
A
0
A2

...
0
AT


x0

(47)

where in (47) we have omitted the dependence of A and
B from k, and therefore the condensed problem corresponds
to (5) after having replaced Q2 ← F and z̄ ← f . Clearly
CF = 0 holds, and f solves (1b). The complexity χs1
associated with forming f is equivalent to T matrix-vector
products of dimension nx, thus

χs1 = Tnx(2nx − 1) (48)

Let M = Y D̄ be a matrix-vector product with Y ∈ Rnx×nx ,
D̄ ∈ Rnx×nu ; then, constructing F has a complexity χs2
equivalent to T − 1 repetitions of such product, that is

χs2 = (T − 1)nxnu(2nx − 1) (49)
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The cost χs3 for computing A(θ)F comes instead from
∑T
i=1 i

repetitions of M = Y D̄, such that

χ3
s = T 2(n2

xnu −
nxnu

2
+ Tnxnu(2nx − 1) (50)

and the complexity of b− F z̄ is

χs4 = Tnx(2nx − 1) + ` (51)

We finally prove i) by simply computing χs =
∑4
i=1 χ

s
i .

ii) From Lemma 5.1 we know the complexity of factor-
izing C(θ), and thus we are left with computing the flops
required to form the cost function (5a). We can exploit
the sparsity of R1 in (35a) when solving the linear system
s̄ = (R′1)−1e by forward substitution. That is equivalent to
run the update step s̄i ← (ei − R′i,k:i−1s̄k:i−1)/Ri,i, with
k = 1 + max(0, nxb i−1

nx
c−1) and i = 1, . . . , n, which takes

χq1 = n2
x(3T − 2) + Tnx (52)

flops to be executed. For the complexity χq2 of matrix-vector
product z̄=Q1s̄ we exploit instead the sparsity of Q1 in (35b).
Let us recall that the flops required for computing c=Y d with
Y sparse, is well approximated by 2nz , with nz the number
of non-zero elements of Y . Then, we get the complexity

χq2 = n2
x(T 2 + 2T − 1) + nx(nu(T 2 − 1)− 2T ) (53)

The structure of A(θ) in (30) is first used to derive the
complexity χq3 for computing b(θ)−A(θ)z̄ that is

χq3 = 2(n2
u + n2

x)T + ` (54)

and then, combined with Q2 sparsity, to derive the complexity
χq4 of the matrix-vector product A(θ)Q2, which is

χq4 =T 2(n2
x+n2

u−2(nx+nu))+T (2(n2
u+n2

x)−nu−nx) (55)

Computing χq = χQR +
∑4
i=1 χ

q
i proves ii).

Remark 5.1: The memory allocation of QR-MPC can be
reduced by overwriting the upper triangular part of C(θ)′

with R1, thus saving the allocation space for R. This is
easily achieved by computing the plane rotation on the pair
(C(θ)k,i−1, C(θ)k,i), and applying it to C ′(θ) at Step 3.4.3.
Note that any robust computation of the c and s factors, see
[37] for instance, can be used in place of Steps 3.4.1 and 3.4.2
to avoid over/underflow. In addition, QR-MPC factorization
can be modified to take explicitly into account possible zero-
entries of A and B. If |Ck,i−1| < ε0, we get the rotation
Gr =

[
0 −1
1 0

]
which corresponds to a signed swap of C(θ) and

Q columns, saving therefore the flops needed for the matrix-
vector products of Steps 3.4.3 and 3.4.4. �

Theorem 5.1 proves the serial complexity of reformulat-
ing the cost function (1a) in the presence of the equality
constraints (1b), when either standard or QR condensing is
adopted. The flops for reformulating inequalities (1c) are
instead neglected because, most often, in MPC applications
states and inputs are constrained by simple bounds, that is G=[
I` −I`

]′
, in which case computing (5b) costs approximately

ni flops, regardless of the condensing method used. If instead
constraints involving the linear combination of states and/or
inputs are present, for instance output constraints, the cost

Algorithm 3 QR-MPC factorization for efficient condensing.
Input: Matrix C(θ) ∈ RTnx×` of equality constraints (1b),

nu, nx, T , zero-detection tolerance ε0.

1. Q← I`;
2. R← C(θ)′;
3. for j = 1, . . . , Tnx do:
3.1. k ← b j−1

nx
c;

3.2. r1 ← j + nu(k + 1);
3.3. r2 ← nx min(k + 2, T );
3.4. for i = r1, . . . , j + 1 do:

3.4.1. q1 ← 1 + (nx + nu)b i−j−1
nu
c;

3.4.2. if |Ri,k| > ε0 do:

3.4.1. c← Ri−1,k/
√
R2
i−1,k +R2

i,k;

3.4.2. s← −Ri,k/
√
R2
i−1,k +R2

i,k;

3.4.3. Ri−1:i,j:r2 ←
[
c s
−s c

]′
Ri−1:i,j:r2 ;

3.4.4. Qq1:r1,i−1:i ← Qq1:r1,i−1:i

[
c s
−s c

]
;

4. end.

Output: Orthogonal matrix Q ∈ R`×` and upper triangular
matrix R ∈ R`×ne such that QR = C(θ)′.

of reformulating all the closed half-spaces defining a specific
constraint along the prediction horizon is nu(2np− 1)

∑T
i=1 i

flops, assuming the worst-case in which the constraint is
imposed at each time step, where np ∈ {1, . . . , nx + nu}
is the number of variables involved in the definition of the
constraint itself.

We finally note that the computational assessment of Theo-
rem 5.1 remains valid even in case a vector ζ ∈ Rnζ of slack
variables is introduced for softening (some of) the constraints.
Indeed, when reformulating the pCLS problem (1) such that[
z′ ζ ′

]′
is the extended vector of optimization variables,

equalities (1b) are replaced by[
C 0nζ

] [z
ζ

]
= e (56)

and hence the QR factorization of C ′ in (2) becomes[
C ′

0nζ

]
=

[
Q 0
0 Inζ

] [
R

0′nζ

]
(57)

From (57) we know that the extended optimizer vector for the
pCLS problem (5) without equality constraints is

[
s′ ζ ′

]′
,

which means slack variables are kept as free variables, and
one can derive the reduced pCLS by applying QR-MPC to (1)
and extend the optimizer vector afterwards.

Example 5.2: From Example 5.1 it is clear that a nu-
merically robust method to eliminate equalities is mandatory
when the system dynamics are unstable. Indeed, condensing
by means of (31) blows-up numerically even in double pre-
cision. When instead Ak, k = 1, . . . , T are stable, standard
condensing is appealing because of the reduced throughput
required to compute the (F, f) pair and form (34), see the
results of Theorem 5.1. Here we want to show that even
in this scenario, a robust elimination of equalities may still
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be valuable despite the increase in computational complexity.
Consider parameters nx, nu, rank(A), λj , Ak, Bk, Ruk−1 ,
Rxk , k = 1, . . . , T , j = 1, . . . , nx defined according to the
random pCLS setup of Example 5.1, and restricted to the
sole case of stable dynamics. We enforce box constraints on
all the inputs, that is u− ≤ uk ≤ u+, k = 1, . . . , T , with
u−(j) ∼ U(−δ, δ), u+

(j) ∼ U(u−(j), u
−
(j) +δ), j = 1, . . . , nu and

δ= 1. We also constrain the states such that x− ≤ xi ≤ x+,
i=1, . . . , T and

x−(j) =

{
∼ U(−δ, δ) if x−(j) is imposed

−∞ otherwise

x+
(j) =


∼ U(x−(j), x

−
(j)+δ) if x+

(j) is imposed, x−(j) 6= −∞
∼ U(−δ, δ) if x+

(j) is imposed, x−(j) ≡ −∞
∞ otherwise

(58)

with j = 1, . . . , nx. For each problem we randomly select
which upper and lower bounds on the states are enforced
in such a way that the total number of constraints is ni =
2nu + mx, with mx ∼ D(bnx2 c, b

4nx
3 c). We consider two

procedures for solving such generated MPC problems. The
first, denoted “MPCSTD” is based on standard condensing and
solves the reduced pCLS problem (34) constructed by applying
the variable transformation z = Fs + f , see (47). In the
second one, which is denoted by “MPCQR”, one must first
factorize C ′ (by means of the QR-MPC algorithm), compute
the transformation z = Q2s + Q1(R′1)−1e, and compute the
matrices defining (34), which is ultimately solved. In both
cases we solve the reduced pCLS problem for s by means
of the Alternating Direction Method of Multipliers (ADMM),
the reader is referred to [38] for mathematical details. Let us
define sj+1 and hj+1 the sequential primal updates on the
directions s and h at the j-th iteration, and wj+1 the dual
update, the steps of an over-relaxed ADMM applied to (34)
are:

sj+1 = (A′rAr + ρG′rGr)
−1(A′rbr − ρG′r(sj + wj − gr))

hj+1 =
[
α1h

j − α(Grs
j+1 − gr)− wj

]
+

(59)

wj+1 = wj + α(Grs
j+1 + hj+1 − gr) + α1(hj+1 − hj)

with α ∈ (0, 2) the relaxation parameter, and ρ > 0 the weight
on the augmented Lagrangian. We consider a single precision
floating-point implementation of MPCSTD and MPCQR, with
ADMM running for a fixed amount p = 200 of iterations. The
quality of the solution reached after p iterations is evaluated in
terms of the optimizer error µo(zp) and the violation µf (zp)
of the constraints with respect to the original problem (1),
defined as:

µo(z
p) =

‖z∗ − zp‖
‖z∗‖

, µf (zp) = max

{
J

[
|Czp − e|

(Gzp − g)+

]}
(60)

where J = diag(dJ)−1, dJ = [‖[C1 e1]‖2 . . . ‖[Cne ene ]‖2
‖[G1 g1]‖2 . . . ‖[Gni gni ]‖2]′. Clearly we have that zp =
Fsp + f for MPCSTD, and zp = Q2s

p + Q1(R′1)−1e for
MPCQR. Figure 4 shows the distribution of optimality and
feasibility when solving nt = 1000 random MPC problems for
each T . The bottom plot shows also the total computational
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Fig. 4. Comparison MPCSTD and MPCQR in terms of solution quality and
computational load on a set of nt = 1000 random stable MPC problems.
Algorithms are coded in single precision floating-point arithmetic, and the
reduced pCLS (34) is solved by a fixed number of ADMM iterations (p =
200), see (59). Distribution of the optimizer error (top), distribution of the
maximum constraint violation (mid) and shifted geometric mean (ht = 10)
of the time required to both condense and solve (with ADMM) the reduced
problem (bottom) are reported.

load of both MPC routines, obtained as the shifted geometric
mean

ν(t) =

(
nt∏
i=1

(ti + ht)

)1/nt

(61)

where t ∈ Rnt is the array collecting the execution time over
the nt different CLS problems, and ht is a shift parameter.
We assume ht = 10 in this example. MPCQR improves both
the quality metrics for the optimal solution, especially the
optimizer error which is reduced by more than one order
of magnitude. Such results undoubtedly show that the robust
elimination is not only an option to deal with unstable systems,
but it is beneficial even when standard condensing is reliable.
The price for such robustness is an increase in the total
throughput of the MPC routine, as shown in the bottom plot
of the figure. We stress that in our setup the computational
load for solving (34) is independent from the method used to
construct the reduced LS problem, because the optimization
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Fig. 5. Computational evaluation of the proposed variable elimination
method. QR-MPC (blue) is compared to a standard (brown) non-economy QR
factorization, see [36, Algorithm 5.2.4]. The time shown for each prediction
horizon T is the shifted geometric mean (61), with ht = 10, computed over
nt = 1000 random CLS problems.

problem has the same dimension and it is solved by running
a fixed amount of ADMM iterations. This means that the
time difference is only due to the increased complexity of
computing the variable transformation and forming (34). The
relative impact on the total time is therefore determined by
the overhead of the optimization algorithm used to solve (34).
Moreover, algorithms whose convergence rate depends on
κ(Ar) will converge faster for an MPCQR implementation,
with a consequent shrinking of the computational gap.

Lastly, we highlight the efficiency of the QR-MPC algo-
rithm by comparing its throughput with respect to a standard
non-economy QR decomposition based on Givens rotations,
see [36, Algorithm 5.2.4]. Figure 5 shows the timing results
on the same set of MPC problems used in Figure 4. Note
that for the implementation of QR-MPC we have taken into
account throughput and memory efficiency ideas proposed in
Remark 5.1. This is the building block of the MPCQR routine
and it is indeed the main contribution to the computation
time shown by the bottom plot of Figure 4. By comparing
the two figures we can conclude that without QR-MPC the
computational gap between MPCSTD and MPCQR would have
been worse by up to an order of magnitude. �

B. Reduction of the number of variables

In MPC applications, it is often observed that reducing the
number of degrees of freedom to m < n does not compromise
closed-loop performance, while it instead simplifies the on-
line optimization problem. As mentioned in Section I, a way
commonly used in MPC to reduce the number of optimization
variables is move blocking, which consists of keeping the input
signal uk constant between prediction steps ki and ki+1 − 1,
i = 0, . . . ,mu, with mu the number of steps where the input
signal is free to change, k0 = 0 and kmu = T . In this way, the
number of optimization variables is reduced from n to m =
munu. Frequently, ki = i for i = 0, . . . ,mu−1, i.e., the input
signal is free to move within a control horizon of mu steps and
then is frozen afterwards until the end of the prediction horizon
T . For example, having a control horizon mu ≤ 5 is enough in
most MPC problems, due to the receding-horizon mechanism
of MPC. Reference governors [39], [40] are an extreme case

in which, thanks to the presence of a prestabilizing feedback
loop, using the control horizon mu = 1 to optimize the
reference signals achieves the task of fulfilling constraints and
maintaining good closed-loop performance.

Basis functions have been suggested to reduce the number
of degrees of freedom by parameterizing the input sequence
as

uk =

m∑
i=1

viφi(k) (62)

where {φi(·)}mi=1 is a given basis. Blocking moves can be seen
as a special case in which the basis functions are the unit-step
function 1I(k − ki) = 1 for k ≥ ki, or zero otherwise,

uk =

m∑
i=1

vi 1I(k − ki) (63)

The use of Laguerre polynomials to parameterize the in-
put sequence was investigated in [41], which also examines
other choices of orthogonal functions. Laguerre polynomials
were also used to parameterize both the input and state
sequences [42], in a way that these are invariant to time shifts
and hence amenable for warm-starting the new optimization
problem with the shifted solution of the previous problem.

Note that the use of basis functions as in (7) becomes nec-
essary when the free optimization variables s have no system
theoretical meaning, such as in case the QR method described
in Section V-A is used to eliminate equality constraints. For
such a method, there is no direct and intuitive approach like
blocking moves to reduce the number of free variables, un-
less blocking-moves are introduced before removing equality
constraints.

As we work in discrete-time over a finite horizon of T
steps, “basis functions” are nothing else than just vectors
φi ∈ Rn. Therefore, finding a basis of m elements to
parameterize the input sequence {uk}T−1

k=0 is equivalent to
finding a matrix Φ ∈ RTnu×m with full column-rank. The
SVD-based method described in Section III, or alternatively its
generalization in Section IV, can be immediately applied for
this task. The approach described in Section IV-A can be also
applied to preserve the components of the optimization vector
corresponding to the applied command input u0 as much as
possible with respect to the original solution of (1).

Variable reduction through PCA of the condensed Hessian
was also proposed to simultaneously reduce the optimizer
size and limit the ill-conditioning effects of unstable systems.
However, this needs an online SVD when A or C depend on
θ, similarly to [19]–[21], and the factorization is performed
on an ill-conditioned matrix.

Regarding the feasibility of the reduced pCLS problem,
we can apply the techniques presented in Section III-B. In
particular, if a feasible input and state trajectory zf is available,
then the corresponding vector sf can computed and one can
set φ0 = sf or use the parameterization (13).

VI. EXAMPLES OF APPLICATION TO MPC PROBLEMS

We apply the methods developed in the previous sections
to the classical benchmark problem of MPC of a continuous
stirring tank reactor (CSTR) [7]. The system has nx = 2 states
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performance index value MPC setting

Jexact,2 434.5290 n = 2, exact solution
Jexact,3 458.1742 n = 3, exact solution
Jexact,4 437.4142 n = 4, exact solution
Jexact,5 399.0286 n = 5, exact solution
Jexact,8 325.1723 n = 8, exact solution
Jexact,20 276.3555 n = 20 = T , exact solution
Jsvd,2 2335.6096 n = 20, m = 2, K = 1
Jsvd,3 1338.1678 n = 20, m = 3, K = 1
Jsvd,4 303.8875 n = 20, m = 4, K = 1
Jksvd,2 290.7679 n = 20, m = 2, K = 10
Jksvd,3 278.5647 n = 20, m = 3, K = 10
Jksvd,4 276.9783 n = 20, m = 4, K = 10

TABLE I
CLOSED-LOOP PERFORMANCE INDEX J COMPUTED AS IN (64) FOR

DIFFERENT MPC SOLUTION METHODS.

(the temperature of the reactor Tr [K] and the concentration
CA [kmol/m3] of reactant A) and nu = 1 input (coolant
temperature Tc [K]), see [43]. The goal is to make CA track
a given reference C ref

A by applying a linear parameter-varying
MPC with sample time Ts = 0.5 h. Accordingly, the nonlinear
dynamics are linearized around the current state x(k) and
previous input u(k − 1), then converted to discrete-time by
first-order Euler approximation.

We assume that the feed-stream concentration CAf and
temperature Tf , that are measured disturbances, are kept
constant, namely CAf=10 kmol/m3 and Tf = 298.15 K. From
now on, units will be omitted where obvious. The following
constraints are imposed on the manipulated input Tc:

285.15 ≤ Tc,k ≤ 312.15
−2 ≤ Tc,k − Tc,k−1 ≤ 2

In order to handle constraints and weights on input increments
∆uk = uk − uk−1, the 2nd-order model is extended with
the additional dynamics uk = uk−1 + ∆uk. We choose a
prediction horizon T = 20, preview on the reference signal
of five steps (namely, C ref

A,k, . . . , C
ref
A,k+5 are known at time

step k), weight matrix Rδu = 0.04 on input increments, Rx =[
0 0 0
0 0 1
0 0 0

]
on the extended state [x′k uk−1]′.

Move blocking to n free control moves is obtained by
setting ∆uk = 0 for all k = n, n+1, . . . , T −1. Table I shows
the closed-loop performance results obtained for different
values of the control horizon n, starting from the steady-state
initial condition u−1 = 298.15 and x0 = [311.267 8.5695]′,
quantified by the following index

J =

N∑
k=0

(CA(k)− CrefA,k)2 + 0.04(Tc,k − Tc,k−1)2 (64)

where N is the total number of closed-loop simulation steps.
The closed-loop trajectories corresponding to n = T = 20

and n = 3 are depicted in Figure 6, corresponding to the costs
Jexact,20 and Jexact,3 reported in Table I, respectively.

In order to reduce the number of optimization variables from
n = T = 20 to m < T , we generate a dataset of M = 10,000
samples of vector θ = [Tr,k CA,k Tc,k−1 C

ref
A,k, . . . , C

ref
A,k+5]′.

The samples are generated by running a closed-loop simulation
under the MPC controller designed above with random step
signal sampled from the uniform distribution between 2 and 9
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Fig. 6. Closed-loop MPC results: (a) exact solution with control horizon
n = T = 20; (b) exact solution with control horizon n = 3 (i.e., blocking
moves); and (c) single SVD on the full problem (n = T ) with m = 3. The
results obtained by applying K-SVD (K = 10) for m = 2, 3, 4 and single
SVD for m = 4 on the full problem (n = T ) are almost indistinguishable
from plot (a). The dashed line in the top plot is the reference trajectory for
CA, the dot-dashed lines in the bottom plot are the limits imposed on Tf .

kgmol/m3 as reference signal Cref
A , where at each sample step

the set-point has probability 1% of switching. For each sample
θi, the QR factorization (25) is applied to the MPC problem
formulation with n = T = 20 as a constrained least-squares
problem, so that the sequence u∗i = [∆u∗k . . .∆u∗k+T−1]′i
of optimal input increments is computed as in (4a) from the
solution z∗i = [z∗1i s

∗
2i]
′ of the reduced-order problem (5). This

is augmented with a slack variable ζ as in (16) to avoid any
infeasibility, which is heavily penalized by adding (105ζ)2

in the least-squares problem. As suggested in Section IV-A,
SVDs are applied to samples

[
τz∗1i
s∗2i

]
, with τ = 20 in order to

favor the reconstruction of the first input increment z∗1 .
We first compute a single SVD decomposition on the gener-

ated dataset to find a basis Φ and offset φ0 for m = 2, 3, 4. The
closed-loop simulation results obtained by minimizing with
respect to v ∈ R2 are also reported in Figure 6, corresponding
to the performance indices Jsvd,2, Jsvd,3, and Jsvd,4 reported
in Table I, respectively.

Next, we apply the K-SVD approach, running Algorithm 2
with K = 10 and m = 2, 3, 4. For each j = 1, . . . ,K, we
train a one-to-all neural classifier with two hidden layers of 6
neurons each and sigmoidal activation function, cascaded by
a sigmoidal output function, corresponding to 109 coefficients
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Fig. 7. Index of basis chosen when applying MPC based on K-SVD with
K = 10, m = 3.
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Fig. 8. Section in the (Tr, CA) space of the five-dimensional partition
induced by the neural classifiers for separating the clusters identified by K-
SVD with K = 10, m = 3. The values encountered during the closed-loop
simulation are shown as black circles.

to learn per classifier. The cross-entropy loss is used during
training, which is accomplished in a total of about 4 minutes
on the same machine used in Example 4.1 using the ODYS
Deep Learning Toolset [32].

The corresponding closed-loop simulation results are al-
most indistinguishable from the benchmark performance of
exact solution with control horizon n = T = 20 depicted
in Figure 6, as confirmed by the performance indices Jksvd,2,
Jksvd,3, and Jksvd,4 reported in Table I. It is apparent that
reducing the number of degrees of freedom by K-SVD
provides much better results that by a single SVD and by
move blocking: for example, with m = 3 degrees of freedom
we have Jksvd,3 = 276.9783 ≈ Jexact, Jsvd,3 = 1338.1678,
Jexact,3 = 458.1742. For K = 10 and m = 3, the index
of the basis function chosen at each step by selecting the
neural classifier with the largest value is depicted in Figure 7,
while Figure 8 shows the section in the (Tr, CA) space of the
partition in R9 induced by the classifiers, for the remaining co-
ordinates set to uk−1 = 300.24, Cref

A,k ≈ . . . ≈ Cref
A,k+5 ≈ 5.62

(these values are the average values computed on the training
dataset). The figure also shows the values encountered during
the closed-loop simulation reported in Figure 6.

Finally, we test how the MPC algorithm performs without
SVD approximations for the same number of degrees of
freedom, that is by setting the control horizon n = m < T .
The results for n = m = 3 are also shown in Figure 6,
corresponding to the closed-loop index Jexact,3 of Table I.

VII. CONCLUSIONS

In this paper we have investigated numerical methods for
reducing the number of variables in pCLS problems, such
as those encountered in MPC formulations. The K-SVD
algorithm is a general method that extends linear PCA to
handle parameter-dependent sample vectors, still keeping the
resulting approximation of the vectors a linear combination
of the principal components, so that the reduced problem
remains a pCLS. We have also shown that the QR factorization
is a much more numerically-stable approach than standard
condensing, and provided a specialized QR-based equality
elimination scheme that exploits the special structure of pCLS’
arising from MPC.

Further research will be devoted to address issues of re-
cursive feasibility and closed-loop stability of MPC schemes
in which the degrees of freedom are reduced by using basis
functions. Moreover, although we have addressed least-squares
problems, our approach can be extended to other parameter-
dependent optimization problems, such as to QP’s, which
would be an immediate extension, but also to other convex
and nonconvex problem classes.
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