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Abstract— In robust control under state constraints the set of
admissible inputs is usually considered as given, under the as-
sumption that the actuators have been already designed. However,
if the input set is too small any controller will fail in stabilizing the
closed-loop system while satisfying all prescribed constraints for
some initial states of interest, or vice versa the chosen actuators
may be over-sized. To handle this issue, in this paper we address
the problem of computing the smallest input constraint set such
that the closed-loop system is stabilizable from a prescribed set of
initial states while respecting all constraints. We focus our atten-
tion on linear systems with additive disturbances, and develop the
algorithm based on recursive feasibility of robust model predictive
control. We demonstrate the results using numerical examples, in
which we consider different metrics for the input constraint set
selection.

I. INTRODUCTION

Constrained systems with unknown but bounded disturbances can
be robustly stabilized using several control strategies, e.g., Ro-
bust Model Predictive Control (RMPC) schemes [1]–[3]. The main
components that are required to synthesize controllers using these
schemes are: a) a model of the system to control, including the
descriptions of the state constraints and model uncertainty set; b)
tuning parameters defining the cost function; c) a set of feasible
inputs (the input constraint set). Then, the RMPC controller solves
an online optimization problem to compute inputs that belong to
the input constraint set, such that the system is stabilized from a
given set of initial conditions. Component (a) can be obtained by
using a system identification procedure, e.g., [4]–[6]; component (b)
can be obtained by some tuning procedure, e.g., by preference-based
calibration [7], or, if a desired linear feedback is available, through a
controller matching procedure, e.g., [8], [9]. In this paper, we tackle
the computation of component (c), i.e., the input constraint set.

Typically, the input constraint set is directly characterized by the
parameters that describe the technical specifications of the actuators.
For example, pump parameters such as impeller size and motor
capacity dictate the set of flow-rate inputs [10]. These parameters
are usually selected during the system design phase by optimizing a
criterion that captures various specifications such as costs, reliability,
performance, etc. Hence, the procedures employed in the system
design phase dictate the input constraints enforced in the control
design phase. Given a set of input constraints, the set of initial-
conditions from which the system can be robustly regulated is called
the Maximal Robust Control Invariant (MRCI) set [11]–[13]. Then,
given a desired set of initial-conditions of the system, the input
constraint set could be undersized, i.e., the initial-condition set is not
included in the MRCI set, or oversized, i.e., a potentially smaller input
constraint set could be used to stabilize the system from those initial-
conditions. In this paper, we present a methodology to bridge the
system design and control design phases by computing an optimally-
sized input constraint set that explicitly accounts for the stabilizability
requirements, i.e., it computes the actuator parameters that optimize
the selection criterion used in the system design phase, while ensuring
that the MRCI set corresponding to the resulting input constraint
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set contains a desired set of initial states. We also present a simple
extension to the proposed methods to account for the modification
in the system dynamics that can accompany actuator selection, thus
enhancing its practicality as an engineering tool. In the rest of this
paper, we refer to the selection criterion as the input constraint set
size, which is meant in an extended sense as a user-defined optimality
metric. We consider linear time-invariant systems of the form

x(t+ 1) = Ax(t) +Bu(t) +Bww(t), (1)

with state x ∈ Rnx , control input u ∈ Rnu , bounded disturbance
w ∈ W ⊂ Rnw , and subject to state constraints x ∈ X . In order to
design the actuators for a given set Ω ⊂ Rn of initial states, one can
formulate the following problem:

Problem 1: Find the smallest set U of input constraints required
to robustly regulate x(t), i.e., to guarantee constraint satisfaction
x ∈ X with inputs u ∈ U for all possible disturbances w ∈ W ,
from all initial states x(0) ∈ Ω.

Note that the existence of a solution to Problem 2 entails the
existence of a control law κ with a corresponding nonempty Robust
Positive Invariant (RPI) set Xκ ⊇ Ω, as we will clarify in Section II.
Similar problems have been tackled previously in the context of
actuator selection: in [14], the smallest number of actuators required
to drive all x(0) ∈ Ω to some subset of the state-space is computed
for a diagonal matrix B; in [15], the minimal actuator set problem is
solved with an additional upper bound on the control effort required to
reach the desired subset; in [16], an algorithm is presented to perform
the actuator selection online, in a model predictive control fashion.
However, none of these works consider systems with uncertainties
and state constraints. The closest approach to the one we discuss
was presented in [17], in which set-invariance properties were used to
formulate an actuator-saturation design problem. Similar to this paper,
it is assumed that a set of desired initial conditions is given a priori,
and safe actuator saturation limits are computed. However, differently
from our approach, it is assumed that the system is equipped with a
static feedback law (requiring to work with positive invariant sets,
rather than control invariant sets), and both uncertainty and state
constraints can not be included in the formulation of the problem.
This work is essentially different from the one we present in [18],
in which we use the minimum positive invariant set to compute an
input constraint set by solving a reachability problem, as opposed to
the stabilizability problem we tackle in this paper.

Contribution. Unfortunately, as we will discuss in Section II,
solving Problem 1 might be difficult, so we propose to rely on
RMPC to define κ and reformulate the problem in the following
more tractable, though slightly conservative, way:

Problem 2: Find the smallest input constraint set U required to
guarantee recursive feasibility of the RMPC scheme presented in [1]
for all x(0) ∈ Ω.
This second formulation is justified by the observation that, in
practice, the technique of choice for enforcing robust invariance is
often RMPC. To address Problem 2, we formulate an optimization
problem by using tools of set invariance and provide an algorithm to
solve it. We prove that the algorithm always terminates, and analyze
its properties that are of practical significance.

This paper is organized as follows. In Section II we formulate
the problem introduced above of determining the input constraint
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set. Then, in Section III we develop an algorithm to compute
the set U , and present its relevant properties. In Section IV, we
discuss the implementation of the developed algorithm. Finally in
Section V we present three numerical examples, with the first to
illustrate some basic properties of the methods, the second showing an
application of the methods to perform actuator selection with practical
considerations, and the third to show the scalability of the proposed
methodology.

Notation: The set Bnp := {x ∈ Rn : ‖x‖p ≤ 1} denotes the p-
norm ball in Rn. The Minkowski set addition is defined as X ⊕Y :=
{x + y : x ∈ X , y ∈ Y}. If Y ⊂ X , then set subtraction is defined
as X 	 Y := {x : {x} ⊕ Y ⊂ X}. Given a set X we denote its
interior as int(X ). Given two matrices T, S ∈ Rn×m, Ti denotes
row i of matrix T , and T ≤ S denotes element-wise inequality. If
T is a square matrix, ρ(T ) denotes its spectral radius. The symbols
1, 0, and I denote all-ones, all-zeros and identity matrix respectively.
The set Inm := {m, . . . , n} is the set of natural numbers between m
and n. Given v ∈ Rn, S ∈ Rn×n, we define ‖v‖2S := v>Sv.

II. PROBLEM FORMULATION

In this section, we formulate Problems 1 and 2 by recalling the
concepts of control invariance from [11], and the tube-based RMPC
scheme from [1].

Formulation of Problem 1: Problem 1 can be formulated using
the Maximal Robust Control Invariant (MRCI) set X∞, which is such
that [11, Definition 2.5] XRCI ⊆ X∞ ∈ X, for all XRCI satisfying

x ∈ XRCI ⇒
{
x ∈ X ,
∃u ∈ U |Ax+Bu+Bww ∈ XRCI, ∀w ∈ W

X := {XRCI | (2) holds}.

(2)

(3)

This implies that for every initial state x(0) ∈ X∞ of system (1) and
every time instant N ≥ 1, there exists an admissible control sequence
u(k) ∈ U , k = 0, . . . , N−1 resulting in an admissible state sequence
x(k) ∈ X∞, k = 0, . . . , N for all possible disturbances w(k) ∈ W .
Then, Problem 1 can be formulated as

min
U

f(U) s.t. Ω ⊆ X∞(U), (4)

where f(U) is, e.g., a measure of the size of the input constraint set
U , and we made the dependence of X∞ on U explicit. Note that,
if X∞(U) is known, one can define a control law κ as a function
which, for each x ∈ X∞, selects any input u which satisfies (2).
Then, the associated maximum RPI (MRPI) set satisfies Xκ = X∞.

Problem 1 guarantees that state constraints can be robustly satisfied
at all times and the system is regulated to X∞. However, solving (4)
is difficult, since one needs to solve an optimization problem with
variable U and the MRCI set as a function of U . Additionally, one
is often interested in regulating the state of system (1) to a smaller
target neighborhood of the origin. A popular technique that allows
one to achieve this objective is RMPC. In RMPC, robust invariance
is enforced by requiring that the RMPC control law is able to steer
all initial states x(0) to a target RPI set [11, Definition 2.1] in N -
steps. This implicitly defines a second larger RPI set (the feasible
domain of RMPC) which approximates the MRCI set X∞, but is by
definition no larger, and hence a certain degree of conservativeness is
introduced. Note that, rather than constructing the MRPI set first and
defining a control law κ next, this second approach amounts to the
opposite, which defines the mechanism used to formulate Problem 2.

Formulation of Problem 2: In this paper, we present the formula-
tion for the tube-based RMPC scheme from [1], which is constructed
using the disturbance-free nominal system

x̂(t+ 1) = Ax̂(t) +Bû(t), (5)

and a parametrized system input

u(t) = û(t)−K(x(t)− x̂(t)), (6)

where K is a static feedback gain. Defining AK := A − BK, the
following standing assumptions are made.

Assumption 1: a) the static gain K is such that ρ (AK) < 1; b)
the sets X and W are compact, convex, and have the origin in their
nonempty interiors. �

Defining ∆x := x − x̂ and ∆u := u − û, an RPI set E is then
computed for the uncertain system ∆x(t+1) = AK∆x(t)+Bww(t),
which satisfies the property ∆x(t) ∈ E implies ∆x(t + 1) ∈ E for
all w(t) ∈ W . This property implies that if the current system state
x(t) ∈ {x̂(t)} ⊕ E , and an input is computed as in (6), then the
successive system state satisfies x(t+ 1) ∈ {x̂(t+ 1)} ⊕ E , i.e., the
system state always belongs to the uncertainty tube {x̂} ⊕ E . Then,
from (6) the system input always belongs to the set {û} ⊕ −KE .

Since the uncertainty tubes define all possible future evolutions of
system (1), the RMPC scheme provides robust constraint satisfaction
using the tightened constraint sets X 	E and U 	−KE . These sets
guarantee that, if x̂(t) ∈ X 	E and û(t) ∈ U 	−KE , then the state
and input satisfy x(t) ∈ X and u(t) ∈ U , and x(t+ 1) ∈ X .

Assumption 2: The RPI set E is small enough such that the origin
belongs to the nonempty interior of the tightened constraint sets, i.e.,

0 ∈ int(X 	 E), 0 ∈ int(U 	 −KE). (7)

The nominal input û(t) is computed at each time instant by
measuring x(t) and solving the following optimization problem [1]:

min
z

t+N−1∑
s=t

‖x̂(s)‖2Q + ‖û(s)‖2R + ‖x̂(t+N)‖2P

s.t. {x̂(t)} ⊕ E 3 x(t),

x̂(s+ 1) = Ax̂(s) +Bû(s), s ∈ It+N−1
t ,

x̂(s) ∈ X 	 E , s ∈ It+N−1
t+1 ,

û(s) ∈ U 	−KE , s ∈ It+N−1
t ,

x̂(t+N) ∈ Tf ,

(8a)

(8b)

(8c)

(8d)

(8e)

(8f)

where z := {x̂(t), . . . , x̂(t + N), û(t), . . . , û(t + N − 1)}. The
parameters K and P are chosen to satisfy the Discrete Algebraic
Riccati Equation that solves the LQR problem for the nominal system
(5) with positive definite matrices Q and R. The terminal set Tf in (8f)
is chosen to be a positive invariant (PI) set satisfying

AKTf ⊆ Tf ⊆ X 	 E , −KTf ⊆ U 	−KE , (9)

which ensures that with û(s) = −Kx̂(s) for all s ≥ t + N , we
have x̂(s) ∈ Tf . Denoting the optimal solution of problem (8) by
z∗ := {x̂∗(t), . . . , x̂∗(t+N), û∗(t), . . . , û∗(t+N − 1)}, the input
u(t) := û∗(t)−K(x(t)− x̂∗(t)) is applied to the plant.

The set of all initial states x(0) of system (1) from which the
RMPC controller is recursively feasible and stabilizing [1, Proposition
2] is the N -step controllable set [11, Definition 2.3] defined as

KN (U , Tf) := K̂N (U , Tf)⊕ E , (10)

where K̂N (U , Tf) is the N -step nominal controllable set, i.e., the set
of all initial states x̂(0) of the nominal system (5) for which there
exists an admissible nominal control sequence that drives it to the PI
terminal set Tf in N -steps with an admissible nominal state evolution.
Mathematically, it is defined as

K̂N (U , Tf) := {x̂(0) : ∃ û(t)∈U	−KE , t∈IN−1
0 , x̂(t)∈X	E ,

x̂(t+ 1) = Ax̂(t) +Bû(t), ∀t ∈ IN−1
0 , x̂(N) ∈ Tf }. (11)
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By (10) and (11), the N -step controllable set KN (U , Tf) is an RPI
set for the RMPC scheme. Hence, by fixing the control law κ to be
the RMPC scheme, we approximate the MRCI set X∞ by the RPI
set KN (U , Tf) (feasible domain of RMPC). Since all initial states
x(0) of system (1) belonging to this set can be driven to the smaller
target RPI set x(N) ∈ Tf ⊕ E with an admissible state and input
evolution, a desired set of initial conditions Ω is stabilizable if the
inclusion

Ω ⊆ KN (U , Tf) (12)

holds. Based on this observation, Problem 2 that approximates
Problem 1 can be formulated as

min
U,N,K,Tf ,E

f(U) s.t. (7), (9), (12). (13)

In this paper, we assume that the feedback gain K and RPI set E
are given a priori and optimize over U , Tf and N .

Conservativeness of the proposed approach: The requirement to
drive x(N) to a target RPI subset of the MRCI set, and the input
parametrization in (6) with a static linear feedback law introduce
conservativeness into (13) as compared to (4). Moreover, additional
conservativeness is introduced by fixing K and E , since they affect
both the uncertainty tube and the PI terminal set Tf . Jointly solving
(13) also over these variables is a subject of future research. We note
that (13) can also be formulated for the RMPC scheme proposed in
[2]. Since the scheme uses exact uncertainty tubes, E is not present
in the resulting formulation. This reduces conservativeness in the
proposed approach, as we demonstrate in Example V-A.

Remark 1: The formulation in (8) assumes full knowledge of the
state x(t). In case only an estimate is available, one can enlarge the
RPI set E to account for the estimation error, provided it is bounded.
Further details of this formulation can be found in [19]. �

III. COMPUTATION OF SETS U AND Tf

We now discuss the computation of the smallest set U and a
corresponding terminal set Tf that solves Problem 2. To this end,
we parameterize U with a finite-dimensional vector ε ∈ Rnε such
that U = U(ε), and define the size (or any other measure to be
minimized) of U as the scalar function f (ε) : Rnε → R. We note
that f(ε) = f(U(ε)), where f(·) is used to formulate (13).

Assumption 3: Set U(ε) and function f (ε) satisfy:
(a) U(ε) is compact and convex for all ε; moreover, for all δ ≥ 0,

there exists an ε such that δBnu∞ ⊆ U(ε);
(b) The value of f(ε) is a measure of the set U(ε), i.e., U(ε1) ⊂

U(ε2) =⇒ 0 ≤ f(ε1) < f(ε2) <∞. �
Assumption 3(a) ensures that there always exists a parameter ε such

that U(ε) includes any compact subset of Rnu containing the origin.
Then, in Assumption 3(b), we ensure that f (ε) is well defined for
every U(ε), and the inequalities enforce strict monotonicity properties
on f (ε) with respect to U(ε). We provide a clarifying example next.

Example: One possible parametrization of the input constraint set
is the polytope U(ε) = {u : Fuu ≤ ε}. Then, examples of the size
function that satisfy Assumption 3(b) are: (a) If a vector c > 0 is
such that each ci denotes the unit cost of actuation in direction i, then
f(ε) = c>ε denotes the total cost of selecting the input constraint
set U(ε); (b) Defining the ellipsoidM := {u : u>Ru ≤ 1}, the size
function f(ε) = min{α : U(ε) ⊆ αM} denotes the upper bound to
the largest energy input u>Ru into system (1).

In the sequel, we propose an algorithm to compute the parameter ε
such that U(ε) satisfies the requirements (7),(9),(12), and minimizes
f (ε). To this end, we formulate an optimization problem in Sub-
section A that is equivalent to (13). In Subsection B, we develop an
algorithm to solve the optimization problem, and discuss its properties

in Subsection C. In Subsection D, we analyze the variation of the size
of the optimal input constraint set with the horizon length N .

A. Input Constraint Set Computation Problem
For the finite dimensional parametrization U = U(ε) of the input

constraint set, we write the N -step controllable set defined in (10) as
KN (ε, Tf) := KN (U(ε), Tf). Then, we define the tightened constraint
admissible set C(ε) := {x̂ : x̂ ∈ X 	 E , −Kx̂ ∈ U(ε)	−KE}, such
that system (5) with nominal input û = −Kx̂ satisfies

x̂(t+ 1) = AK x̂(t), x̂(t) ∈ C(ε) =⇒ û(t) ∈ U(ε). (14)

Based on these sets, consider the following optimization problem that
is equivalent to (13) for a fixed K, E and N :

(ε̂N , T̂f) := arg min
ε,T

f (ε)

s.t. Ω ⊆ KN (ε, T ) ,

AKT ⊆ T ⊆ C(ε),

δBnu∞ ⊆ U(ε)	−KE ,

(15a)

(15b)

(15c)

(15d)

where constraint (15c) ensures that T is a PI subset of C(ε), thus
satisfying (9); constraint (15b) is equivalent to (12); constraint (15d)
formulated with some scalar δ > 0 ensures that (7) is satisfied.

Since the problem defined in (15) involves optimizing over PI
sets T , solving it directly can be computationally challenging. To
tackle this issue, we introduce the i-step feedback admissible set
Oi(ε) :=

{
x̂ : AtK x̂ ∈ C(ε), ∀t ∈ Ii0

}
, which is the set of initial states

of system (14) that remain inside C(ε) for i steps. Then, O∞(ε) is
the Maximal Positive Invariant (MPI) subset of C(ε) [11, Definition
2.3]. Using this set, we propose to relax problem (15) by enforcing
T = O∞(ε), thus formulating the problem:

PN :


εN := arg min

ε
f (ε)

s.t. Ω ⊆ KN (ε,O∞(ε)) ,

δBnu∞ ⊆ U(ε)	−KE .

(16a)

(16b)

(16c)

The constraint equivalent to (15c) is eliminated from the formulation
of PN since the inclusions AKO∞(ε) ⊆ O∞(ε) ⊆ C(ε) hold by
construction [20] under Assumptions 1 and 2. In the following result,
we show that PN is not more conservative than problem (15), i.e.,
if ε̂N solves PN then it must also solve (15).

Proposition 1: Suppose Assumptions 1, 2 and 3 hold. If problem
(15) is feasible, then PN is feasible and f(εN ) = f(ε̂N ). �

Proof: Feasibility of problem (15) implies bounded solution
under Assumption 3. This solution satisfies T̂f ⊆ O∞(ε̂N ), since
O∞(ε̂N ) is the MPI subset of C(εN ) [11, Definition 2.2] under
Assumptions 1 and 2. Hence, ε̂N is feasible for PN , which implies
f(εN ) ≤ f(ε̂N ). The proof is concluded by noting that f(ε̂N ) ≤
f(εN ) since (εN ,O∞(εN )) is feasible for problem (15).

Remark 2: If Assumptions 1, 2 and 3 hold, and U is parametrized
as U(ε) = {u : Fuu ≤ ε}, then the constraint set of problem (15)
is convex. Then, if f(ε) is chosen to be a convex function, (15)
is a convex optimization problem. Moreover, if f(ε) is a strictly
convex function (for example, f(ε) = ‖ε‖22), then the optimizer ε̂N

is guaranteed to be unique. Since problem PN is also convex, then
εN = ε̂N along with f(εN ) = f(ε̂N ) if f(ε) is strictly convex. �

Remark 3: In the formulation of PN , we assume that the dynam-
ics of system (1) are unaffected by a change in input constraint
set parameter ε. This assumption, however, might not be valid in
certain scenarios. For example, a modification in the engine mass
and inertia affect the dynamic properties of a car. In such cases, one
can formulate constraint (16b) with the modified dynamical system
x(t+ 1) = Ax(t) + Bu(t) + Bww(t) + g(x(t), u(t), w(t), ε). The
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Algorithm 1 Algorithm to solve PN given A,B,K,X , E ,Ω, N
1: Initialize i ≥ 0;
2: Solve Pi,N for εi,N ;
3: If Oi(εi,N ) is PI, stop. Else, increment i, go to Step 2;
4: return U = U(εi,N ) , Tf = O∞(εi,N ).

development of structure exploiting approaches to tackle this problem
is a subject of future research. A simple approach, that we present in
Example V-C, models this modification as an increase in uncertainty
by parametrizing the disturbance set W as W (ε). This follows from
the observation that g(x, u, w, ε) lies in a compact set for all x ∈ X ,
u ∈ U(ε) and w ∈ W under Assumptions 1 and 3. �

B. Solution Algorithm
We now present an iterative algorithm to solve problem PN .

We require a tailored algorithm since the set O∞(ε) formulating
constraint (16b) is not known apriori. To this end, consider the variant
Pi,N of PN obtained by replacing the MPI set O∞(ε) with the i-
step feedback admissible set Oi(ε) in constraint (16b). Problem Pi,N

is related to problem PN as follows: for every parameter ε satisfying
constraint (16c), there exists a finite MPI set termination index [20,
Theorem 4.1] given by

i∗(ε) := min {i : AKOi(ε) ⊆ Oi(ε)} <∞, (17)

such that Oi(ε) = O∞(ε) for all i ≥ i∗(ε). Labeling εi,N as the
solution of Pi,N , this implies that if i ≥ i∗(εi,N ), then Oi(εi,N ) is
a PI set, and εi,N is a feasible solution to PN . Hence, we propose
to solve a sequence of problems Pi,N for increasing values of i, and
terminating the sequence at index i = iN at which the PI condition
is satisfied. We summarize this procedure in Algorithm 1.

Computational considerations: We will discuss how to formulate
Pi,N in practice for polyhedral sets in Section IV. In this case, the
problem has linear constraints and a monotonic (possibly convex)
cost, such that efficient algorithms can be deployed. The case of el-
lipsoidal sets is both more involved to analyze and more conservative,
and is not discussed further in this paper for lack of space.

Remark 4: Algorithm 1 follows a reasoning similar to the recur-
sive computation of the MPI set proposed in [20], [21]. Index i is
incremented until the invariance condition is satisfied. The difference
is that we also recursively compute the input constraint set along with
the MPI set in order to solve PN . �

C. Feasibility, Convergence and Optimality of Algorithm 1
In this section, we show that Algorithm 1 solves PN . To this end,

we will first formulate requirements on the initial-condition set Ω
and horizon length N for Pi,N to be feasible. Then, we will show
that Algorithm 1 terminates at some finite index iN . Finally, we will
show that PN is solved at termination, i.e., f(εN ) = f(εiN ,N ).

1) Feasibility of Pi,N: Problem Pi,N is feasible only if all initial-
states x(0) ∈ Ω are controllable in N steps. In order to formalize
this statement, we introduce the sets O∞(∞) and KN (∞,O∞(∞)),
which we define using unconstrained inputs, i.e., u ∈ Rnu . The
set O∞(∞) is the MPI subset of C(∞) = X 	 E for system
(14), and KN (∞,O∞(∞)) is an N -step controllable set [11] with
unconstrained inputs u. Using these sets, we formulate the following
N -step controllability assumption:

Assumption 4: All x(0) ∈ Ω are included in the N -step uncon-
strained controllable set, i.e., Ω ⊆ KN (∞,O∞(∞)). �

Proposition 2: Suppose Assumptions 1, 2, 3, and 4 hold. Then
problem Pi,N is feasible and bounded. �

Proof: Under Assumption 4, there exists a sequence of inputs
{uz(t), t ∈ IN−1

0 } such that xz(N) ∈ O∞(∞) ⊕ E from each
xz(0) = z ∈ Ω. Under Assumption 3, there exists an ε satisfying
{uz(t) ∈ U(ε),∀t ∈ IN−1

0 , z ∈ Ω} and C(ε) = X 	 E . These
conditions guarantee the existence of an ε < ∞ such that, for all i,
we have Ω ⊆ KN (ε,O∞(∞)) ⊆ KN (ε,Oi(ε)). Hence, ε is feasible
for Pi,N , with boundedness imposed by constraint (16c).

2) Termination of Algorithm 1: If we characterize an index
ιδ that is the maximum value of the MPI set termination index
i∗(ε) for all parameters ε satisfying constraint (16c), then for all
indices i ≥ ιδ , the solution εi,N of problem Pi,N satisfies the PI
condition AKOi(εi,N ) ⊆ Oi(εi,N ). Then, there exists a termination
index iN ≤ ιδ for Algorithm 1. However, characterizing ιδ is not
computationally possible, since the set of all ε satisfying constraint
(16c) is open. In the following result, we establish an upper bound
to iN that can, in fact, be computed. To this end, consider the set

Cδ :=
{
x̂ : x̂ ∈ X 	 E ,−Kx̂ ∈ δBnu∞

}
, (18)

which satisfies Cδ ⊆ C(εi,N ) for all i, and the index

kδ := min{i : Ai+1
K (X 	 E) ⊆ Cδ}. (19)

The existence of kδ follows from Assumptions 1 and 2.
Proposition 3: Suppose Assumptions 1, 2, 3, and 4 hold, then

Algorithm 1 terminates at an index iN ≤ kδ . �
Proof: The following inclusions hold for all i:

Oi(εi,N ) ⊆ C(εi,N ) ⊆ X 	 E . (20)

Then at the index kδ , we have

A
kδ+1
K Okδ

(
εkδ,N

)
⊆ Akδ+1

K C
(
εkδ,N

)
⊆ Akδ+1

K (X 	 E) ⊆ Cδ ⊆ C
(
εkδ,N

)
from (18), (19), and (20). By definition of the feedback admissible
set, the first and the last terms imply Okδ+1(εkδ,N ) = Okδ (εkδ,N ).

Then, AKOkδ (εkδ,N ) ⊆ Okδ (εkδ,N ) from [20, Theorem 2.2].
Smaller values of the tuning factor δ result in a smaller set Cδ .

This increases the upper bound kδ to the termination index iN of
Algorithm 1, resulting in a larger number of iterations. However,
from the formulation of Pi,N , we see that a smaller value of δ results
in a smaller lower bound on the optimal value of f(εi,N ) (through
constraint (16c)). Hence, δ dictates the trade-off between optimality
and computational difficulty.

3) Solution to PN: We finally show that the termination of
Algorithm 1 corresponds to the solution of PN , i.e., the optimal
values coincide as f(εiN ,N ) = f(εN ). We reason as follows : for all
indices i < iN , the PI condition is not satisfied, which implies εi,N

is not feasible for PN . Hence, we must show that if Pi,N is solved
for some i > iN , then the optimal value f(εi,N ) cannot be smaller
than f(εiN ,N ).

Proposition 4: Suppose Assumptions 1, 2, 3 and 4 hold, then
f(εN ) = f(εiN ,N ). �

Proof: Since the inclusion Oi+1(εi,N ) ⊆ Oi(εi,N ) holds for all
i, the solution εi+1,N of Pi+1,N is feasible for Pi,N . Then, the
optimal values are non-decreasing as f(εi,N ) ≤ f(εi+1,N ). Hence,
f(εiN ,N ) ≤ f(εi,N ) for all i > iN , thus concluding the proof.

Remark 5: In some cases, Ω might violate the N -step controlla-
bility condition. Then, we propose to solve the optimization problem

Ω̃ := arg min
Ω̃

d(Ω, Ω̃) s.t. Ω̃ ⊆ KN (∞,O∞(∞)), (21)

where d(Ω, Ω̃) is some distance metric. Since (21) guarantees that Ω̃
satisfies Assumption 4, the aforementioned properties of Algorithm 1
continue to hold for the projected initial-condition set Ω̃. �
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Remark 6: Since Oi(εiN ,N ) = OiN (εiN ,N ) for all i ≥ iN , the
solution εiN ,N of PiN ,N is feasible for all Pi,N with i ≥ iN . This
implies f(εi,N ) = f(εiN ,N ) for all i ≥ iN . Hence, Algorithm 1 can
be initialized at any index i = iinit ≥ 0, and incremented in Step 3
with any iincr ≥ 1, i.e., i← i+ iincr. Moreover, if iinit = kδ from
(19), then Algorithm 1 terminates in one iteration. �

D. Effect of the Horizon Length on the Input Constraint Set Size

In this section, we discuss the effect of the horizon length N on the
optimal input constraint set size. In particular, we show that f(εN )
is monotonically non-increasing and convergent in N .

To this end, we use an auxiliary optimization problem P̃N that
computes the smallest input constraint set required to maintain the
state of system (1) inside the constraint set X for N steps. It is
formulated by replacing the target set O∞(ε) in constraint (16b) by
X 	 E , such that KN (ε,X 	 E) is an N -step admissible set [11,
Definition 2.11]. We label the solution of this problem as ε̃N .

Proposition 5: Suppose Assumptions 1, 2, 3, and 4 hold. Then,
(i) f(εN ) ≥ f(εN+1); (ii) limN→∞ f(εN ) exists. �

Proof: For all ε satisfying constraint (16c), the N -step stabiliz-
able and admissible sets satisfy the inclusions

KN (ε,O∞(ε))⊆ KN+1(ε,O∞(ε))

⊆ KN+1(ε,X 	 E) ⊆ KN (ε,X 	 E),

from [11, Propositions 2.3,2.4]. The first inclusion implies εN is fea-
sible for PN+1, hence f(εN ) ≥ f(εN+1). The remaining two inclu-
sions respectively imply f(ε̃N ) ≤ f(εN ) and f(ε̃N ) ≤ f(ε̃N+1) by
the same reasoning. Hence, {f(εN )}N is a non-increasing sequence,
that is lower bounded by the non-decreasing sequence {f(ε̃N )}N .
Thus, finite limits limN→∞ f(εN ) and limN→∞ f(ε̃N ) exist.

This result implies that the problem minN PN which is equivalent
to (13) can be solved by choosing a large enough value of N .

IV. POLYTOPIC IMPLEMENTATION OF ALGORITHM 1

In this section we discuss the implementation of Algorithm 1 using
polytopic sets X :=

{
x : Hxx ≤ hx

}
and W :=

{
w : Fww ≤ fw

}
satisfying Assumption 1(b) with hx > 0 and fw ≥ 0. A
feedback gain K is assumed to be computed apriori. Then, we
compute a polytopic RPI set E := {∆x : H∆∆x ≤ h∆}
for the system x(t + 1) = AKx(t) + Bww(t) with established
methods, e.g., those given in [22], [23]. Using E , we tighten the
state constraint set as X 	 E =

{
x̂ : Hxx̂ ≤ hx − h̄x

}
, where each

component h̄xj = max∆x∈E H
x
j ∆x. We choose an input constraint

set U parameterized as the polytope U(ε) := {u : Fuu ≤ ε} and
satisfying Assumption 3(a). Then, the tightened input constraint set
is U(ε)	−KE =

{
û : Fuû ≤ εm(ε)− ε̄

}
, where each component

εmj (ε) := maxu∈U(ε) Fuj u and ε̄j := max∆x∈E −Fuj K∆x.
The function εm(ε) is such that U(εm(ε)) is in minimal hyperplane
representation. We now show that εm(εi,N ) = εi,N .

Proposition 6: Suppose Assumptions 1, 2, 3 and 4 hold, then
U(εi,N ) is in minimal representation. �

Proof: We prove this result by contradiction. Suppose U(εi,N )
is not in minimal representation. Then, there exists some ε < εi,N

such that U(ε) = U(εi,N ), and U(ε) is in minimal representation. By
Assumption 3(b), f(ε) < f(εi,N ) follows, which is a contradiction
since f(εi,N ) is the optimal value of Pi,N .

This result permits us to tighten the input constraint
set as U(ε)	−KE = {û : Fuû ≤ ε− ε̄}. Using these
definitions, we write the i-step feedback admissible set as
Oi(ε) := {x̂ : S[i]x̂ ≤ q[i](ε)}, which we use to formulate

problem Pi,N with a vertex notation of the initial-condition
set Ω = {x[k]

0 , k ∈ INΩ
1 } as

εi,N = arg min
ε,z[k]∀k∈INΩ

1

f (ε)

s.t. H∆x
[k]
0 ≤ h

∆ +H∆x̂[k](0)

x̂[k](s+ 1) = Ax̂[k](s) +Bû[k](s), s ∈ IN−1
0 ,

Hxx̂[k](s) ≤ hx − h̄x, s ∈ IN−1
1 ,

Fuû[k](s) ≤ ε− ε̄, s ∈ IN−1
0 ,

S[i]x̂[k](N) ≤ q[i](ε),

ε− ε̄ ≥ δλ,

(22)

where z[k] := {x̂[k](0), . . . , x̂[k](N), û[k](0), . . . , û[k](N−1)}. The
first constraint implies x[k]

0 ∈ x̂[k](0) ⊕ E , and the last constraint
indicates δBnu∞ ⊆ U(ε) 	 −KE , where λj := maxu∈Bnu∞ Fju.
The details of the formulation of Pi,N with a hyperplane notation
Ω = {x : RΩx ≤ rΩ} is given in Appendix VII-A.

For the computed εi,N , we verify if the set Oi(εi,N ) is PI by
checking for the existence of a matrix Λp satisfying

Λp ≥ 0, Λpq[i](εi,N ) ≤ q[i](εi,N ), ΛpS[i] = S[i]AK ,

which are necessary and sufficient conditions for the inclusion
AKOi(εi,N ) ⊆ Oi(εi,N ) to hold [24].

Remark 7: Since PN explicitly minimizes the input constraint set
size, the resulting closed-loop performance of the RMPC controller
with sets U = U(εN ) and Tf = O∞(εN ) might be unsatisfactory.
This can be ameliorated by formulating the objective function of PN

with a trade-off parameter κp ≥ 0, e.g., as

d(ε, z) := f(ε) + κp

NΩ∑
k=1

(
N−1∑
s=0

(∥∥∥x̂[k](s)
∥∥∥2

Q

)
+
∥∥∥x̂[k](N)

∥∥∥2

P

)
. (23)

Then, the optimal value of d is non-increasing in N . The formulation
of an objective function similar to (23) if Ω is given in a hyperplane
notation is a subject of future research. �

V. NUMERICAL EXAMPLES

In this section we present three numerical examples, with the first
aimed at illustrating the properties of the approach, the second being
a practical example in which we use the proposed methods to size
pneumatic actuators for a force control application, and the third
demonstrating the scalability of problem Pi,N . We choose affine and
piecewise affine size functions for these examples. This choice results
in a Linear Program (LP) or Mixed-Integer LP (MILP), respectively,
which we solve using the CPLEX solver [25]. We remark that other
choices of size functions can be used in their formulation.

A. Illustrative system
The goal of the following example is to illustrate some funda-

mental properties of the approach. Consider the unstable system

with dynamics x(t + 1) =

[
1.4 1
−1 0.1

]
x(t) +

[
1
3

]
u(t) + w(t) and

state constraints x ∈ 5B2
∞. We equip the system with a feedback

controller K which is the solution of the Riccati equation for matrices
Q = 0.01I and R = 1. The disturbance set is W = 0.1B2

∞, for
which we compute the RPI set E as a polytope with 200 facets
using the method presented in [23]. The initial-condition set is
Ω = {x0

[k], k ∈ I41}, where x0
[1] = [−4, 4]>, x0

[2] = [−4, 6]>,
x0

[3] = [−6, 6]> and x0
[4] = [−6, 4]>. Since this set does not

satisfy Assumption 4, we follow the discussion in Remark 3 and
compute the set Ω̃ =

{
x̃0

[k], k ∈ I41
}

by solving the problem in (21)
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with the distance d
(

Ω, Ω̃
)

=
∑4
k=1

∥∥∥x0
[k] − x̃

0
[k]

∥∥∥
1
. This choice

leads to problem (21) being an LP, and results in x̃0
[1] = [−4, 4]>,

x̃0
[2] = [−4, 5]>, x̃0

[3] = [−4.9876, 4.9983]> and x̃0
[4] = [−5, 4]>,

satisfying Assumption 4.
We parametrize the input constraint set U using ε ∈ R2 as the

saturation U(ε) = {u : −ε2 ≤ u ≤ ε1} with ε1, ε2 ≥ 0, and use
the size function f(ε) = ε1 + ε2. Then, Pi,N is also an LP. We
select a tuning factor of δ = 10−4, for which the upper bound to the
termination index (19) of Algorithm 1 is kδ = 28. The corresponding
results are shown in Figure 1. We report that Algorithm 1 converges
at index i = 2 for N = 3, 5, i = 3 for N = 2, 4, 11, i = 5
for N = 8, 10, 13, 16, 18, and i = 6 for all other values of N .
In Figure 1-upper-left plot, we see that f(εN ) is non-increasing
and convergent, and is lower bounded by f(ε̃N ). This follows from
Proposition 5. We also plot f(

¯
εN ), which is obtained by formulating

Problem PN with recursive feasibility conditions in [2]. Since this
formulation uses exact uncertainty tubes, the resulting f(

¯
εN ) is less

conservative than f(εN ) [26]. In the upper-right plot, we see that,
despite f(εN ) being non-increasing, the sets U(εN ) are not nested,
i.e., U(εN+1) 6⊆ U(εN ). This is because f(εN+1) < f(εN ) does
not necessarily imply U(εN+1) ⊂ U(εN ) as per Assumption 3(b).
However, this inclusion holds at N = 3, 5, 11, 13, 16, 18, 26, at
which the termination index of Algorithm 1 increases ( [20, Theorem
4.1]). In order to demonstrate the effect of δ on the performance of
the algorithm, we plot the optimal values f(εN ) in the upper-left plot
when δ = 10−1 is chosen in Algorithm 1. As discussed in Section III-
C.2, this choice results in conservative values of f(εN ). However,
the termination index upper bound (19) is kδ = 8, thus resulting
in reduced computational difficulty. We report that Algorithm 1 then
converges at i ≤ 5 for N = 2, . . . , 10. The lower-left plot shows the
terminal sets O∞(εN )⊕E , and the lower-right plot shows the feasible
sets KN (εN ,O∞(εN )). We observe that these sets are not nested
since they correspond to different input constraint sets. The terminal
sets computed by Algorithm 1 are such that KN (εN ,O∞(εN ))
are aligned in the direction of Ω̃, thus minimizing the actuation
effort required for stabilizing. The closed-loop trajectories with the
RMPC controller for N = 30 are shown. We also formulate PN

with the objective in (23) with κp = 0.01 to improve closed-
loop performance, which we solve using Algorithm 1 for N = 30.
The resulting nominal state cost

∑4

k=1

∑Nsim
t=0 x̂[k](t)>Qx̂[k](t) for

Nsim = 70 reduces from 2.9447 to 2.8777, while the nominal input
cost

∑4

k=1

∑Nsim−1
t=0 û[k](t)>Rû[k](t) increases from 0.7132 to

0.7524.

B. Actuator selection

The goal of the following example is to demonstrate a simple
application of the methods presented in this paper to select a
set of pneumatic actuators and corresponding compressors for the
mass-spring-damper system shown in Figure 2: Actuators 1 and
2 are double-acting pneumatic cylinders, that provide force inputs
to masses m1 and m3 respectively. The force acting on m1 is
u1 = Ac

1P
c
11−(Ac

1−ac
1)P c

12, where Ac
1 and ac

1 are the cylinder bore
and piston-rod cross-sectional areas respectively, and (P c

11, P
c
12) are

pressures acting on the left and right sides of the piston respectively.
These pressures are given by the Pneumatic Valves module, which
responds to a force command by adjusting the position of a 3/5-
servo-valve [27]. This adjustment is performed to the pressure P̂1 of
the airflow incoming from Compressor 1, which has the volumetric
flowrate q1 = Ac

1x
v
1 if xv

1 > 0, and q2 = (Ac
1 − ac

1)xv
1 otherwise

(where xv
1 is the velocity of m1). Hence, sizing the actuators for

this system involves selecting the areas (Ac
i , a

c
i ) of the actuators and

10 20 30

0.3

0.4

0.5

0.6

0.7

10 20 30

-0.4

-0.2

0

0.2f(εN ), δ = 10−4

f(ε̃N )

f(εN ), δ = 10−1

f(
¯
εN )

εN1 −εN2

X N = 2 N = 11 N = 30

Terminal Sets
O∞(εN )⊕ E

Controllable Sets
KN (εN ,O∞(εN ))

Ω̃ x with N = 30

Fig. 1: Numerical results for Example 1. (Upper-left plot) Optimal
input constraint set size f(εN ) computed by Algorithm 1, along
with the lower bound f(ε̃N ). These values satisfy the monotonically
convergent properties discussed in Proposition 5. (Upper-right plot)
Optimal input constraint set parameters εN computed by Algorithm
1. The sets are not necessarily nested. (Lower-left plot) Terminal
sets computed by Algorithm 1 for N = 2, 11, 30 (Lower-right plot)
Corresponding controllable sets for N = 2, 11, 30. The parameters
εN are computed such that the terminal set and controllable set align
towards Ω̃.

compressor pressures P̂i, since they dictate the force limits on the
system, and the compressor flowrate capacity required for actuation.

We consider a discretized model of the mass-spring-damper sys-
tem, obtained using the forward Euler scheme with a time step of
0.1s. We assume that this model has additive disturbance inputs w
acting on the velocity states, with w ∈ W = 10−5B3

∞. We equip
the system with a static feedback gain K, that is the solution of the
Riccati equation with matrices Q = I and R = I. For this system,
we compute an RPI set E as a polytope in R6 with 1812 faces
using the method in [23]. The states of this system are constrained
as X = {x : |xp

i | ≤ x̂p, |xv
i | ≤ x̂v

i , x
p
i − x

p
i+1 ≤ x̂

p − gp}, where
gp is the minimum gap between the masses. In order to parametrize
the input constraint set, we assume that the piston-rod cross-sectional
area is constrained as ac

i = 0.1Ac
i , and the compressors supply a

constant pressure of P̂i = 104 N/m2, following which we introduce
the design vector ε := [Ac

1 A
c
2]>. Hence, U is parametrized as

U(ε) =

{
u :

[
−(Ac

1 − a
c
1)P̂1

−Ac
2P̂2

]
≤ u ≤

[
Ac

1P̂1

(Ac
2 − a

c
2)P̂2

]}
. (24)

Then, to compute the vector ε, we use the criterion f(ε) = fM(ε) +
fP(ε), with fM and fP defined as follows:

• Since each Ac
i represents material costs, it is natural to consider

the criterion fM(ε) := Ac
1 +Ac

2 to minimize.
• Since velocities |xv

i | ≤ x̂v
i , corresponding maximum compres-

sor flowrates are q̂i = Ac
i x̂

v
i . We assume that the compressors
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m1,m2,m3 = 0.5,Ks
1 = 0.035,Ks

2 = 0.05,Ks
3 = 0.065,Ks

4 = 0.08,

Kd
1 = 1.6,Kd

2 = 1.3,Kd
3 = 1,Kd

4 = 0.7

Ac
1

A
ct

ua
to

r
1

ac
1

u1

Ac
2

A
ctuator

2

ac
2

u2
x1 =

[
xp

1 xv
1

]>
m1

Ks
1

Kd
1

x2 =
[
xp

2 xv
2

]>
m2

Ks
2

Kd
2

Pneumatic
Valves

Compressor 1 Compressor 2

x3 =
[
xp

3 xv
3

]>
m3

Ks
3

Kd
3

Ks
4

Kd
4

Fig. 2: Schematic of the mass-spring-damper system. The Pneumatic
Valves module regulates the compressor flow pressure. Units: mi in
Kg, Ks

i in N/m, Kd
i in Ns/m, Ac

i , a
c
i in m2.

are priced according to their maximum flowrate capacities as

Type 1 2 3 4 5

Capacity (×10−4m3/s) 0.1 0.15 0.2 0.25 0.35

Price (×10−2) 1.0 1.1 1.2 1.3 1.4

We encode this criterion as the piecewise constant function
fP(ε) := β1 + β2, where βi = 1e−2 if Ac

i x̂
v
i ∈ [0, 0.1]e−4,

βi = 1.1e−2 if Ac
i x̂

v
i ∈ (0.1, 0.15]e−4, βi = 1.2e−2 if

Ac
i x̂

v
i ∈ (0.15, 0.2]e−4, βi = 1.3e−2 if Ac

i x̂
v
i ∈ (0.2, 0.25]e−4

and βi = 1.4e−2 if Ac
i x̂

v
i ∈ (0.25, 0.35]e−4. Then, the largest

feasible area to ensure that the maximum feasible velocity can
be reached is Âc

i := 0.35e−4/x̂v
i .

We also consider the loading effects of the actuators: compressibility
of air modifies the stiffness and damping within the system [28].
Then, the modified dynamics of the system can be written as
x(t+1) = Ax(t)+Bu(t)+Bww(t)+g(x(t), u(t), ε). To account for
this modification, we follow Remark 3: we introduce the appended
disturbance w̃ := Bww + g(x, u, ε), such that x(t+ 1) = Ax(t) +
Bu(t) + w̃(t) is the modified system. Since X , U(ε) and W are
compact, w̃ lies in a parametrized disturbance set, i.e., w̃ ∈ BwW (ε).
We use the scaling parametrization W (ε) = (1 + κd(ε))W , where
κd(ε) := 250(Ac

1 + Ac
2). In order to formulate Pi,N with the

parametrized disturbance set W (ε), we first note that the RPI set
scales with W (ε) as (1 + κd(ε))E . Using positive homogeneity
of support functions, we derive the formulation of Pi,N by re-
placing h∆, h̄x, ε̄ and q[i](ε) in (22) by the parametrized versions
(1 + κd(ε))h∆, (1 + κd(ε))h̄x, (1 + κd(ε))ε̄ and q̄[i](ε, κd(ε))
respectively. Hence, Pi,N is an optimization problem with linear
constraints and a piecewise affine objective function. We formulate
the resulting problem as a Mixed-Integer Linear Program (MILP)
using the method presented in [29]. We consider the initial-condition
set Ω to be the vertices of X , with the modification xv

1 , x
v
3 = 0.

Then, we formulate and solve the projection problem in (21) to
obtain an initial-condition set Ω̃ for which Pi,N is feasible for all
N ≥ 2 as follows. Defining κ̂d := 250(Âc

1+Âc
2), the largest possible

parametrized RPI set is (1 + κ̂d)E . Using this set, we compute the
MPI set Ô∞(ε̂) and the 2-step stabilizable set K̂2(ε̂, Ô∞(ε̂)) where
ε̂ := [Âc

1 Â
c
2]>, based on which we formulate problem in (21) with

the constraint Ω̃ ⊆ K̂2(ε̂, Ô∞(ε̂)). We choose Ω̃ to be a set of
vertices with the same cardinality as Ω, and the distance function
to be the sum of 1-norm of the difference between the vertices, such
that resulting problem is an LP. Using Ω̃ and Pi,N , we then compute
optimal ε for different horizon lengths by applying Algorithm 1. The
results are shown in Figure 3. We note that the upper bound to the
termination index of Algorithm 1 is now computed using the largest
possible parametrized disturbance set (1 + κ̂d)W . For δ = 10−4,
this bound equals kδ = 1200. In Figure 3 (left plot), we see that the
results in Proposition 5 continue to hold, i.e., f(εN ) is non-increasing

2 4 6 8 10
0.02

0.022

0.024

0.026

0.028

2 4 6 8 10

1

1.5

2

10 -4

f(εN ), δ = 10−4

f(ε̃N )
Ac1

Ac2

Fig. 3: Numerical results for Example 2 with constraints x̂p = 0.8m,
x̂v

1 , x̂
v
3 = 0.15m/s, x̂v

2 = 1m/s, gp = 10−3m. (Left) Optimal input
constraint set size f(εN ) computed by Algorithm 1, along with the
lower bound f(ε̃N ). (Right) Corresponding actuator areas in m2.
These values compose the parameter vector εN .

2 4 6 8 10

10 -2

10 0

10 2

2 4 6 8 10

10 2

10 3

10 4

10 5

2 4 6 8 10

10 3

10 4

10 5

10 6
Solver time (s) # Variables # Constraints

nx nx nx

Fig. 4: Numerical results for Example 3, demonstrating the solution
time, number of variables, and number of constraints in the formu-
lation of Pi,N when Ω is given in vertex and hyperplane notations.
The different lines correspond to horizon lengths N = 2, · · · , 10.

and convergent in N . This is because the stabilizable and admissible
sets for a given input and disturbance set are nested sequences in
N . This plot can be used as a tool to decide the minimum horizon
length required given an upper bound on the budget allotted for pump
selection. For example, if the maximum budget spent on pumps must
not exceed 0.025 units, then the RMPC controller must have N ≥ 6.
In the right plot, the corresponding optimal actuator areas that can
provide the required maximum flowrates q̂i = Ac

i x̂
v
i are shown,

which correspond to the following optimal compressor types:

Horizon length N 2 3 4 5 6 7 8 9 10

Compressor 1 Type 5 4 4 4 3 3 2 2 2

Compressor 2 Type 5 3 3 3 2 2 2 1 1

C. Scalability of Pi,N

The goal of the following example is to demonstrate scalability of
problem Pi,N . We consider the disturbance free system x(t+ 1) =
Ax(t) + u(t), where matrix A has diagonal components Amm = 1,
and off-diagonal components Amn = 0.01,m 6= n. The system
is subject to constraints X = Bnx∞ , and the initial-condition set is
Ω = 0.2Bnx∞ . We parametrize the input constraint set as U(ε) =
{u : −ε1 ≤ u ≤ ε1}, where ε is a scalar, and choose f(ε) = ε. We
equip the system with a feedback controller K which is the solution
of the Riccati equation for matrices Q = I and R = 0.1I. Then, we
use both vertex and hyperplane notations of Ω to formulate Pi,N

with i = 10, N ∈ [2, 10] and state-space dimension nx ∈ [2, 10].
The resulting problems are LPs in both cases. The computational time
spent by the solver and the number of variables and constraints, are
shown in Figure 4. We observe that the dimension nx significantly
affects solver performance in the vertex notation, since the number of
vertices in Ω increases exponentially with nx. This issue is avoided
if Pi,N is formulated using Ω in a hyperplane notation (Appendix
VII-A). However, since the conditions used to encode the inclusion
constraint Ω ⊆ KN (ε,Oi(ε)) are only sufficient, this might lead to
conservative solutions f(εi,N ). We report that in this example, there
was no increase in conservativeness.
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VI. CONCLUSIONS

We have tackled the problem of computing the smallest input
constraint set required to robustly regulate a given set of initial states
of an uncertain constrained linear system to the origin. To that end,
we used set-invariance properties to develop and analyze an algorithm
that computes an input constraint set satisfying recursive feasibility
properties of the RMPC scheme [1]. We have demonstrated through
numerical examples that the algorithm is capable of handling a variety
of size functions, and can accommodate practical considerations
while performing actuator selection. Future work will focus on a)
including the computation of the feedback gain K and invariant
set E along with the input constraint set U ; b) developing the
methods for a reference tracking RMPC formulation; c) enhancing
the formulation to explicitly account for modification in the dynamics
while performing actuator selection.
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VII. APPENDIX

A. Formulation of Pi,N with Polytopic Ω

If the hyperplane notation Ω = {x : RΩx ≤ rΩ} is given, then
Pi,N is formulated using sufficiency conditions from [24] as

εi,N =arg min
ε,Γs,βs,Λs

f (ε)

s.t. Λs ≥ 0, I = [I 0 I]Γs,

0 = [I 0 I]βs,

ΛsRΩ = Σ[N,i]Γs,

ΛsrΩ ≤ σ[N,i](ε) + Σ[N,i]βs,

ε− ε̄ ≥ δλ,

(25)

We define the matrices that were used in the formulation of Pi,N .
η[N ] :=

[
AN−1B AN−2B . . . B

]
,

g[N ] :=


hx − h̄x

...
hx − h̄x

 , σ[N,i](ε) :=


g[N ]

q[i](ε)

ε[N ]

h∆

 , ε[N ] :=


ε− ε̄

...
ε− ε̄

 ,

Gx,[N ] :=


Hx

HxA
...

HxAN−1

 , Gu,[N ] :=


0

HxB
...

. . .
HxAN−2B . . . HxB 0

 ,

S[i] :=



[
Hx

−FuK

]
A0
K

...[
Hx

−FuK

]
AiK


, Σ[N,i] :=


Gx,[N ] Gu,[N ] 0

S[i]AN S[i]η[N ] 0

0 Fu,[N ] 0

0 0 H∆

,

Fu,[N ] :=


Fu

. . .
Fu

 , q[i](ε) :=

[hx − h̄x
ε− ε̄

]>
. . .

[
hx − h̄x
ε− ε̄

]> ,
q̄[i](ε, κd) :=

[hx − (1 + κd)h̄x

ε− (1 + κd)ε̄

]>
. . .

[
hx − (1 + κd)h̄x

ε− (1 + κd)ε̄

]> .


