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Abstract— Linear models with additive unknown-but-bounded
input disturbances are extensively used to model uncertainty in
robust control systems design. Typically, the disturbance set is
either assumed to be known a priori or estimated from data through
set-membership identification. However, the problem of computing
a suitable input disturbance set in case the set of possible output
values is assigned a priori has received relatively little attention.
This problem arises in many contexts, such as in supervisory
control, actuator design, decentralized control, and others. In this
paper, we propose a method to compute input disturbance sets
(and the corresponding set of states) such that the resulting set
of outputs matches as closely as possible a given set of outputs,
while additionally satisfying strict (inner or outer) inclusion con-
straints. We formulate the problem as an optimization problem by
relying on the concept of robust invariance. The effectiveness of
the approach is demonstrated in numerical examples that illustrate
how to solve safe reference set and input-constraint set computa-
tion problems.

Index Terms— Disturbance sets, Constrained linear sys-
tems, Invariant sets.

I. INTRODUCTION

The theory of set invariance plays a key role in the analysis of
uncertain dynamical systems, as it provides the tools for the synthesis
of robust controllers that can satisfy constraints in the presence of
disturbances [1]. Of particular interest are Robust Positive Invariant
(RPI) sets [2], the characterization and computation of which has been
a very active area of research [3]–[5]. RPI sets are used to provide
robust stability and constraint satisfaction guarantees of various robust
Model Predictive Control (MPC) and Reference Governor (RG)
schemes [6]–[8]. These guarantees are usually established using the
maximal robust positive invariant (MRPI) set [5], which is the largest
RPI set included in the constraint set. The minimal RPI (mRPI) [1]
set, which is the smallest RPI set for a given disturbance set [5], is
used to design trajectory tubes in robust MPC [9], and to analyze
the existence of MRPI sets. It was shown that an output-admissible
RPI set exists for the system if and only if the mRPI set is included
in the constraint set [10]. In order to enforce this inclusion, several
methods were proposed in the literature to design feedback controllers
that sufficiently attenuate the effects of disturbances [11], [12]. On
the other hand, in applications such as fault-tolerant control [13], RPI
sets that include a given set are computed and used for sensor fault
isolation. All the aforementioned applications were developed under
the assumption that the disturbance set is known a priori.

In many practical cases, however, while the set of admissible states
can be estimated from sensor measurements or pre-specified from
given constraints to be satisfied, the disturbance set is unknown,
leaving the designer the task of suitably defining it, especially in
case one must satisfy a given set of constraints on the system,
e.g., encoding known physical limitations, or undesired states. For
example, in a decentralized MPC (DeMPC) application such as [12],
[14], the dynamic coupling between subsystems is modeled as an
additive disturbance. Then, the disturbance set for a given subsystem
represents the state-constraint sets of the neighboring subsystems.
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Another example is presented in [15], in which the tracking references
are modeled as disturbances acting on a system, such that a feasible
disturbance set is the set of all feedforward tracking references
guaranteeing constraint satisfaction. In both these cases, it is desirable
to compute the largest feasible disturbance sets. In particular, a
large disturbance set in the DeMPC case ensures that the region
of attraction of the DeMPC scheme in which recursive feasibility
and stability is guaranteed is maximized. Similarly, in the reference
tracking case, a large disturbance set ensures that the operating range
of the tracking control system is maximized. On the other hand, the
reachability properties of a system under the application of a set
of inputs can be exploited for actuator design as follows. Given an
input-constraint set, a corresponding subset of the output space is
reachable by the plant. Then, if a pre-specified output set is required
to be reachable, the input-constraint set must be chosen such that the
pre-specified output set is included in the output reachable set. Hence,
the actuator design task involves computing an input-constraint set
such that the output inclusion holds, and it is desirable to compute the
smallest input-constraint set satisfying the output inclusion to avoid
oversizing the actuators. Since the same reachability properties hold
for input-constraint sets and disturbance sets, this problem can be
posed as computing the smallest feasible disturbance set. Moreover,
in disturbance identification techniques such as [16], [17], one is
interested in obtaining a small disturbance set that can explain the
data. In this paper, we propose a method to tackle disturbance set
computation problems such as those described above. In particular,
we compute a set of disturbances such that the corresponding output-
reachable set approximately matches an assigned one. This method
is centered on the formulation of an optimization problem, with the
input disturbance set being the unknown and the approximation error
between the obtained and assigned output sets being the objective
function to minimize.

We propose the formulation of the optimization problem for stable
linear systems and polytopic sets: since the construction of the output
set requires the computation of an RPI set, we adopt the notions
of [18], [19] to encode the computation of a parametrized RPI set
within the problem. Then, we propose to use a penalty-function [20]
to solve the resulting bilevel linear program. Finally, we show the
effectiveness of the approach through numerical examples related to
safe reference set and input-constraint set computation problems.

The paper is organized as follows. We introduce some notation
and recall basic definitions regarding set operations in Section II.
Then, we introduce the problems we solve, along with a discussion
on their (non)-convexity aspects, and the advantages and limitations
of the methods we propose. Then, in Section IV, we present the main
results, using which we formulate tractable optimization problems to
compute polytopic disturbance sets. Finally, in Section V we present
some numerical results along with some application demonstrations.

II. NOTATION AND SET OPERATIONS

Consider the sets X ,Y ⊂ Rn, and vectors a ∈ Rna and b ∈
Rnb . Given a matrix L ∈ Rn×m, we denote by LX the image
{y ∈ Rm : y = Lx, x ∈ X} of X under the linear transformation
induced by L. We denote the i-th row of matrix L by Li, an element
in row i and column j by Lij , the rank of L by rank(L), the
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image-space of L by Im(L), and the null-space of L by null(L).
Given a square matrix L ∈ Rn×n, ρ(L) denotes its spectral radius.
The set Bnp := {x : ‖x‖p ≤ 1} is the unit p-norm ball in Rn.
A polyhedron is the intersection of a finite number of half-spaces,
and a polytope is a compact polyhedron. Given two matrices L,
M ∈ Rn×m, L ≤M denotes element-wise inequality. The symbols
1, 0, and I denote all-ones, all-zeros and identity matrix respectively,
with dimensions specified if the context is ambiguous. The set of
natural numbers between two integers m and n, m ≤ n, is denoted
by Inm := {m, . . . , n}. Given a vector x ∈ Rn, diag(x) ∈ Rn×n
is a matrix with diagonal values xi. The Minkowski set addition
is defined as X ⊕ Y := {x + y : x ∈ X , y ∈ Y}. Given some
vector z ∈ Rn and polytopes X ,Y ⊂ Rn, z ∈ X ⊕ Y holds if and
only if there exists an x ∈ X and y ∈ Y such that z = x + y. If
X ⊂ Rn+m, the projection operation onto the first n coordinates
is defined as ΠxX := {x : ∃y ∈ Rm : [x> y>]> ∈ X}. The
support function of a compact set X ⊂ Rn at some y ∈ Rn is
hX (y) := max

x∈X
y>x. For polytopes X ,Y ⊂ Rn, support functions

are positively homogeneous, i.e., hαX (y) = αhX (y) for any scalar
α ≥ 0. For any vector y ∈ Rn, hX⊕Y (y) = hX (y) + hY (y) holds.
The inclusion X ⊆ Y holds if and only if hX (z) ≤ hY (z) for all
z ∈ Bnp . Suppose Y := {x : Mx ≤ b} with M ∈ Rnb×n, b ∈ Rnb ,
then X ⊆ Y holds if and only if hX (M>i ) ≤ hY (M>i ) ≤ bi for all
i ∈ Inb1 , with hY (M>i ) = bi if M , b define a minimal hyperplane
representation of Y . We use the Hausdorff distance between polytopes
X and Y defined as dH(X ,Y) := maxz∈Bnp |hX (z) − hY (z)|. If
X ⊆ Y , then dH(X ,Y) = min{ε : Y ⊆ X ⊕ εBnp } ≥ 0.

III. PROBLEM DEFINITION AND APPROXIMATIONS

Consider the linear time-invariant discrete-time system

x(t+ 1) = Ax(t) +Bw(t), (1a)

y(t) = Cx(t) +Dw(t), (1b)

with state x ∈ Rnx , output y ∈ Rny and disturbance w ∈ Rnw .
Given a polytopic set Y := {y : Gy ≤ g}, g ∈ RmY , of outputs,
our goal is to compute a disturbance setW such that Y is “reachable”
by the output y, in a sense which we will define precisely later. We
refer to w as a “disturbance”, as it is customary in the literature of
uncertain systems. Depending on the application, however, it could
also represent a set of command inputs, as we will show through
application examples. We work under the following assumption.

Assumption 1: Matrix A is strictly stable, i.e., ρ(A) < 1. �
In this paper, we focus on the computation of a disturbance set W
parametrized as the polytope W(εw) := {w : Fw ≤ εw} with εw ∈
RmW . We assume that the row vectors F>i ∈ R

nw of F are given a
priori, and restrict our attention to computing εw . For simplicity, we
also enforce that 0 ∈ W , which is equivalent to εw ≥ 0. In the next
section, we present a method to relax this restriction, i.e., permit the
computation of a disturbance set W that does not contain the origin.

Given a disturbance set W(εw), the forward computation problem,
which is typically tackled in the literature [5], [21], entails computing
a suitable RPI set X := {x : Ax + Bw ∈ X ,∀ w ∈ W(εw)}. Of
particular interest is the minimal RPI (mRPI) set Xm(εw), given by

Xm(εw) = ⊕∞t=0A
tBW(εw), (2)

and is the smallest RPI set contained in every RPI set. If 0 ∈W(εw),
and Assumption 1 holds, then a compact, convex and unique mRPI
set Xm(εw) exists with 0 ∈ Xm(εw) [5]. Moreover, it is the limit
of all state trajectories of (1a) under persistent disturbances w ∈
W(εw) [1]. Then, the corresponding limit set of output trajectories
is Ym(εw) := CXm(εw) ⊕DW(εw) as per (1b). The set Ym(εw)
exists, is compact and convex with 0 ∈ Ym(εw) if εw ≥ 0.

In this paper, we tackle the reverse computation problem, i.e., given
an output polytope Y , compute the vector εw such that Ym(εw) = Y .
This problem, however, might not have a solution, i.e., there might
not exist any εw satisfying the output-set equality because of either of
the following two reasons. (1) The mRPI set Xm(εw) is not finitely
determined, except in a few special cases, e.g., nilpotent systems [5].
Then, depending on the set Xm(εw) and the structure of matrix C,
the set Ym(εw) might also not be finitely determined. In this case,
enforcing Ym(εw) = Y , with Y defined using a finite number of
hyperplanes is not possible. (2) Even if the set Xm(εw) and matrix
C are such that Ym(εw) is finitely determined, its shape is in general
not arbitrary, but is a function of the dynamics of system (1a) and
parametrization of set W(εw). This implies enforcing Ym(εw) = Y ,
with Y being a user-specified arbitrarily shaped polytope, might not
be possible. Hence, we instead tackle the problem

min
εw≥0

dH(Ym(εw),Y). (3)

This formulation includes the case Ym(εw) = Y , which holds if
and only if dH(Ym(εw),Y) = 0. Moreover, we consider inner and
outer approximation settings of Problem (3), since many applications
typically enforce stronger inclusion requirements as Ym(εw) ⊆ Y
or Y ⊆ Ym(εw). We formulate the inner-approximation setting by
appending the constraint Ym(εw) ⊆ Y to Problem (3). For simplicity,
we use the ∞-norm induced Hausdorff distance dH(Ym(εw),Y) =
min{ε : Y ⊆ Ym(εw) ⊕ εBny∞ } to model the objective of Problem
(3), resulting in the following optimization problem:

min
ε,εw≥0

ε s.t. Ym(εw) ⊆ Y, Y ⊆ Ym(εw)⊕ εBny∞ . (4)

Similarly, we formulate the outer-approximation setting by appending
the constraint Y ⊆ Ym(εw) to Problem (3). We again model
the objective of Problem (3) using the ∞-norm induced Hausdorff
distance dH(Ym(εw),Y) = min{ε : Ym(εw) ⊆ Y ⊕ εBny∞ },
resulting in the following optimization problem:

min
ε,εw≥0

ε s.t. Y ⊆ Ym(εw), Ym(εw) ⊆ Y ⊕ εBny∞ . (5)

Unfortunately, Problems (4)-(5) cannot be solved exactly since they
are formulated using the mRPI set Xm(εw). Hence, in the rest of this
paper, we develop methods to approximately solve Problems (4)-(5)
by using a parametrized RPI set to approximate the mRPI set.

Before we proceed, a brief discussion regarding the convexity of
Problems (4)-(5) is due. We present the discussion for Problem (4),
since a similar analysis follows for Problem (5). We define the set of
feasible εw as OY (F ) := {εw ≥ 0 : Ym(εw) ⊆ Y}. By properties
of support functions, εw ∈ OY (F ) if and only if ∀ j ∈ ImY

1 ,∑∞
t=0 hW(εw)((GjCA

tB)>) + hW(εw)((GjD)>) ≤ gj . (6)

Considering two feasible vectors εw,1, εw,2 ∈ OY (F ), a scalar
ζ ∈ [0, 1], and the convex combination ε̃w := ζεw,1 + (1− ζ)εw,2,
the inclusion W(ζεw,1) ⊕ W((1− ζ)εw,2) ⊆ W(ε̃w) holds for a
general disturbance set parameterizing matrix F (from duality in
Linear Programing (LP), or [22, Proposition 1]). This implies that
for any r ∈ Rnw , hW(ζεw,1)(r) + hW((1−ζ)εw,2)(r) ≤ hW(ε̃w)(r)

holds, such that ε̃w does not necessarily satisfy (6). Hence, ε̃w

does not necessarily belong to OY (F ), and Problem (4) is in
general nonconvex. However, if the matrix F is such that W(εw)
is in a minimal representation for all feasible εw , Problem (4) is
convex, since W(ζεw,1) ⊕ W((1− ζ)εw,2) = W(ε̃w) then holds.
For example, F = [F̃> − F̃>]>, F̃ ∈ Rnw×nw with a well-
defined F̂ := (F̃ F̃>)−1F̃ satisfies this condition ( [23, Theorem
1]). However, the investigation of uniqueness of the optimizer is more
involved and is a subject of future study.
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In this paper, we focus on general polytopic parametrizations of
W(εw), for which Problems (4)-(5) are generally nonconvex. This is
motivated primarily by the fact that parametrizations of W(εw) that
ensure convexity of Problems (4)-(5) might be excessively conserva-
tive in certain applications, e.g. decentralized MPC [14], in which the
disturbance sets represent state-constraint sets of dynamically coupled
subsystems. We use a polytopic RPI set parametrized with a priori
fixed hyperplanes to approximate the mRPI set. The main advantage
of this approach is that the RPI set complexity is fixed a priori,
thus allowing for a tradeoff between computational complexity and
conservativeness. The main limitation, however, is that the distance
between the parametrized RPI set and the mRPI set is not quantified a
priori, which implies that the suboptimality with respect to Problems
(4)-(5) cannot be specified a priori. The development of methods
that exploit convexity of Problems (4)-(5) under the aforementioned
assumption on F , and guarantee an a priori upper bound on the
optimality gap, are subjects of future research.

IV. POLYTOPIC RPI SET PARAMETRIZATION

In this section, we use a polytope X(εx) := {x : Ex ≤ εx} ⊂ Rnx
with εx ∈ RmX and matrix E given a priori to approximate the
mRPI set Xm(εw) in Problems (4)-(5) as Xm(εw) ⊆ X(εx), since
Xm(εw) is included in all RPI sets corresponding to W(εw). This
polytopic parametrization of the RPI set with fixed hyperplanes was
originally proposed in [24], and later used in [18], in the more
general setting of a linear non-autonomous system controlled by a
positively homogeneous state-feedback control law. As done in [19],
we specialize this setting to the case of an autonomous LTI system
satisfying Assumption 1 (or a non-autonomous LTI system with a
stabilizing linear feedback controller). Using the parametrized RPI set
X(εx) to approximate Xm(εw), we initially approximate Problems
(4)-(5) as bilevel problems containing Xm(εw) in the lower-level
problems. Then, we present results to eliminate Xm(εw), and obtain
equivalent single-level reformulations that can be numerically solved.

Using X(εx) to approximate Xm(εw) and defining the output-set
Y(εx, εw) := CX(εx)⊕DW(εw), we approximate Problem (3) as

min
εw≥0

dH(Y(εx, εw),Y) (7a)

s.t. εx =arg min
¯
εx

dH(X(
¯
εx),Xm(εw))

s.t. AX(
¯
εx)⊕BW(εw) ⊆ X(

¯
εx),

(7b)

where (7b) enforces the RPI inclusion AX(εx)⊕BW(εw) ⊆ X(εx),
and Y(εx, εw) ⊇ Ym(εw) since X(εx) ⊇ Xm(εw). This problem
is formulated using the following rationale: for any εw ≥ 0,
dH(Ym(εw),Y) ≤ dH(Ym(εw),Y(εx, εw)) + dH(Y(εx, εw),Y)
follows from the triangle inequality, the second part of which is
minimized in (7a). For the first part, let dx

H := dH(X(εx),Xm(εw)),
such that X(εx) ⊆ Xm(εw)⊕dx

HB
nx
p . Then, Y(εx, εw) ⊆ Ym(εw)⊕

dx
HCB

nx
p follows, which by definition of the Hausdorff distance

implies dH(Y(εx, εw),Ym(εw)) ≤ dx
H||hCBnx

p
(r)||∞, ∀ r ∈ B

ny
p .

Since (7b) minimizes dx
H, (7) minimizes an upper bound to (3) as

dH(Ym(εw),Y) ≤ dx
H||hCBnx∞

(r)||∞ + dH(Y(εx, εw),Y). (8)

From this bound, we see that the suboptimality introduced due to
RPI set parametrization is reduced if tight RPI approximations of
the mRPI set that result in small dx

H are considered. However, we
do not explicitly characterize the optimality gap between Problem
(7) and Problem (3). We remark that this is a standard drawback
of many state-of-the-art RPI set computation approaches formulated
using an optimization framework, in which an explicit computation
of a parametrized polytopic RPI set is sought, e.g., [25].

We will now formulate the inner and outer approximation settings
of Problem (7), i.e., approximate Problems (4)-(5) using Y(εx, εw)
instead of Ym(εw). For the inner-approximation problem, we append
the constraint Y(εx, εw) ⊆ Y to enforce the inclusion Ym(εw) ⊆ Y ,
leading to the following approximation of Problem (4):

min
ε,εw≥0

ε s.t. (7b), Y(εx, εw) ⊆ Y, Y ⊆ Y(εx, εw)⊕ εBny∞ . (9)

For the outer-approximation problem, for some user-defined integer
s̄ > 0, we define Y ⊆ Y(s̄, εw) := ⊕s̄−1

t=0CA
tBW(εw)⊕DW(εw),

and append the constraint Y ⊆ Y(s̄, εw). Then, the desired inclusion
Y ⊆ Ym(εw) holds since Y(s̄, εw) ⊆ Ym(εw) for any s̄ > 0. Using
this set, we approximate Problem (5) as

min
ε,εw≥0

ε s.t. (7b), Y ⊆ Y(s̄, εw), Y(εx, εw) ⊆ Y ⊕ εBny∞ . (10)

In this section, we develop methods to solve Problems (9)-(10). We
will first derive the requirements that matrix E must satisfy such that
X(εx) is an RPI set. Then, we show that the constraint (7b) involving
the mRPI set Xm(εw) can be replaced by an equivalent constraint
formulated directly in terms of εx and εw . Finally, we describe a
numerical optimization method to solve Problems (9)-(10).

1) Existence conditions for a polytopic RPI set: The set X(εx)
is RPI for a given disturbance set W(εw) if and only if it satisfies
the inclusion AX(εx)⊕BW(εw) ⊆ X(εx). However, since εw is an
optimization variable in Problems (9)-(10), we must ensure that there
always exists some εx satisfying the inclusion for every εw ≥ 0. We
pose this condition as requirements on matrix E to ensure that the
constraint-set of Problem (7b) is nonempty for every εw ≥ 0. To this
end, we define the support functions

∀ i ∈ ImX
1 ,

{
ci(ε

x) := hAX(εx)(E
>
i ), di(ε

w) := hBW(εw)(E
>
i ),

bi(ε
x) := hX(εx)(E

>
i ),

such that c(εx) + d(εw) ≤ b(εx) is equivalent to the RPI inclusion.
Then, we define the set of all εx satisfying the RPI condition for a
given εw as E(d(εw)) := {εx ≥ 0 : c(εx)+d(εw) ≤ b(εx)}. Using
this set, we write Problem (7b) equivalently as

εx = arg min
¯
εx

dH(X(
¯
εx),Xm(εw)) s.t.

¯
εx ∈ E(d(εw)). (11)

We now formulate the requirements that matrix E must satisfy to
ensure that E(d(εw)) is nonempty for every εw ≥ 0.

Assumption 2: Matrix E is chosen such b(1) = 1, and there exists
an ε̂x ≥ 0 satisfying the inequality c(ε̂x) + 1 ≤ b(ε̂x). �
Assumption 2 implies that there exists an RPI set X(ε̂x) for the
system x(t + 1) = Ax(t) + w̃(t) with w̃ ∈ X(1). In the following
result, we show that there always exists an RPI set X(εx) for system
(1a) with the disturbance set W(εw) under Assumption 2.

Proposition 1: If Assumption 2 holds, then there always exists an
εx ≥ 0 satisfying c(εx) + d(εw) ≤ b(εx) for all εw ≥ 0 . �

Proof: Under Assumption 2, there exist nonnegative multipliers
Λ̂c, Λ̂b ∈ RmX×mX satisfying Λ̂>c ε̂x + 1 ≤ Λ̂>b ε̂x, Λ̂>c E = EA,
Λ̂>bE = E by LP duality and Farkas’ lemma [1]. There exists an
εx ≥ 0 satisfying c(εx)+d(εw) ≤ b(εx) for any εw ≥ 0 if and only
if there exist nonnegative multipliers Λc,Λb ∈ RmX×mX satisfying
Λ>c εx + d(εw) ≤ Λ>b εx, Λ>c E = EA, Λ>bE = E. The proof
is concluded by noting that εx = ||d(εw)||∞ε̂x, Λc = Λ̂c, and
Λb = Λ̂b satisfy these conditions.

Remark 1: Assumption 2 can be verified by checking the bound-
edness of LP (8) in [19]. An iterative procedure to obtain a matrix
E that verifies Assumption 2 was presented in [26]. �

Remark 2: The choice of polytopic parametrizations with fixed
hyperplanes for the disturbance and RPI sets is motivated primarily by
their computational convenience. In particular, the choice of matrix
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F is completely independent of system (1), while matrix E must
satisfy Assumption 2, which depends on system (1). Conservativeness
introduced by this parametrization can potentially be reduced by also
optimizing over the hyperplane matrices E and F . The results pre-
sented in the rest of this paper hold in the presence of these additional
variables. Alternative RPI parameterizations such as zonotopic sets
[1], [27] can also be considered. However, efficient methods to embed
them in an optimization framework requires further research. �

2) Elimination of Xm(εw) from (11): Having established that
E(d(εw)) is nonempty for any εw ≥ 0 under Assumption 2, we
will now eliminate the mRPI set Xm(εw) from Problem (11). To
this end, we recall the following results from [18] (specialized to
the case of an autonomous stable LTI system), which state that the
solution of Problem (11) can be obtained using fixed-point iterations
for a given εw ≥ 0. We denote d(εw) by d for ease of notation.

Lemma 1: [18, Theorems 1 and 2, Corollary 1] Suppose Assump-
tion 2 holds, and H(d) := {εx : 0 ≤ εx ≤ ‖d‖∞ ε̂x}. Then, for
any εw ≥ 0, the following results hold: (1) For all

¯
εx ∈ H(d), it

holds that c(
¯
εx) + d ∈ H(d), and there exists atleast one solution

εx∗(d) ∈ H(d) for the fixed-point equations c(εx∗(d))+d = b(εx∗(d))
and b(εx∗(d)) = εx∗(d). Hence, the set of all fixed-point solutions
R(d) := {εx ∈ H(d) : c(εx) + d = b(εx), b(εx) = εx}
is nonempty; (2) Starting from the initial-condition εx[0] = 0, the
sequence generated by the iterations εx[k+1] := c(εx[k])+d converges
to a fixed-point solution lim

k→∞
εx[k] := εx∗(0,d) ∈ R(d). Moreover,

εx∗(0,d) is the minimal fixed-point, i.e., εx∗(0,d) ≤
¯
εx for all

¯
εx ∈ R(d) ⊆ E(d). Consequently, the set X(εx∗(0,d)) satisfies
satisfies Xm(εw) ⊆ X(εx∗(0,d)) =

⋂
¯
εx∈E(d) X(

¯
εx), and hence is

the minimal parametrized RPI set. �
From Lemma 1.2, we see that εx∗(0,d(εw)) is the solution of the

Problem (11), since the RPI set X(εx∗(0,d(εw))) satisfies the inequal-
ity dH(X(εx∗(0,d(εw))),Xm(εw)) ≤ dH(X(

¯
εx),Xm(εw)) over all

¯
εx ∈ E(d(εw)). Since this solution also satisfies εx∗(0,d(εw)) ≤

¯
εx

over all
¯
εx ∈ E(d(εw)), it has the smallest 1-norm value over all

¯
εx ∈ E(d(εw)). Hence, we write Problem (11) equivalently as

εx = arg min
¯
εx

∥∥̄εx∥∥
1

s.t.
¯
εx ∈ E(d(εw)). (12)

Thus, in the rest of this section, we tackle Problems (9)-(10) formu-
lated with constraint (7b) replaced by (12) that is independent of the
mRPI set Xm(εw). This results in Problem (9) being equivalent to

min
ε,εw≥0

ε s.t. (12), Y(εx, εw) ⊆ Y, Y ⊆ Y(εx, εw)⊕ εBny∞ , (13)

and Problem (10) being equivalent to

min
ε,εw≥0

ε s.t. (12), Y ⊆ Y(s̄, εw), Y(εx, εw) ⊆ Y ⊕ εBny∞ . (14)

In the sequel, we transform Problems (13)-(14) into implementable
forms under the following feasibility assumptions on output-set Y .

Assumption 3: (Inner): The origin belongs to the output-set, i.e.,
{0} ∈ Y = {y : Gy ≤ g}; (Outer): Y belongs to the output control-
lable subspace, i.e., Y ⊂ Im([CB CAB · · ·CAnx−1B D]). �
Under Assumption 3-Inner, g ≥ 0, and (εx, εw) = 0 are fea-
sible solutions of Problem (13). Under Assumption 3-Outer, all
y ∈ Y can be reached from the origin with inputs w ∈ W(εw).
Then, Problem (14) is feasible for all s̄ ≥ nx. Moreover, if
rank([CB CAB · · ·CAnx−1B D]) = ny , then (14) is feasible for
every Y 6= ∅ and s̄ ≥ nx since system (1) is then output-controllable.

We now present a brief discussion on the suboptimality of Prob-
lems (13)-(14) with respect to Problems (4)-(5), resulting from
approximating the mRPI set Xm(εw) by the RPI set X(εx) solving
(12). We note from (8) that dx

H = dH(X(εx),Xm(εw)) characterizes
this suboptimality. Then, we recall from [21] that Xm(εw) is the

limit (in Hausdorff distance) of the sets Xk := ⊕kt=0A
tBW(εw)

as k → ∞. Similarly, from Lemma 1.2 we know that X(εx) is
the limit of the sets X(εx[k]) obtained using the iteration εx[k+1] =

c(εx[k]) +d(εw) and εx[0] = 0. Hence, dx
H is the limit of the distance

between the sets Xk and X(εx[k]). In order to examine the distance
between Xk and X(εx[k]), we note that Xk ⊆ X(εx[k]) for all k ≥ 0:
The inclusion BW(εw) ⊆ X(d(εw)) holds by definition of d(·),
which implies X0 ⊆ X(εx[0]). Similarly, for any εx ≥ 0, the inclusion
AX(εx) ⊆ X(c(εx)) holds by definition of c(·). Finally, for any
k > 0, Xk+1 = AXk ⊕ BW(εw) follows from basic properties of
Minkowski sums. Then, if Xk ⊆ X(εx[k]) holds for some k > 0,

Xk+1 = AXk ⊕BW(εw)⊆ AX(εx[k])⊕BW(εw) (15)

⊆ X(c(εx[k]))⊕ X(d(εw)) = X(εx[k+1])

follows (The last equality holds since b(c(εx[k])+d(εw)) = c(εx[k])+

d(εw) from [18, Proposition 1]). By induction, this implies X(εx[k]) is
an outer-approximation of the k-step reachable set Xk at every k ≥ 0.
The error in this approximation accumulates over the iterations k, as
seen in the second inclusion in (15). This accumulation is referred
to as the wrapping effect [28], and a reduction in this effect can be
obtained by a selecting a matrix E that ensures that the distance
between AX(εx) and X(c(εx)), and BW(εw) and X(d(εw)) is not
too large for all reachable εx ≥ 0 and permitted εw ≥ 0. Derivation
of an upper-bound to this error as a function of E is a subject of
future research. We note, however, that an a posteriori upper-bound
of dx

H can be computed by using µ-RPI approximations Xµ(εw) of
the mRPI set, i.e, an RPI set satisfying dH(Xµ(εw),Xm(εw)) ≤ µ,
for a given εw . Such sets can be computed for arbitrarily small µ > 0
using the methods in [29], and the upper-bound can be derived using
the triangle inequality as dx

H ≤ dH(X(εx),Xµ(εw)) + µ.
3) Characterization of RPI Constraints: In this subsection, we

show that the minimal parametrized RPI constraint (12) in Problems
(13)-(14) can be replaced by the equality c(εx) + d(εw) = εx, i.e.,

(12) ⇐⇒ c(εx) + d(εw) = εx (16)

holds, thus obtaining equivalent single-level reformulations of Prob-
lems (13)-(14). For simplicity, we denote d(εw) by d in the sequel,
since the results are presented for a fixed εw ≥ 0. We recall that the
fixed-point solution εx∗(0,d) = arg minεx{‖

¯
εx‖1 s.t.

¯
εx ∈ E(d)}

exists, and satisfies c(εx∗(0,d)) + d = b(εx∗(0,d)) = εx∗(0,d) from
Lemma 1. We recall further that R(d) ⊆ E(d) is the set of all fixed-
points, i.e., all εx ∈ E(d) that satisfy c(εx) + d = b(εx) = εx.
Then, if there exists a unique fixed-point εx#(d) ∈ R(d), we have
εx∗(0,d) = εx#(d). Moreover, since b(c(εx) + d) = c(εx) + d for
every εx ∈ E(d) from [18, Proposition 1], every εx ∈ E(d) that
satisfies c(εx) + d = εx satisfies b(εx) = εx. Hence, the existence
of a unique fixed-point εx#(d) ∈ R(d) implies that we can replace
constraint (12) by c(εx)+d = εx. In the following result, uniqueness
of εx#(d) was shown under a slightly more restrictive assumption.

Lemma 2: [19, Theorem 3] Suppose Assumption 2 holds and d >
0, then there exists a unique fixed-point εx#(d) ∈ R(d). �

We now present a brief discussion regarding the restrictions
imposed by the assumption d > 0: recalling the definition of the
support function di = maxw{EiBw s.t. Fw ≤ εw}, we see that
di > 0 for all i ∈ ImX

1 only if EiB 6= 0 for each i ∈ ImX
1 and

εw > 0. While the condition εw > 0 can be enforced easily through
a linear constraint in Problems (13)-(14), the former condition holds
only if the additional assumption E>i /∈ null(B>) (or the stronger
assumption rank(B) = nx) is satisfied: these assumptions restrict
the class of systems and RPI set parametrizations that are often
encountered. Moreover, they lead to excessively conservative RPI
set parametrizations. For example, an uncontrollable system would
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require an RPI set that always includes the origin within its interior.
We prove next that there exists a unique fixed-point εx#(d) ∈ R(d)
if d ≥ 0, thus overcoming the limitations with d > 0. We first
characterize the fixed-points using the following LP, similarly to [19]:

max
c,x:={xi,i∈ImX

1 }

∑mX
i=1 ci (17a)

s.t. ci − EiAxi ≤ 0, i ∈ ImX
1 , (17b)

Exi ≤ c+ d, i ∈ ImX
1 , (17c)

and we denote the set of all optimizers (c∗,x∗) of LP (17) as S.
Proposition 2: Suppose Assumption 2 holds. Then if ε̄x ∈ R(d)

there exists a (c̄, x̄) ∈ S such that c̄i = EiAx̄
i and ε̄x = c̄+ d. �

Proof: If Assumption 2 holds, Lemma 1.1 entails that R(d) is
nonempty for every d ≥ 0. At every fixed-point solution ε̄x ∈ R(d),
ε̄x = c(ε̄x) + d holds. Define x̄i := arg maxxi{EiAxi s.t. Exi ≤
ε̄x} and c̄i := EiAx̄

i; by definition of c(·) we have ε̄xi = c̄i + di
for each i ∈ ImX

1 . We combine the LPs defining x̄i into a single
LP by defining x̄ := {x̄i, i ∈ ImX

1 }, and adopting an epigraph form
[30] by introducing variables ci to obtain

max
c,x

∑mX
i=1 ci s.t. ci ≤ EiAxi, Exi ≤ c̄+ d, ∀ i ∈ ImX

1 , (18)

in which we write ε̄x = c̄+ d. Since (c,x) = (c̄, x̄) is feasible for
LP (18), and the optimal value is

∑mX
i=1 c̄i, we can replace c̄ by c

to obtain LP (17), and (c̄, x̄) will be one of the optimizers.
Proposition 2 entails that every fixed-point ε̄x ∈ R(d) can be

expressed as ε̄x = c̄ + d for some c̄ ∈ Πc∗S (Note that, for now,
Πc∗S need not be singleton). In Theorem 1, we exploit this property
to show that the fixed-point is unique. To this end, we first present
the following general result that we use later to establish uniqueness.

Lemma 3: Let M ∈ Rp×p be a matrix with Mij ≥ 0, ∀ i, j ∈ Ip1,
and N := M(I+diag(M1))−1, i.e., Nij = Mij/(1+

∑p
k=1Mjk).

Then, (a) Z := I−N> is invertible; (b) ρ(N>) < 1. �
Proof: (a) Matrix Z is invertible if and only if Z> is invertible.

Suppose there exists some q ∈ Rp satisfying

Nq + 1 ≤ q, q ≥ 0, (19)

such that Nq < q holds. Then, (I − N)q > 0 and q ≥ 0 follow,
which, by [31, Theorems 4.1,4.6], implies that I − N is invertible
(Since Nii ≤ 1, by construction Zii ≥ 0, Zij ≤ 0, ∀ i, j ∈ Ip1 such
that Z is a Z-matrix [31, Definition 1]). We show next that indeed
∃ q ∈ Rp satisfying (19). We introduce a slack variable s ∈ Rp in
the LP formulation, and write (19) equivalently as

[N − I I][q> s>]> = −1, [q> s>]> ≥ 0. (20)

By Farkas’ lemma [32, Corollary 7.1d], there exist [q> s>]> satis-
fying (20) if and only if for every ζ ∈ T := {ζ : N>ζ ≥ ζ, ζ ≥ 0},
the inequality ζ>1 ≤ 0 holds. Since ζ ≥ 0 for every ζ ∈ T ,
ζ>1 ≤ 0 holds if and only if ζ = 0, i.e., T = {0}. To show
T = {0}, we rewrite N>ζ ≥ ζ as (I + diag(M1))−>M>ζ ≥ ζ
(using the definition of N ), and multiply both sides by the positive
diagonal matrix (I + diag(M1)) to obtain

M>ζ ≥ ζ + diag(M1)ζ =


∑p
i=1Mi1ζi ≥ ζ1 +

∑p
k=1M1kζ1,

...∑p
i=1Mipζi ≥ ζp +

∑p
k=1Mpkζp

 .

We further manipulate these inequalities as∑p
i=1Mi1ζi ≥ ζ1 +M11ζ1 +M12ζ1 + · · ·+M1pζ1 → Row 1

M12ζ1 ≥ ζ2 +
∑p
k=1M2kζ2 −

∑p
i=2Mi2ζi → Row 2

...
M1pζ1 ≥ ζp +

∑p
k=1Mpkζp −

∑p
i=2Mipζi → Row p

Substituting Rows 2-p in Row 1 to replace M1iζ1 terms, we obtain
p∑
i=1

Mi1ζi ≥
p∑
l=1

ζl +

p∑
j=1

Mj1ζj +

p∑
j=2

p∑
k=2

Mjkζj −
p∑
j=2

p∑
i=2

Mijζi,

which, after elementary operations, yields
∑p
l=1 ζl ≤ 0. Hence, the

set T = {ζ :
∑p
l=1 ζl ≤ 0, ζ ≥ 0} = {0}, such that ζ>1 ≤ 0 for

all ζ ∈ T . Thus, ∃ q ∈ Rp satisfying (19), concluding the proof of the
first claim. (b) Since (I−N>)−1 =

∑∞
k=0(N>)k is well-defined,

it implies limk→∞(N>)k = 0, or, equivalently, ρ(N>) < 1.
Theorem 1: Suppose that Assumption 2 holds and d ≥ 0, then

there exists a unique fixed-point εx#(d) ∈ R(d). �
Proof: By Assumption 2, Lemma 1 entails R(d) 6= ∅, and the

fixed-point ε̄x = εx∗(0,d) reached from εx[0] = 0 with the iterations
εx[k+1] = c(εx[k]) + d is the minimal fixed-point, i.e.,

ε̄x ≤ ε̃x, ∀ ε̃x ∈ R(d). (21)

In order to show uniqueness of this fixed-point, we show that the
iterations εx[k+1] = c(εx[k]) + d starting from any initial-condition
εx[0] ≥ ε̄

x converge to ε̄x. To this end, we observe that Proposition 2
entails that there exists some optimizer c̄ ∈ Πc∗S of LP (17) such
that ε̄x = c̄+ d. Then, we write the dual LP of LP (17) as

min
(λ,η):={λi≥0,ηi≥0mX

,i∈ImX
1 }

∑mX
i=1 η

i>d (22a)

s.t. λi = 1 +
∑mX
j=1η

j
i , i ∈ ImX

1 , (22b)

ηi
>
E = λiEiA, i ∈ ImX

1 , (22c)

where λi and ηi are the dual variables associated to constraints
(17b) and (17c) respectively. We denote the optimal dual variables
corresponding to c̄ as λ∗i and ηi∗, and define matrix Θ∗ with rows
Θ∗i := ηi∗

>
/λ∗i , where λ∗i ≥ 1 by (22b). We recall that c̄ =

Θ∗(c̄+ d) = Θ∗ε̄x, since c̄ optimizes LP (17) ( [19, Theorem 4]).
Then we apply Lemma 3 with M = [η1∗ · · · ηmX∗], such that
N = Θ∗. Hence, ρ(Θ∗) < 1 from Lemma 3(b). For any εx ∈ H(d),

ci(ε
x) =

{
maxxEiAx
s.t. Ex ≤ εx

}
=

{
minγ γ

>εx

s.t. γ>E = EiA, γ ≥ 0

}
≤ Θ∗i ε

x,

holds, where the second equality follows from strong duality for LPs,
and the inequality follows since γ> = Θ∗i is feasible for the dual
LP. This implies c(εx) ≤ Θ∗εx holds for all εx ∈ H(d). Hence,
for the iterations εx[k+1] = c(εx[k]) + d from any εx[0] ∈ H(d), we
obtain εx[k+1] ≤ Θ∗εx[k] + d. Subtracting by ε̄x = Θ∗ε̄x + d, the
inequality εx[k+1]− ε̄

x ≤ Θ∗(εx[k]− ε̄
x) follows. Applying recursively,

the inequality εx[k] − ε̄
x ≤ (Θ∗)k(εx[0] − ε̄

x) holds. If ε̄x ≤ εx[0], then
ε̄x ≤ εx[k], ∀ k ≥ 0 by monotonicity of c(·), and definition of ε̄x.
Then, ρ(Θ∗) < 1 implies (Θ∗)k → 0 as k →∞, such that

∀ δ > 0, ∃ k <∞ : εx[k] − ε̄ ≤ δ1. (23)

If the initial condition εx[0] = ε̃x ∈ R(d)\{ε̄x}, then εx[k] = ε̃x for all
k ≥ 1, since ε̃x is a fixed-point. From (23), this implies ε̃x ≤ ε̄x+δ1
for every δ > 0. From (21), we know that ε̄x ≤ ε̃x. Suppose there
exist some index i ∈ ImX

1 such that ε̄xi < ε̃xi . Then, for every scalar
β ∈ (0, ε̃xi − ε̄

x
i ), ε̃x � ε̄x + β1 holds, which contradicts (23) with

εx[k] = ε̃x. Hence, εx#(d) = ε̄x = ε̃x, which concludes the proof.
Remark 3: We note that ρ(Θ∗) ∈ [ρ(A), 1): Let (α, κα) be an

eigenpair of A, such that Aκα = ακα. Multiplying by E, we obtain
Θ∗(Eκα) = α(Eκα) since Θ∗E = EA from (22b)-(22c). Hence,
the eigenvalues of A are a subset of the eigenvalues of Θ∗. �

This theorem validates (16) and allows us to replace constraint (12)
by the equivalent condition c(εx) + d = εx in Problems (13)-(14).
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Remark 4: While we assume that 0 ∈ W(εw), there exist cases
where this is not known a priori. Such cases can be accommodated in
Problems (13)-(14) by considering the disturbance set parametrization
{w̄} ⊕W(εw), where 0 ∈ W(εw) if εw ≥ 0, and w̄ represents the
origin offset. Then, an RPI set parametrized as {x̄}⊕X(εx) satisfies
{Ax̄+Bw̄} ⊕AX(εx)⊕BW(εw) ⊆ {x̄} ⊕X(εx), or equivalently
EAx̄+EBw̄−Ex̄+c(εx)+d(εw) ≤ b(εx), the first part of which
can be eliminated by using the state offset x̄ = (I−A)−1Bw̄. �

4) Encoding inclusion constraints: We now encode the inclu-
sion constraints in Problems (13)-(14), assuming that the vertices
{y[p], p ∈ I

vY
1 } of the output-set Y = {y : Gy ≤ g} are known.

(a) Inner-approximation Problem (13): We encode the inclusion
constraint Y ⊆ Y(εx, εw)⊕ εBny∞ as (εx, εw, ε) ∈ ΞI, where

ΞI := {(εx, εw, ε) : y[p] ∈ Y(εx, εw)⊕ εBny∞ , ∀ p ∈ IvY1 } (24)

is a set of linear constraints. To encode Y(εx, εw) ⊆ Y , we define

∀ k ∈ ImY
1 ,

{
lk(εx) := hCX(εx)(G

>
k ), mk(εw) := hDW(εw)(G

>
k ),

using support functions, and enforce l(εx) + m(εw) ≤ g. Hence,
using the proposed inclusion encodings and the RPI set equivalence
in (16), we write Problem (13) as

min
ε,εw,εx

{
ε s.t.

εw ≥ 0, c(εx) + d(εw) = εx,

l(εx) +m(εw) ≤ g, (εx, εw, ε) ∈ ΞI.

}
(25)

(b) Outer-approximation Problem(14): We encode the inclusion
constraint Y ⊆ Y(s̄, εw) as εw ∈ ΞO, where

ΞO := {εw : y[p] ∈ Y(s̄, εw), ∀ p ∈ IvY1 } (26)

is a set of linear constraints. In order to encode the inclusion
Y(εx, εw) ⊆ Y ⊕ εBny∞ , we consider the set B := {y : Hy ≤ 1}
with H ∈ RmB×ny , and the vectors H>j are sampled from Bny∞ .
We then approximately encode the inclusion using support functions

∀ j ∈ ImB
1 ,

{
nj(ε

x) := hCX(εx)(H
>
j ), pj(ε

w) := hDW(εw)(H
>
j ),

gO
j := hY (H>j ),

as n(εx) +p(εw)− ε1 ≤ gO. Since this condition is only necessary
for the inclusion, we compute a lower-bound to the actual Hausdorff
distance. Hence, using the proposed inclusion encodings and the RPI
set equivalence in (16), we write Problem (14) as

min
ε,εw,εx

{
ε s.t.

εw ≥ 0, c(εx) + d(εw) = εx,

n(εx) + p(εw)− ε1 ≤ gO, εw ∈ ΞO.

}
(27)

Remark 5: If the vertices {y[p], p ∈ I
vY
1 } of the output-set Y are

not known, then Y ⊆ Y(εx, εw) ⊕ εBny∞ and Y ⊆ Y(s̄, εw) can
be encoded as a set of linear constraints directly in terms of the
hyperplane notation of Y using results from [33, Theorem 1]. �

5) Numerical optimization: In this subsection, we adopt a
penalty function approach to solve Problems (25)-(27). To this end,
we first note that εw might be unbounded above in case of a
nonminimal representation of W(εw). We tackle this issue using the
support function qt(εw) := hW(εw)(F

>
t ), ∀ t ∈ ImW

1 , such that
q(εw) = εw if and only if W(εw) is in minimal representation.
Then, we modify the objective of Problems (25)-(27) as

ε+ σ
∑mW
t=1 (εwt − qt(εw)), (28)

where σ > 0 is some scalar tuning parameter. This modification
ensures that (a) the solution εw is such that W(εw) is in a minimal
representation; (b) the solution is not perturbed, since W(q(εw)) =
W(εw). This modification is not required for εx, since the RPI
constraint enforces uniqueness of εx for a given value of εw .

We use the penalty function approach from [20] to solve Problems
(25)-(27) modified with objective (28). We present the approach for

Problem (25), since a very similar method follows for Problem (27).
Considering Problem (25) with objective (28), the LPs formulating
the support functions satisfy strong duality [34] since they are feasible
and bounded for every bounded εx ≥ 0 and εw ≥ 0. This property is
exploited in the penalty function algorithm to compute local optima.
Introducing the optimal primal and dual variables

Support function LP ci(ε
x) di(ε

w) lk(εx) mk(εw) qt(ε
w)

Primal Variables zci zdi zlk zmk zqt

Dual Variables λci λdi λlk λmk λqt

strong duality of the LPs implies that these values are primal and dual
feasible, and have a zero duality gap. For the support function ci(εx),
these conditions are Ezci ≤ εx, E>λci = A>E>i , λci ≥ 0mX

and λci>εx = EiAzci . Introducing these variables along with the
optimality conditions, Problem (25) is reformulated to a single-level
problem using a penalty function to penalize the duality gap as

min
ε,εw,εx,z∗,λ∗

ε+ σ
∑mW
t=1 (εwt − Ftzqt) + KP(εx, εw, z∗, λ∗) (29)

s.t. EiAzci + EiBzdi = εxi , GkCzlk +GkDzmk ≤ gk,

zci , zlk ∈ X(εx), zdi , zmk , zqt ∈W(εw),

E>λci = A>E>i , F
>λdi = B>E>i , E

>λlk = C>G>k ,

F>λmk = D>G>k , F
>λqt = F>t ,

(εx, εw, ε) ∈ ΞI, εw ≥ 0, λ∗ ≥ 0,

∀ i ∈ ImX
1 , ∀ k ∈ ImY

1 ,∀ t ∈ ImW
1 ,

where z∗ ∈ RmX (nx+nw)+mY (nx+nw)+mWnw denotes the opti-
mal primal variables, λ∗ ∈ RmX (mX+mW )+mY (mX+mW )+m2

W

denotes the optimal dual variables, and the penalty function
P(εx, εw, z∗, λ∗) :=

∑mW
t=1 (λq

>
t εw − Ftz

qt) +
∑mX
i=1 (λc

>
i εx −

EiAzci +λd
>
i εw−EiBzdi)+

∑mY
k=1(λl

>
k εx−GkCzlk +λm

>
k εw−

GkDzmk ) weighted by some constant K > 0 penalizes the duality
gap. We denote Problem (29) as F(εx, εw, ε, z∗, λ∗,K). The main
idea behind the penalty function approach is that there exists a
parameter K∗ that, if Problem (29) is solved with K > K∗, then
P(εx, εw, z∗, λ∗) = 0 at the solution which also solves Problem (25)
with objective (28). An iterative method is proposed to solve (29),
with each iteration composed of two LPs. Denoting an iteration by the
subscript {l}, the first LP solved is F(εx, εw, ε, z∗, λ∗{l−1},K{l−1}).
Using the solution (εx{l}, ε

w
{l}, ε{l}, z

∗
{l}), the next step consists of

solving LP F(εx{l}, ε
w
{l}, ε{l}, z

∗
{l}, λ

∗,K{l−1}) for λ∗{l}. If the ob-
tained values solve Problem (29) with zero duality gap, the algorithm
is terminated. Else, it is repeated with K{l} ≥ K{l−1}. This
algorithm was shown to converge to a local solution of (25) in [20].

Remark 6: We propose to initialize the optimization algorithm
using the scaling ζ ≥ 0 as εw{0} = ζ1 and εx{0} = ζε̂x{0} satisfying
c(ε̂x{0}) + d(1) = ε̂x{0}. This value can be computed using the
procedure in [19], and ζ can be selected by solving an LP that
enforces desired inclusions with respect to Y . �

Remark 7: Alternative procedures to compute disturbance sets can
be derived by formulating the optimization problems in [23], [25],
[35] with εw as a variable and a gain K. While the formulations
in [23], [35] involves solving LPs, the reduced-complexity polytopes
can be excessively conservative. The formulation in [25] uses full-
complexity polytopes. However, the solution procedure involves com-
putationally expensive iterative Semidefinite Programing (SDP). �

V. NUMERICAL EXAMPLES

A. Computation of safe reference-sets for supervisory control

We consider the system z(t+ 1) =

[
1.1 0.2
−0.3 0.4

]
z(t) +

[
1 0

0.1 1

]
u(t)

with input-constraints u ∈ Û := {u : |u| ≤ [4 3]>}, and equipped with
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KX(εx)

Fig. 1: Results of solving the inner-approximation problem. Tight
RPI set Xµ(εw) is computed with µ = 10−6. Top-right plot shows
the tracking performance with w sampled from the vertices of
W(εw). Bottom-right plot shows resulting closed-loop inputs.

an LQI-tracking controller such that z tracks a reference signal w:
an integral-action state q with dynamics q(t+ 1) = q(t) + z(t)− w(t)

is appended, and the state x = [z> q>]> is introduced. Then, an

LQI feedback gain K =

[
−1.19 −0.1439 −0.3154 0.0213
0.2777 −0.6497 −0.0037 −0.3724

]
is

computed corresponding to matrices Q = diag(I, 0.5I) and R = I. The
resulting closed-loop system with u = Kx has the dynamics

x(t+ 1) =


−0.09 0.0561 −0.3154 0.0213
−0.1413 −0.2641 −0.0353 −0.3702

1 0 1 0
0 1 0 1

x(t) +


0 0
0 0
−1 0
0 −1

w(t).

We aim to design a supervisory controller for this system that satu-
rates the references as w ∈W(εw) = {w : |w| ≤ ε̄w} such that u ∈ Û
always holds. We assume that the supervisory controller cannot access
the state x(t) of the system, such that W(εw) should guarantee input-
constraint satisfaction for all reachable x. Since the mRPI set Xm(εw)
is the set of set of all reachable x, the constraint u ∈ Û is equivalent
to KXm(εw) ⊆ Û. Hence, we solve the inner-approximation Problem
(25) with the output equation (1b) formulated using C = K,D = 0,
output-constraint set Y = Û, and the mRPI set Xm(εw) approximated
using the RPI set X(εx) = {x : Ex ≤ εx}, where the matrix E
is composed of hyperplanes defining the set ⊕5

t=0A
tBW(1) (A,B

denote the matrices of the closed-loop system). This choice results
in mX = 240. The result of solving this problem using the methods
presented in this paper is shown in Figure 1 (Plotted using the MPT-
toolbox [36]). The computed saturation bounds are w̄1 = 4.7864,
w̄2 = 2.4282. The penalty function algorithm converges in a single
iteration, with iteration time 4.3989s using the MOSEK [37] LP
solver. The quick convergence is potentially related to the fact that
the box-parametrization of set W(εw) results in Problem (4) being
convex. Further investigation of this effect is a subject of future
research. We also plot the set KXµ(εw), where Xµ(εw) is an RPI set
satisfying Xµ(εw) ⊆ Xm(εw) ⊕ µBnx∞ . This set is computed using
the method in [29] for µ = 10−6. Using this set and the triangle in-
equality, we compute dH(X(εx),Xm(εw)) ≤ 0.0728, indicating that
X(εx) is a reasonably tight approximation of the mRPI set. We also
report that at convergence, we obtain dH(Y(εx, εw),Y) = 1.9917,
and using Xµ(εw), we compute dH(Ym(εw),Y) ≤ 1.9970. Closed-
loop trajectories are plotted with references w sampled from the
vertices of W(εw), for which the input response satisfies the input-
constraints. Hence, if x(0) ∈ X(εx), the supervisory controller can
command any reference w ∈W(εw) with guaranteed input-constraint
satisfaction. An alternative approach to compute a suitable W(εw)
can be derived using the methods presented in [25], [38], in which a
nonlinear SDP is solved with a sequential convexification technique.
Using the same RPI set parametrization X(εx) and inital conditions,

W(εw) X(εx)

Y(εx, εw)

mX = 30, mW = 6, µ = 10−6

dH(Y(εx, εw,Y) = 4.4362
dH(Ym(εw,Y)) ≤ 4.3567
dH(X(εx),Xm) ≤ 0.2484

Fig. 2: Results of solving the outer-approximation problem. Input,
state and output trajectories are plotted with w(0), x(0), y(0) denoted
by black ∗, w(100), x(100), y(100) denoted by red ∗. Observe that
the vertices of Y are reachable from x(0) = 0 with w ∈W(εw).

the SDP procedure to maximize the size of W(εw) converges in
18 iterations, with each iteration being computed in an average of
64.37s using the MOSEK [37] SDP solver. The disturbance bounds at
convergence are w̄1 = 4.7038 and w̄2 = 2.4678. Clearly, the penalty
function approach computationally outperforms the SDP approach,
which implies that the proposed method can be used in practical
applications in which RPI sets parametrized as polytopes are sought.

Remark 8: The mRPI set is suitable to formulate the problem
in Example A since we do not have access to the state x(t). If
this limitation is overcome, then a reference governor scheme [8] is
more suitable to design the supervisory controller, which uses control
invariant sets to guarantee constraint satisfaction. �

B. Computation of input-constraint sets for output reachability
We consider system (1) with initial-state x(0) = 0, for which we

compute the smallest input-constraint set W(εw) = {w : Fw ≤ εw}
with rows Fi = [sin(2π(i − 1)/mW ) cos(2π(i − 1)/mW )] for
each i ∈ ImW

1 , such that all y ∈ Y can be reached with control
inputs w ∈ W(εw). To this end, we use f(εw) as a measure of the
set W(εw), and formulate the optimization problem PN defined as
εw,N := arg min

εw≥0
{ f(εw) s.t. Y ⊆ ⊕N−1

t=0 CAtBW(εw)⊕DW(εw)}

such that W(εw,N ) is the smallest input-constraint set in which
there exist inputs driving the output of system (1) to all y ∈ Y
from the origin in N -steps. If Assumption 3-Outer holds, then
PN is feasible for all N ≥ nx. It can then be shown that the
sequence of optimal values {f(εw,N )}N is non-increasing, and
converges to the optimal value of the problem P∗ written as
εw∗ := arg minεw≥0{f(εw) s.t. Y ⊆ CXm(εw)⊕DW(εw)},
where Xm(εw) is the mRPI set corresponding to W(εw).
This follows from the idea that the mRPI set is the closure
of the largest 0-reachable set [1]. Hence, computing the
smallest input-constraint set entails solving Problem P∗. We
choose f(εw) = dH(Ym(εw),Y), such that Problem P∗
is equivalent to Problem (10). This choice ensures that we
compute an input-constraint set W(εw) whose 0-reachable set
in the output space tightly includes the target output-set Y . We
approximately solve Problem P∗ based on the outer-approximation
formulation in Problem (27): we approximate the mRPI set using
the polytopic RPI set X(εx) = {x : Ex ≤ εx} with rows
Ei = [sin(2π(i− 1)/mX) cos(2π(i− 1)/mX)] for each i ∈ ImX

1 .
The results of solving this problem using the methods presented
in this paper are shown in Figure 2. We consider system (1) with

matrices A =

[
0.8966 0.8822
−0.2068 0.3244

]
, B =

[
0 0
−1 1

]
, C =

[
0.4 0.1
0.1 0.6

]
,
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D =

[
0.01 −0.01
0.03 0.05

]
and the output-set Y = {[−1 2]>} ⊕ B2

∞. This

system is the closed-loop form of the standard double-integrator
with feedback gain K = [0.2068 0.6756]. We choose s̄ = 100
in the formulation of Problem (27). We select H = [I − I]>

for B. We see that the computed set W(εw) is such all y ∈ Y
are reachable from the origin. We also plot tight approximation
RPI set Xµ(εw) of the mRPI set Xm(εw) using the methods
presented in [29], in a manner similar to the previous example.
We observe through the set Yµ(εw) := CXµ(εw) ⊕ DW(εw)
that Y ⊆ Ym(εw) ⊆ Yµ(εw) ⊆ Y(εx, εw) holds, thus ensuring
the desired reachability. In conclusion, one can design feedback
controllers to select inputs w from the input-constraint set W(εw),
with the guarantee that for any x(0) ∈ Xm(εw), there always exist
feasible inputs to reach every target output y ∈ Ym(εw) ⊃ Y .
In Figure 2, we also plot state, input and output trajectories with
x(0) = 0 and y(100) ∈ Y to demonstrate the reachability.

VI. CONCLUSIONS

We have presented a method for computing an input disturbance set
for discrete-time LTI systems such that the reachable set of outputs
approximates an assigned set. To that end, we formulated an opti-
mization problem in order to minimize the approximation error. We
presented some numerical results to demonstrate the feasibility of the
approach and two possible practical applications. Future research will
further develop the solution algorithm by considering: (a) alternative
solution methods such as, e.g., value function approaches [34]; (b)
optimizing over matrices E and F . Extensions to feedback gain
synthesis and system identification problems will be investigated.
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[24] S. Raković, B. Kouvaritakis, R. Findeisen, and M. Cannon, “Homothetic
tube model predictive control,” Automatica, vol. 48, no. 8, pp. 1631–
1638, 2012.

[25] C. Liu, F. Tahir, and I. M. Jaimoukha, “Full-complexity polytopic
robust control invariant sets for uncertain linear discrete-time systems,”
International Journal of Robust and Nonlinear Control, vol. 29, no. 11,
pp. 3587–3605, 2019.

[26] J. Lorenzetti and M. Pavone, “A simple and efficient tube-based robust
output feedback model predictive control scheme,” in 2020 European
Control Conference (ECC), pp. 1775–1782, 2020.

[27] M. Althoff and G. Frehse, “Combining zonotopes and support functions
for efficient reachability analysis of linear systems,” in 2016 IEEE 55th
Conference on Decision and Control (CDC), pp. 7439–7446, 2016.
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