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Model Predictive Control for Linear Impulsive Systems
Pantelis Sopasakis, Panagiotis Patrinos, Haralambos Sarimveis, and Alberto Bemporad

Abstract—Linear impulsive control systems have been exten-
sively studied with respect to their equilibrium points which, in
most cases, are no other than the origin. However, the trajectory
of an impulsive system cannot be stabilized to arbitrary desired
points hindering their utilization in a great many applications. In
this technical note, we study the equilibrium of linear impulsive
systems with respect to target-sets. We properly extend the notion
of invariance and design stabilizing model predictive controllers
(MPC). Finally, we apply the proposed methodology to control the
intravenous bolus administration of Lithium.

Index Terms—Bolous drug administration, impulsive systems,
invariance, model predictive control, stability.

I. INTRODUCTION

The motivation for this work comes mainly from the field of phar-
macokinetics and the need for prescribing optimal and individualized
drug administration policies. Physiologically-Based Pharmacokinetic
(PBPK) models have been found to provide a reliable modeling frame-
work for drug absorption, distribution, metabolism, and elimination
and there are already a lot of relevant experimental data available in the
literature [1]. When a drug is administered intravenously or in any
other way not continuously, instantaneous jumps are observed in the
concentration of the drug in some organs; this is mathematically
conceptualized as a discontinuity of the first kind and gives rise to the
so-called impulsive systems [2].

Impulsive systems have attracted a lot of attention also in the context
of industrial, telecommunications and other applications. For instance,
in [3] a model of a spacecraft is formulated as a linear impulsive
system. Shen et al. use impulsive differential equations to describe the
dynamics of a fed-batch fermentator [4]. However, there is a notable
scantiness in bibliographical references to applications of impulsive
systems mainly due to the shortcomings of the current theoretical tools
for the design of feedback controllers under constraints.

Linear impulsive systems have been studied to a great extent
regarding existence and uniqueness of solutions, stability and other
qualitative properties [2]. The existing theory addresses stability in
light of the equilibrium points of the system and in most cases boils
down to the study of the properties of the zero solution exclusively [5].
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For instance, Fontes and Pereira [6] prescribed stability conditions for
the design of MPC for nonlinear impulsive systems using Nagumo-like
invariance conditions, but without the guarantee that the inter-sample
trajectory of the system satisfies the state constraints. Impulsive sys-
tems can also be cast as hybrid dynamical systems for which consider-
able developments have recently emerged [7], however, this plethora of
theoretical developments has not lead to an applicable control method-
ology for impulsive systems providing stability properties for the
closed-loop system and constraint satisfaction in continuous time.

Except for trivial cases (e.g., the system ẋ=0), it is impossible
to stabilize the state of an impulsive system at any given desired
state – a fact that renders the wealth of results in this field not
applicable to a great load of scenarios of significant practical interest
such as drug administration control. This calls for weaker stability
qualifications such as stability with respect to a given target-set as
opposed to the traditional approach that makes use of equilibrium
points. This necessary generalization paves the way for the formulation
and solution of MPC problems with linear impulsive models.

This technical note lays the foundations for a rigorous approach
to model predictive control of impulsive systems introducing new
definitions of invariance and stability. Preliminary results of this work
were presented in [8], while in this technical note we provide an
alternative methodology for the determination of impulsive controlled
invariant sets (see Section IV-C ), we state a criterion for local uniform
boundedness in the context of impulsive systems (see Proposition 8)
and we show how all these novel theoretical tools can be used for
the control of intravenous bolous administration of medicines with a
particular application on the administration of Lithium.

II. NOTATION

Let N, Rn, R+, Rm×n denote the set of non-negative integers, the
set of column real vectors of length n, the set of non-negative numbers
and the set of m-by-n real matrices, respectively. For any nonnegative
integers k1 ≤ k2 the finite set {k1, . . . , k2} is denoted by N[k1,k2].

For a function f : R → Rn and t0 ∈ R, we denote ∆f(t0) :=
limt→t+

0
f(t) − f(t0); we also make use of the notation f(t+) :=

limτ→t+ f(τ). Hereinafter, we shall use the notation co{Γ} to denote
the convex hull of a set Γ ⊆ Rn.

For a set Y , we denote its powerset by 2Y . A set-valued func-
tion F : X → 2Y will be denoted as F : X ⇒ Y and its domain
is defined to be domF = {x ∈ X | F(x) ̸= ∅}. For a set C, we
denote by clC its topological closure and by intC its interior. For a
nonempty set Y ⊆ Rn we define the point-to-set distance distY (x) :=
infy∈Y ∥x − y∥. An ε-neighborhood of Y is defined as the set BY

ε :=
{z ∈ Rn|distY (z) < ε}. For any matrix B ∈ Rm×n, ∥B∥ denotes
its induced norm (by the Euclidean vector norm ∥ · ∥), i.e., ∥B∥ :=
sup∥x∥=1 ∥Bx∥. For Y ⊆ Rn, y0 ∈ Rn and M ∈ Rm×n we define
MY := {My | y ∈ Y } and y0 + Y := {y + y0 | y ∈ Y }.

A function α : R+ → R+ is called a K-class function if it is con-
tinuous, α(0) = 0 and strictly increasing. A function β : R+ × R+ →
R+ is said to be a KL-class function if for every fixed s ∈ R+ the
mapping β(·, s) is a K-class function, and for every fixed r ∈ R+,
β(r, ·) is decreasing and lims→∞ β(r, s) = 0.
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III. LINEAR IMPULSIVE SYSTEMS

Let T > 0 be a constant referred to as the impulsive period. Con-
sider the set of impulsive time instants T = {kT ; k ∈ N} and the
following linear impulsive system Σ:

ẋ(t) =Ax(t), t ∈ R \ T (1a)
∆x(τk) =Buk, k ∈ N (1b)

where x∈Rn, u∈Rm and A and B are matrices of proper dimensions
and τk :=kT are the impulsive time instants. Equation (1b) describes
the discontinuous jumps that happen on the continuous-time trajectory
of the system which follows the linear dynamics given in (1a).

The system is subject to the following state and input constraints:

x(t) ∈X, ∀t ≥ 0 (2a)

uk ∈U, ∀k ∈ N (2b)

where X and U are assumed to be polyhedral sets.
The constraints in (2) render any optimization problem formulated

thereupon (such as finite-horizon optimal control problems which
arise in MPC) semi-infinite since it employs an infinite number of
constraints. Such a problem would be particularly difficult to cope
with per se, so, we propose a methodology to replace these constraints
by a finite set of affine inequalities. Such a reduction was proposed
by Pierce and Schumitzky for a planar linear impulsive system of the
Kruger-Thiemer form wherein A has only real eigenvalues and the
state and input constraints are assumed to be rectangular. To overcome
this limitation, we employ polytopic inclusions of the continuous-
time trajectory of the system as in our previous work on sampled-data
systems with random time delay [9], [10].

Let π denote a sequence of inputs π = {u0, u1, . . . , uN−1} drawn
from U and ϕ(t;x0,π), for t ∈ [0, (N − 1)T ) be a solution of (1)
satisfying ϕ(0;x0,π) = x0. Whenever we need to explicitly note
that the initial time instant is other than 0, we use the notation
ϕ(t; τ0, x0,π). Let t > 0 and τj be the largest impulse time not ex-
ceeding t and j ≤ N − 1. Then, for τj < t < τj+1 it is ϕ(t;x0,π) =
eA(t−τj)ϕ(τ+

j ;x0,π), or, what is the same

ϕ(t;x0,π) = eA(t−τj)(ejAT x0 +

j∑

i=0

e(j−i)AT Bui). (3)

We denote by Σg the closed-loop impulsive system with the ap-
plication of the control law ∆x(τk) = Bg(x(τk)), where g : X →
U is a feedback function and ϕcl(t;x0, g(·)) denotes the closed-
loop trajectory of the above system satisfying the initial condition
ϕcl(0;x0, g(·)) = x0.

IV. INVARIANCE FOR IMPULSIVE SYSTEMS

A. Impulsively Controlled Invariant Sets

In this section, we introduce generalized notions of invariance for
impulsive systems with respect to a given target-set.

Definition 1 (Impulsively Controlled Invariant): Given a non-empty
set Z ⊂ Rn, a set Y ⊆ Z such that for every x ∈ Y there is a u ∈ U
so that the following conditions hold true for the system (1):
A1. ϕ(T ;x, u) ∈ Y , where ϕ(T ;x, u) = eAT (x + Bu),
A2. W(x, u) := cl {ϕ(r;x, u); r ∈ (0, T ]} ⊆ Z,
is an impulsively controlled invariant (ICI) set with respect to Z.

Definition 2 (Impulsively Invariant): Consider the closed-loop im-
pulsive system Σg . Given a nonempty set Z ⊆ Rn, a set Y ⊆ Z such
that for every x ∈ Y , A1 and A2 hold for u = g(x) is called an
impulsively invariant set for Σg with respect to Z.

These definitions of invariance are more flexible than the conven-
tional ones employed by Pereira et al. [11] for impulsive control

systems and harmonize with control practice where the target-set is
a given design requirement as in drug administration [12].

In what follows, the set Z is assumed to be polyhedral. For a given
state x and input u, we construct a polytope-valued mapping S(x, u)
such that S(x, u) ⊇ W(x, u). Thus, introducing some conservatism,
we may replace A2 by:
A3. For all x ∈ Y , there is a u ∈ U so that S(x, u) ⊆ Z,
and notice that condition A3 implies condition A2, therefore a set Y
satisfying both conditions A1 and A3 is an ICI set with respect to Z.
The use of A3 will, however, be preferred for reasons of computational
tractability as explained in the previous section.

B. Determination of ICI Sets

In this section, we elaborate on the properties of ICI sets and we
describe a methodology for the algorithmic determination of ICI sets
based on a the observation that ICI sets can be written as the fixed point
of an operator.

We first define the mapping Fx,u : Rn×n ∋ L .→ Fx,u(L) :=
L(x + Bu) ∈ Rn and we note that W(x, u) = clFx,u(D), where
D := {eAτ | τ ∈ (0, T ]}. Given a polytope C = {Φ =

∑K

i=1
λiAi |

λi ≥ 0,
∑K

i=1
λi = 1} ⊇ D define S(x, u) := clFx,u(C) and ob-

serve that since C ⊇ D, it follows that for all x and u, Fx,u(C) ⊇
Fx,u(D), which proves that S(x, u) ⊇ W(x, u). We then define the
mapping PreZ,S : 2X → 2X for Z ⊆ X as follows:

PreZ,S(Y ) :=

{
x ∈ X

∣∣∣∣
∃u ∈ U s.t. S(x, u) ⊆ Z
and eAT (x + Bu) ∈ Y

}
. (4)

A set Y which satisfies both A1 and A2 is impulsively control
invariant with respect to Z and satisfies:

Y ⊆ PreZ,W(Y ). (5)

In general, a set Y is ICI with respect to Z if and only if Y ⊆
PreZ,S(Y ) for some S such that S(x, u) ⊇ W(x, u) for all x and
for all u. Indeed, assume that set Y satisfies Y ⊆ PreZ,S(Y ). Then,
for every x ∈ Y , x ∈ PreZ,S(Y ), i.e., there is a u ∈ U such that
S(x, u) ⊆ Z (Condition A3) and eAT (x + Bu) ∈ Y (Condition A1),
consequently Y is a ICI set with respect to Z.

For some x ∈ X and u ∈ U , S(x, u), being a polytope, can be
represented as the convex hull of its extreme points (by virtue of the
Krein-Milman Theorem). In particular, let {Ai}K

i=1 be a collection of
matrices such that {eAt; t ∈ [0, T ]} ⊆ co{Ai}K

i=1. Such a collection
can be determined using methods of polytopic overapproximation of
functions in the form γ(x) = eAx, where A ∈ Rn×n as in [9]. Then,
S can be fully determined by the set of matrices {Ai}K

i=1 and

S(x, u) = co{Ai}i∈N[1,K]
· (x + Bu). (6)

Let us now present a way to calculate a polytopic ICI set Y S . Any of
the fixed points of the operator Ω .→PreZ,S(Ω) ∩Ω, for Ω ⊆ X , is an
ICI set because of (5) and can be calculated by the iterative procedure

Y S
0 = Z, Y S

k+1 = PreZ,S(Y S
k ) ∩ Y S

k . (7)

If (7) converges in a finite number of steps to a nonempty set, then
the resulting set Y S is impulsively controlled invariant and polyhedral.

C. Alternative Procedure

Algorithm (7) may not converge in a finite number of steps or may
return an empty set. In such a case no conclusions may be drawn about
the existence of an ICI set. In this section we present an alternative



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 60, NO. 8, AUGUST 2015 2279

procedure with which we may determine convex, compact ICI sets. To
this end, let us first define the polytope

MS := {x ∈ Z | ∃u ∈ U, such that S(x, u) ⊆ Z} (8)

assume MS ̸= ∅ and define the set-valued mapping H : MS ⇒ Z by

H : MS ∋ x .→ H(x) := eAT (x + BU) ∩ Z. (9)

The mapping H associates every x ∈ MS at time τk to the set of its
reachable states at time τk+1 that are in Z. The following proposition
is instrumental to establish the existence of compact ICI sets; it states
that if a nonempty compact convex ICI set exists at all, there also exists
a singleton ICI set which can be easily determined.

Proposition 3: Let Z ⊆ X be nonempty, MS ̸= ∅ and Y ̸= ∅ be
a convex, compact ICI set with respect to Z. Then, there is a x̄ ∈ Y
such that H(x̄) ∋ x̄.

Proof: Let us define the multi-valued mapping H̃ : Y ⇒ Y as
H̃(x) := H(x) ∩ Y . Note that since Y is an ICI set, it follows that
∅ ̸= Y ⊆ MS , therefore the domain of H̃ is nonempty. For x ∈
Y , there is a ux such that eAT (x + Bux) ∈ Y , so H̃(x) ̸= ∅ and
H̃(x) is convex as an intersection of convex sets. Since Y is closed,
the graph of H̃, i.e., the set {(x, y) ∈ Y × Y | y ∈ H̃(x)} can be
written as proj(x,y){(x, y, v) ∈ Y × Y × U | y = eAT (x + Bv)} ∩
(Y × Y ), where proj(x,y)(x, y, v) = (x, y), which is closed because
it is polyhedral. Hence, H̃ satisfies the requirements of the Kakutani
fixed-point Theorem [13] which proves the assertion. "

Conversely, it is obvious that if there is a x̄ as in Proposition 3, then
the set Y = {x̄} is an ICI singleton. This leads to the formulation of
the following feasibility problem:

PS
ICI : eAT (x + Bu) = x, (10a)

x ∈ Z, u ∈ U (10b)
S(x, u) ⊆ Z. (10c)

The set of solutions of PS
ICI is a convex and compact ICI set.

Remark: Let x̄ solve (10) and Y0 = {x̄}. Consider the following
iterative procedure starting from Y0:

Yk+1 = PreZ,S(Yk). (11)

Every Yk in (11) is an ICI set with respect to Z and for all k ∈ N,
Yk+1 ⊇ Yk; we have, therefore, constructed an increasing sequence of
ICI sets.

V. STABILITY OF SETS

In this section, we introduce new stability definitions for impulsive
systems with respect to target sets making use of the control invariant
set theory we presented in the previous section. Similarly to the case
of invariance, stability is also studied with respect to a target-set Z
towards which we need to steer the state of the system. The main result
in this section is Theorem 10 in which, roughly speaking, we prove that
continuous-time stability is implied by stability at impulse times and
some notion of boundedness of the trajectories in the interim between
impulse times.

Definition 4 (Stable Sets): A nonempty set Z ⊆ X is said to be sta-
ble for an impulsive system Σg—subject to the constraints (2)—with
respect to a nonempty set Y if for every ε > 0, there is a δ > 0 so that

ϕcl (t;x0, g(·)) ∈ BZ
ε ∩ X, ∀t ≥ 0 (12)

whenever x0 ∈ BY
δ ∩ X . The set Z is said to be an (locally) asymp-

totically stable set for Σg with respect to Y if additionally there is an
ε0 >0 such that for all x0∈BY

ε0
, limt→∞ distZ(ϕcl(t;x0, g(·)))=0.

Definition 5 (Domain of Attraction): If Z is asymptotically stable
for Σg with respect to Y and there is a set D ⊆ X so that for all x0 ∈
D it is limt→∞ distZ(ϕcl(t;x0, g(·))) = 0 then we say that D is a
domain of attraction of Z for Σg .

This definition of stability is weaker than the classical one intro-
duced by Bainov and Stamova in [14] in the sense that if a set Z
is stable with respect to a given set Y , it need not be a stable set.
Moreover, the use of the two distances distY and distZ in Definition 4
makes the proposed approach more flexible compared to the hybrid
systems framework of Goebel et al. [7].

We now introduce the definition of weakly stable sets which cor-
responds to stability at impulsive time instants exclusively. As we
shall see in the sequel, if the control law satisfies some conditions
which are not very conservative, then weak asymptotic stability entails
asymptotic stability.

Definition 6 (Weakly Stable Sets): A set Z is said to be weakly
stable for the impulsive system Σg with respect to Y if for all ε > 0
there is a δ > 0 so that

ϕcl (τk;x0, g(·)) ∈ BZ
ε ∩ X, ∀k ∈ N (13)

whenever x0 ∈ BY
δ ∩ X . Set Z is said to be weakly asymptoti-

cally stable if it is weakly stable and there is an ε0 > 0 so that
limk→∞ distZ(ϕcl(τk;x0, g(·))) = 0 whenever x0 ∈ BY

ε0
∩ X .

The domain of attraction for weakly asymptotically stable systems
is defined analogously.

Definition 7 (Uniform Boundedness): The trajectories of Σg are
called (Z, Y )-locally uniformly bounded over an interval I ⊆ [0,∞)
if there is an η > 0 and a K-class function α such that it is distZ

(ϕcl(t;x0, g(·)))≤α(distY (x0)) for all t∈ I whenever x0 ∈BY
η ∩X .

Note that if Y is impulsively invariant with respect to Z,
then if x0 ∈ Y , i.e., distY (x0) = 0, then ϕcl(t;x0, g(·)) ∈ Z, i.e.,
distZ(ϕcl(t;x0, g(·))) = 0 and the aforementioned condition is triv-
ially satisfied. This condition demands that the escape from Z is con-
trolled by the distance of the initial condition from Y . The trajectories
of Σg are (Z, Y )-locally uniformly bounded over I if and only if for
every ε > 0 there is a δ = δ(ε) > 0 so that distZ(ϕcl(t;x0, g(·))) <
ε whenever x0 ∈ BY

δ(ε) ∩ X for all t ∈ I as it can be proven along the
lines of [15, Lemma 4.5].

It is natural to ask under what conditions (imposed on g) the
trajectories of Σg are (Z, Y )-locally uniformly bounded. Proposition 8
provides such a sufficient condition on g.

Proposition 8 (Uniform Boundedness): Assume that Y is a non-
empty compact impulsively invariant set for Σg with respect to Z.
Assume that there is an η > 0 and a K-class function γ : R+ → R+

so that for every y ∈ BY
η ∩ X there is a ρy > 0 so that

∥g(x) − g(y)∥ ≤ γ (∥x − y∥) (14)

whenever x ∈ BY
η ∩ X and ∥x − y∥ < ρy . Then the trajectories of Σg

are (Z, Y )-locally uniformly bounded over the interval (0, T ].
Proof: Define hg(x) := x + Bg(x) and α(s) := s + ∥B∥γ(s).

It can be easily seen that for x, y ∈ BY
η ∩ X and ∥x − y∥ ≤ ρy , it is

∥hg(x) − hg(y)∥ ≤ α(∥x − y∥), and it can be verified that α is a K-
class function. Let ε > 0 and define

δ(ε) := min
{
ρ, η,α−1

( ε

2M

)}

where M := supt∈(0,T ] ∥eAt∥ and ρ := infy∈BY
η ∩X ρy; it is ρ > 0

because of the compactness of Y . Take x ∈ BY
δ(ε) ∩ X and notice

that x ∈ BY
η ; then we may find a yx ∈ Y so that ∥yx − x∥ ≤ δ(ε) ≤

min{ρ, η}. Since yx ∈ Y and Y is an impulsively invariant set for
Σg , it is eAthg(yx) ∈ Z for all t ∈ (0, T ], and since ϕcl(t;x, g(·)) =
eAthg(x), we have

distZ(eAthg(x)) = inf
z∈Z

∥eAthg(x)−z∥

≤ ∥eAthg(x) − eAthg(yx)∥
≤ ∥eAt∥ · ∥hg(x) − hg(yx)∥ ≤ Mα(∥x−yx∥)

≤ Mα(δ(ε)) ≤ Mα
(
α−1

( ε

2M

))
< ε

for all t ∈ (0, T ]. "



2280 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 60, NO. 8, AUGUST 2015

Note also that condition (14) is weaker than the locally Lips-
chitz continuity of g in BY

η ∩ X . If the compactness requirement in
Proposition 8 is dropped, then (14) has to be satisfied for all x, y ∈
BY
η ∩ X with ∥x − y∥ ≤ ρ for some ρ > 0.
It turns out that weak asymptotic stability and uniform boundedness

entail asymptotic stability for a set Z under certain additional condi-
tions establishing this way a clear analogy between the following result
and [16, Theorem 2.27] for sampled-data systems.

Assumption 9: We assume that ∅ ̸= Y ⊆ Z, Y is impulsively
invariant with respect to Z and there is a constant η > 0 and a K-class
function ω such that for all k ∈ N

distY (ϕcl (τk;x0, g(·))) ≤ ω (distY (x0))

whenever x0 ∈ BY
η ∩ X . That is, Y is weakly stable with respect to

itself.
Theorem 10 (Criterion for Asymptotic Stability): Let Z and Y be

given nonempty sets and Assumption 9 be satisfied. Assume that Z
is weakly asymptotically stable for Σg with respect to Y and the
trajectories of Σg are (Z, Y )-locally uniformly bounded over (0, T ].
Then Z is asymptotically stable with respect to Y .

Proof: The proof can be found in [8]. "

VI. MODEL PREDICTIVE CONTROL

A. Formulation

In this section, we use the above theoretical developments to design
a MPC which leads the system’s state to a specified target set Z
by involving an ICI set Y (with respect to Z) in the formulation of
the MPC problem. We prove that the MPC controller leads to the
satisfaction of the state and input constraints in continuous time, it
renders Z weakly asymptotically stable with respect to Y and, under
certain conditions, also continuous-time asymptotically stable.

We define the set-valued mapping Uf : Y ⇒ U as follows:

Uf (x) := {u ∈ U : eAT (x + Bu) ∈ Y, S(x, u) ⊆ Z}. (15)

We also define the set D as follows:

D =
{
(x, u) ∈ Rn+m| x ∈ Y, u ∈ Uf (x)

}
. (16)

This set is the graph of the set-valued mapping Uf . We now introduce
the following stage cost function:

ℓ(x, u) = dist2D(x, u) = min
(z,v)∈D

∥(x, u) − (z, v)∥2 . (17)

Notice that ℓ(x, u) = 0 if and only if x ∈ Y and u ∈ Uf (x). This stage
cost will allow to automatically perform dual-mode MPC without
actually having computed an auxiliary, local controller beforehand.

The proposed MPC scheme amounts in solving at every impulse
time τk the following finite horizon optimal control problem:

V ⋆
N (x(τk)) = inf

π∈UN (x(τk))
VN (x(τk),π) (18)

where

VN (x (τk) ,π) =

N−1∑

j=0

ℓ (ϕ (τk+j ;x (τk) ,π) , uj) (19)

and

UN (x) =

{
π

∣∣∣∣∣

∀j ∈ N[0,N−1] : uj ∈ U,
S (ϕ (τj ;x,π) , uj) ⊆ X

ϕ (τN ;x,π) ∈ Y

}
. (20)

The MPC problem (18) can be reformulated as a convex QP

V ⋆
N (x (τk)) = inf

π,z,v
V̄N (x(τk),π, z, v) (21a)

V̄N (x(τk),π, z, v) :=

N−1∑

j=0

∥∥∥∥

[
ϕ (τk+j ;x,π) − zj

uj − vj

]∥∥∥∥
2

(21b)

subject to the constraints

π ∈ UN (x (τk)) , (zj , vj) ∈ D, ∀j ∈ N[0,N−1]. (21c)

The feasible domain of this problem is simply the set XN = domUN ,
i.e., states that can be steered inside Y in N steps while the continuous-
time trajectory remains inside X . This problem is merely convex,
therefore the optimizer is in general set-valued. This is evident since
for every x ∈ Y and every u ∈ Uf (x) it holds that ℓ(x, u) = 0. Let us
denote by π⋆(x(τk)) = (π⋆

0(x(τk)),π⋆
1(x(τk)), . . . ,π⋆

N−1(x(τk)))
the (possibly) set-valued optimizer of (18). This gives rise to a family
of feedback control laws σ(x(τk)) = π⋆

0(x(τk)) and notice that if
x ∈ Y then σ(x) = Uf (x). Then every s : XN → U such that s(x) ∈
σ(x) for all x ∈ XN is called an optimal control law. As we prove in
the following section, every such optimal control law deems Z weakly
stable with respect to Y while all controlled trajectories of the system
satisfy the constraints in continuous-time.

It should be noted that the minimum of (18) is attainable if D is
bounded according to [17, Thm. 1.9].

B. Stability Properties

In this section, we present the stability properties (in the sense of
stability of sets as in Definition 4) for the closed-loop impulsive system
in presence of the MPC controller which we introduced in the previous
section.

Theorem 11: Given a target-set Z assume that there is a nonempty
ICI set Y with respect to Z. Let s : XN → U be an optimal control law
for (18). Then, Z is weakly asymptotically stable for Σs with respect
to Y with domain of attraction the set XN .

Proof: See the Appendix. "
Remark 1: XN is not invariant in continuous-time; that is if

x(τk) ∈ XN , then on one hand at impulsive time instants the trajectory
of the closed-loop will remain in XN , but on the other hand, this
property is not implied for the intermediate time instants. There may
be time instants t̂ ∈ [τk, τk+1) so that x(τk) ∈ XN and x(τk+1) ∈
XN , but ϕcl(t̂; τk, x(τk), s(·)) ∈ X \ XN . However, in the interim
between impulsive time instants, the state trajectory will be bounded
inside X , thus the imposed constraints will not be violated. Overall,
any closed-loop trajectory starting from x0 ∈ XN satisfies constraints
(2a). At the same time, XN is a feasible subset of X .

Remark 2: The set Y in Theorem 11 is impulsively invariant for the
closed-loop system with respect to Z. Indeed, if x(τk) ∈ Y , the MPC
feedback law possesses the property s(x) ∈ Uf (x) and by definition
of Uf and since Y = domUf , impulsive invariance follows.

According to Theorem 11, all trajectories of the MPC-controlled
system Σs starting from an initial state inside XN can approach Y
arbitrarily close at the impulsive time instants. Under some additional
conditions on Y , Z becomes asymptotically stable with respect to Y
in continuous time.

Proposition 12: Let Z be a nonempty convex target set and Y ⊆
Z be a nonempty ICI set with respect to Z such that either of the
following holds:

1) Let Y ⊆ int PreX,S(Y ). Choose η>0 so that BY
η ⊆PreX,S(Y )

and introduce a local control law κloc : BY
η →U so that eAT (x+

Bκloc(x))∈Y and S(x,κloc(x))⊆X for all x∈BY
η .

2) Y ={x̄} is a singleton ICI, and D={(x̄, ū)} where ū∈Uf (x̄).
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Fig. 1. Topology of the interconnected compartments of the PBPK model.

Then, Y is asymptotically stable for the MPC-controlled system
with respect to Z.

Proof: If the first condition is satisfied, then there is an η > 0 so
that BY

η ⊆ PreX,S(Y ). Because of Theorem 11, for every x ∈ XN

there is a kx ∈ N so that ϕcl (t;x, s(·)) ∈ BY
η for all t ≥ τkx . As

a result, ϕcl (t;x, s(·)) ∈ PreX,S(Y ) for all t ≥ τkx . Once the state
enters BY

η at an impulsive time τk, the local control law κloc will lead
it inside Y at time τk+1 without violating the constraints in continuous
time (since S(x,κloc(x)) ⊆ X), from which the assertion follows.

In the second case, the optimizer of (18) becomes single-valued
and Lipschitz-continuous because of [18], so the requirements of
Proposition 8 are satisfied and the assertion follows. "

Note that a local controller κloc as in Proposition 12 is easy to
obtain by solving for each x ∈ BY

η a feasibility problem. According
to Proposition 12, unless D is a singleton, a local controller in a
neighborhood of Y is necessary to guarantee asymptotic stability in
continuous time.

Notice that if neither of the conditions of Proposition 12 are
satisfied, the optimizer of (18), σ : XN ⇒ U , is multi-valued,
outer-semicontinuous, but not necessarily inner-semicontinuous [18],
consequently, a locally Lipschitz (or even locally continuous in a
neighborhood of Y ) selection s may not exist. In such a case, Z will
still be weakly asymptotically stable for the controlled system with
respect to Y and all constraints will be satisfied in continuous time for
all initial states in XN , however, continuous-time stability will not be
guaranteed.

VII. APPLICATION

Ehrlich et al. [1] provide a physiological pharmacokinetic model
based on experimental data which describes the distribution of Lithium
ions in the human body upon oral administration. However, the
compartmental nature of the model enables us to study the scenario
of intravenous administration. The compartments taken into account
correspond to the plasma (P), the red blood cells (RBC) and the
muscle cells (M). The respective concentrations are denoted by CP ,
CRBC and CM and they define the system’s state vector x(t) :=
[CP (t)CRBC(t)CM (t)]′. The exact topology of the model is illus-
trated in Fig. 1.

The dynamics of the drug distribution is described by the following
impulsive system:

dx(t)

dt
=

[−0.6137 0.1835 0.2406
1.2644 −0.8 0
0.2054 0 −0.19

]
x(t) (22a)

∆x(t) = [ 10.9 0 0 ]′ u. (22b)

Fig. 2. Controlled trajectory using the proposed controller.

The administration period is fixed to 3hr. The constraints 0 ≤ x(t) ≤
xmax are imposed on the state variables in continuous time where
xmax = (2, 1.2, 1.2)′nmol · L−1. The input variable u corresponds to
the amount of administered dose and it should not exceed 5.95nmol,
i.e., 0 ≤ uk ≤ 5.95 nmol. The target-set Z is circumscribed by the set
of inequalities xL ≤ x(t) ≤ xH where xL = (0.4, 0.6, 0.5)′ nmol ·
L−1 and xH = (0.6, 0.9, 0.8)′ nmol · L−1. Such a set is determined
by the treating doctor and is known as the therapeutic window [12].
The stay of the drug’s concentration within the boundaries of Z
guarantees the effectiveness of the therapy. The aim of the proposed
MPC methodology is to eventually lead the trajectories of the system
towards set Z. The set Y is a polytope in R3 and was calculated in 5
iterations of (7) in 4.3s and its minimal representation comprised 15
inequalities. The set {Ai}10

i=1 with Ai ∈ R3×3 for i ∈ N[1,10] in (6)
was computed using the methodology of gridding and norm bounding
as in [9] in 4.4s. All reported computation times were measured on a
Mac OS X v10.8.2 machine, 2.2GHz Intel Core i7, 8GB RAM.

The MPC control problem is formulated according to (21a) and
the prediction horizon was set to N = 15. The controlled trajectory
in presence of the proposed impulsive model predictive controller
is presented in Fig. 2 and one may notice that the state constraints
are satisfied at all (impulsive and continuous) time instants while the
trajectory of the system ends up inside the prescribed target-set. It
is guaranteed that once the system’s state enters Y it will remain
inside the therapeutic window Z at all continuous-time instants.
The sequence of control actions produced by the MPC controller is
presented in Fig. 3. One may also notice that the state and input
constraints are satisfied at all times. Because of Theorem 11, Z is
weakly asymptotically stable with respect to Y . Additionally, set Y
is contained in the interior of PreZ,S(Y ), so the controlled system
is asymptotically stable with the use of a local controller as in
Proposition 12 with η = 10−5.

The MPC problem was solved online using Gurobi [19] and the
average computation time on 100 iterations was 22.0 ms (st.dev.:
20.95 ms, max: 80 ms).

APPENDIX

PROOF OF THEOREM 11

Step 1. We prove a Lyapunov-type inequality. First, we show that
for all x(τk) ∈ XN , it holds true that

V ⋆
N (x (τk+1)) − V ⋆

N (x (τk)) ≤ −ℓ (x (τk) , s (x (τk))) (23)

where x(τk+1) = ϕcl(τk+1; τk, x(τk), s(·)).
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Fig. 3. Amount of administered dose as it was computed by the impulsive
MPC controller.

Let x(τk) ∈ XN and π⋆(x(τk)) := {u⋆
i (x(τk))}N−1

i=0 be an op-
timal control sequence, i.e., V ⋆

N (x(τk))=VN (x(τk),π⋆(x(τk))). If
we apply π⋆(x(τk)) to the impulsive system, the following se-
quence of states will occur: x⋆(x(τk)) = {x⋆

k+i(x(τk))}N
i=0, with

x⋆
k+i(x(τk)) = ϕ(τk+i; τk, x(τk),π⋆(x(τk))) for i = 0, . . . , N , and

x⋆
k+N (x(τk)) ∈ Y . At the next time instant, τk+1, the state of the sys-

tem will be x⋆
k+1(x(τk)) for which we choose the (sub-optimal) con-

trol sequence π̃(x(τk))=
{
u⋆

k+1(x(τk)), . . . , u⋆
k+N−1(x(τk)), u

}

where the last element u ∈ U is to be determined. Then, the resulting
state sequence is x̃(x(τk)) = {x⋆

k+1(x(τk)), . . . , x⋆
k+N+1(x(τk))},

where x⋆
k+N+1(x(τk)) := ϕ(τk+N+1; τk+N , x⋆

k+N (x(τk)), u). Pro-
vided that the last element of x̃(x(τk)) is in Y , the sequence of in-
puts π̃(x(τk)) is admissible since u ∈ Uf (x⋆

k+N (x(τk))) ̸= ∅. Then
V ⋆

N (x(τk)) = VN (x(τk),π⋆(x(τk))) is

V ⋆
N (x(τk)) =

N−1∑

j=0

ℓ(x⋆
k+j(x(τk)), u⋆

k+j(x(τk))).

Because of the terminal-state constraints, x⋆
k+N+1(x(τk)) ∈ Y ,

and also u ∈ Uf (x⋆
k+N+1(x(τk))), so ℓ(x⋆

k+N+1(x(τk)), u) = 0,
and we have

VN (x⋆
k+1(x(τk)), π̃) =V ⋆

N (x(τk)) − ℓ(x(τk), u⋆
k(x(τk)))

+ ℓ(x⋆
k+N+1(x(τk)), u)

=V ⋆
N (x(τk))−ℓ(x(τk), s(x(τk))).

Due to the suboptimality of π̃(x(τk)), we have

V ⋆
N (x⋆

k+1(x(τk))) ≤VN (x⋆
k+1(x(τk)), π̃)

=V ⋆
N (x(τk)) − ℓ(x(τk), s(x(τk)))

for all x(τk) ∈ XN , which proves (23).
Step 2. Weak Stability of Y . Let ε > 0 and Ωβ := {x ∈ BY

ε ∩ XN ,
V ⋆

N (x)≤β} and take x(τk)∈Ωβ . By (23), one has that V ⋆
N (ϕcl(τk+1;

τk, x(τk), s(·)))≤V ⋆
N (x(τk))≤β, hence ϕcl(τk+1; τk, x(τk), s(·))∈

Ωβ . Since V ⋆
N admits the value 0 on Y and Ωβ ⊇ Y and V ⋆

N is
continuous, there is a η > 0 such that BY

η ∩ XN ⊆ Ωβ . So, if we
choose x(τk) ∈ BY

η ∩ XN , we have that ϕcl(τk+1; τk, x(τk), s(·)) ∈
BY
ε ∩ XN so Y is weakly stable with respect to itself.
Step 3. Asymptotic Stability and Attractivity of Y over XN . V ⋆

N is
strictly decreasing and nonnegative outside Y , so there is a c ≥ 0 so
that limj→∞ V ⋆

N (ϕcl(τk+j ; τk, x(τk), s(·))) = c.

Let Ω̃c ={x∈XN |V ⋆
N (x)≤c}, assume that c>0 and let 0<ζ<c

such that BY
ζ ∩XN ⊆ Ω̃c. Then, for all j ∈ N, V ⋆

N (ϕcl(τk+j ; τk, x(τk),
s( · )))>ζ. Define γr :=−max{ℓ(x, s(x));ζ≤distY (x)≤r, x∈XN}
for r>ζ (Evidently γr <0 for all r>ζ). Then, by (23) it is:

V ⋆
N (x (τk+j)) ≤V ⋆

N (x (τk)) −
j−1∑

i=0

ℓ (x (τk+i) , s (x (τk+1)))

<V ⋆
N (x (τk)) − jγr.

Eventually, for j ≥ γr
−1V ⋆

N (x(τk)) we have that V ⋆
N (x(τk+j)) < 0

which is a contradiction and as a result c = 0. The set Y is, therefore,
weakly asymptotically stable with respect to itself with domain of
attraction the set XN . As a result, since Z ⊇ Y , Z is weakly asymp-
totically stable with respect to Y with domain of attraction XN . "
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