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Passivity Analysis and Passification of Discrete-Time
Hybrid Systems

Alberto Bemporad, Gianni Bianchini, and Filippo Brogi

Abstract—For discrete-time hybrid systems in piecewise affine or piece-
wise polynomial (PWP) form, this note proposes sufficient passivity analysis
and synthesis criteria based on the computation of piecewise quadratic or
PWP storage functions. By exploiting linear matrix inequality techniques
and sum of squares decomposition methods, passivity analysis and synthesis
of passifying controllers can be carried out through standard semidefinite
programming packages, providing a tool particularly important for stabil-
ity of interconnected heterogenous dynamical systems.

Index Terms—Discrete-time systems, hybrid systems, linear matrix
inequalities, passivity, piecewise affine systems.

I. INTRODUCTION

Passivity is a widely adopted tool for analyzing the stability of inter-
connections of dynamical systems [1] and is used in several domains of
engineering sciences, such as in the analysis of electrical circuits and of
mechanical systems. In particular, passivity is exploited in robotics as
a key concept for stability analysis of human/machine interaction [2].

Stability analysis of interconnected systems hinges upon the ability
of characterizing the passivity properties of each single dynamical
system. A solid theory and analytical/numerical criteria are available
for linear systems, and theoretical characterizations were developed
for smooth nonlinear dynamical systems [1]. Although most of the
passivity characterizations were proposed for continuous-time models,
a few results were developed for discrete-time models [3].

In many practical applications, some of the system components
exhibit a heterogeneous dynamical discrete and continuous nature that
cannot be captured by smooth models because of abrupt mode switches.
The study of such hybrid systems, which has massively emerged in the
last few years, was devoted to analyzing the dynamical interaction
between continuous and discrete signals in one common framework.
Passivity analysis of hybrid models has received very little attention,
except for the contributions of [4]–[7], in which notions of passivity
for continuous-time hybrid systems are formulated.

In this note, we address the passivity property of discrete-time hy-
brid systems in the widely exploited piecewise affine (PWA) form, and
more generally, in the piecewise polynomial (PWP) form. For PWA
systems, in the spirit of [8] and [9], quadratic and piecewise quadratic
storage functions are computed via the solution of a number of linear
matrix inequality (LMI) problems. The proposed method also yields
a LMI-based procedure for computing piecewise linear state feedback
controllers ensuring passivity of the closed-loop system. We also pro-
pose a method for proving passivity of a PWA/PWP system by means of
polynomial or PWP storage functions. Such functions are constructed
via semidefinite programming by means of the sum of squares (SOS)
decomposition of multivariate polynomials [10]. SOS methods for the
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computation of PWP Lyapunov functions have been exploited for ana-
lyzing stability of continuous-time hybrid and switched systems [11].
In this note, we use a similar idea for passivity analysis in discrete time,
although the approach can be easily generalized to the continuous-time
case. Preliminary work leading to the results reported in this note was
presented in [12] and in [13].

The note is organized as follows. After reporting some preliminary
definitions and results, and formulating the passivity analysis problem
in Section II, in Section III, we present an LMI-based passivity test
for PWA systems based on the construction of piecewise quadratic
storage functions. Section IV describes a passivity test for PWA and
PWP systems based on the computation of PWP storage functions.
An application of the proposed results to a simple model derived from
haptics is presented in Section V, and finally, some concluding remarks
are drawn in Section VI.

II. NOTATION, PRELIMINARIES, AND PROBLEM FORMULATION

In this note, we consider discrete-time time-invariant hybrid systems
of the form{

xk+1 = fi (xk , uk ),

yk = hi (xk , uk ),
if
[
xT

k uT
k

]T ∈ χi , i ∈ I (1)

where xk ∈ R
n is the state vector, uk ∈ R

m the control input, yk ∈
R

p the output vector, k ∈ T ∆= {0, 1, . . .} the discrete-time counter,

I ∆= {1, . . . , nI} the set of mode indices, and fi : R
n +m → R

n , hi :
R

n +m → R
p are suitable vector fields. Let {χi}i∈I be a partition of

R
n +m , namely

χi = {[xT uT ]T ∈ R
n +m : gx

i,r (x) ≥ 0, gu
i,t (u) ≥ 0

r = 1, . . . , ri , t = 1, . . . , ti} (2)

with Intχi

⋂
Intχj = ∅ ∀i, j ∈ I i �= j (“Int” denotes the interior)⋃

i∈I χi = R
n +m , χi �= ∅ ∀i ∈ I, and where gx

i,r : R
n → R, gu

i,t :
R

m → R, are the functions defining the shape of the cells of the parti-
tion.1 Also, let us introduce the following sets of indices

Si = {j ∈ I : Πx (χi ) = Πx (χj )} , i ∈ I,

where Πx (χi ) denotes the projection of χi over the x-space.
Since in (2), we have excluded the more general case χi ={
[xT uT ]T ∈ R

n +m : gi,s (x, u) ≥ 0, s = 1, . . . , si

}
in defining the

shape of the cells, we have IntΠx (χj )
⋂

IntΠx (χi ) = ∅ ∀j �∈ Si

∀i ∈ I. Let H ⊆ I denote a subset of indices i ∈ I corresponding
to a collection of all sets Πx (χi ) without duplicates, and for each
h ∈ H, denote

χh = Πx (χh ). (3)

Clearly, χh = Πx (χi ) ∀i ∈ Sh , and the collection {χh }h∈H forms a
partition of R

n . Moreover,
⋃

h∈H Sh = I and Sh ∩ Sl = ∅ ∀h, l ∈ H,
h �= l. Also, introduce the map h : I → H defined as

h(i) = h ∈ H such that i ∈ Sh .

Each set χh has the expression

χh = {x ∈ R
n : gx

h ,r (x) ≥ 0, r = 1, . . . , rh }, h ∈ H .

1In case of discontinuities across common boundaries of neighboring regions,
to avoid ambiguities of the state update and/or output mappings of the hybrid
system (1), one can define sets χi in (2) by using strict and nonstrict inequalities.
Alternatively, one can replace strict inequalities g(·) > 0 by nonstrict inequal-
ities g(·) ≥ ε, where ε > 0 is an arbitrarily small number (e.g., the machine
precision), although systems trajectories would not be defined in the interval
0 < g(·) < ε [14].
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Our definition of partition in (2) generalizes the definition of [8], [15],
and [16], where the authors consider the case of hybrid systems defined
over a partition of the x-space only.

A. Piecewise Affine (PWA) Case

If the vector fields fi , hi in (1), and gx
i,r , gu

i,t in (2) are affine
functions, then system (1) is in the PWA form{

xk+1 = Aixk + Biuk + φi ,

yk = Cixk + Diuk + ψi ,
if
[
xT

k uT
k

]T ∈ χi , i ∈ I (4)

where Ai , Bi , Ci , Di , φi , and ψi are constant matrices/vectors of
suitable dimension. {χi}i∈I forms a polyhedral partition of R

n +m , i.e.

χi =
{
[xT uT ]T ∈ R

n +m : F x
i x ≥ fx

i , F u
i u ≥ fu

i

}
(5)

where F x
i , fx

i , F u
i , fu

i , and i ∈ I are constant matrices/vectors.
Clearly, the partition {χh }h∈H is defined by

χh = {x ∈ R
n : F x

h x ≥ fx
h } , h ∈ H. (6)

Let I0 = {i ∈ I : 0 ∈ χh (i)}. We assume that φi = ψi = 0 ∀i ∈ I0 ,
i.e., that the origin is an equilibrium point for the system with zero
inputs.

For ease of notation, by setting x = [xT 1]T , u = [uT 1]T , y =
[yT 0]T , we rewrite (4) in the more compact form{

xk+1 = Aixk + BiUk ,

yk = Cixk + Diuk ,
if
[
xT

k uT
k

]T ∈ χi i ∈ I (7)

and χi =
{
[xT uT ]T ∈ R

n +m : F
x

i x ≥ 0, F
u

i u ≥ 0
}

, where

Ai =

[
Ai φi

0 1

]
, Bi =

[
Bi 0

0 0

]
, Ci =

[
Ci ψi

0 0

]
,

Di =

[
Di 0

0 0

]
and

F
x

i = [F x
i − fx

i ], F
u

i = [F u
i − fu

i ].

Likewise, if fi (x, u), hi (x, u), gx
i,r (x), and gu

i,r (u) in (1), (2) are
multivariate polynomials in x and u, then the system is termed PWP.

B. Discrete-Time Passivity

In this note, we refer to the standard notion of passivity for discrete-
time systems [1], [3].

Definition 1: Consider system (1), and let m = p. The system is said
to be passive if there exists a positive definite function V : R

n → R

with V (0) = 0 (called the storage function) such that along all possi-
ble system trajectories (xk , uk , yk ), k ∈ T , the following dissipation
inequality holds

V (xk+1 )− V (xk )− yT
k uk ≤ 0. (8)

Note that even in the linear case, the usual sampled equivalent of a pas-
sive continuous-time system, which assumes a zero-order holder on the
input and sets yk as the output value at the kth sampling instant, in gen-
eral does not preserve passivity. A passivity-preserving discretization
scheme for linear dynamics was proposed in [12].

III. PASSIVITY ANALYSIS OF PIECEWISE AFFINE SYSTEMS

The most common way to investigate passivity of general nonlinear
systems is to check the dissipation inequality (8) against storage func-
tions of prescribed structure. In this respect, quadratic functions are
the most common choice. Such an approach can be applied straight-
forwardly to the case of PWA systems of the form (4), (5). Indeed, it
is easily shown that passivity of the system is ensured if there exists
a common quadratic storage function satisfying the passivity inequal-
ity for all the linear subsystems defined by (Ai , Bi , Ci , Di ), i ∈ I.
Moreover, by a standard Kalman–Yakubovich–Popov (KYP) lemma
argument, checking the passivity of each subsystem via a quadratic
storage function is known to boil down to an LMI condition [1].

It is apparent that the common quadratic storage function approach is
likely to be overly conservative for hybrid systems in PWA form (4),(5)
since the switching conditions are completely ignored. By following
the line proposed in [8] and [9] in the context of stability analysis, in the
sequel, we illustrate an LMI criterion for passivity analysis based on
the computation of piecewise quadratic storage functions. This task is
accomplished by specializing the positivity and dissipation inequalities
in Definition 1 so as to capture the relevant features of the switching
behavior, and hence, to reduce conservatism.

A. Passivity Analysis Via Piecewise Quadratic Storage Functions

For system (4), we consider a piecewise quadratic (PWQ) candidate
storage function V : R

n → R defined on the partition {χh }h∈H of the
state–space as

V (x) = xT P h x ∀x ∈ χh , h ∈ H (9)

where P h are suitable (n + 1)× (n + 1) symmetric matrices. Note
that, in order for V (x) to be zero at the origin and positive definite, P h

is constrained to have the form

P h =

[
Ph 0

0 0

]
for all h ∈ H such that χh contains the origin, i.e., ∀h ∈ I0 ∩H, where
Ph ∈ R

n×n is a positive definite symmetric matrix.
According to (8), if matrices P h , h ∈ H exist such that the dissi-

pation inequality with V (x) as in (9) holds for all system trajectories,
then system (4) is passive. If this is the case, then the system will be
termed PWQ passive.

Let us define the set of index pairs

S = {(i, j) : ∃x ∈ R
n , u, w ∈ R

m : [xT uT ]T ∈ χi

[(Aix + Biu + φi )T wT ]T ∈ χj , i, j ∈ I} (10)

i.e., the set of ordered pairs of indices corresponding to all transitions
from cell χi at any time k to cell χj at time k + 1 that are actually
allowed to occur along system trajectories. The set S can be computed
by means of reachability analysis based on linear programming [17].
Moreover, for all (i, j) ∈ S, let

χ̃j
i = {[xT uT ]T ∈ χi : ∃w : [(Aix + Biu + φi )T wT ]T ∈ χj }

be the subsets of all state-input pairs in cell χi that can evolve into cell
χj in one step. It is easily seen that, since χj �= ∅, the set χ̃j

i is the
following polytope of R

n +m

χ̃j
i = {[xT uT ]T ∈ R

n +m : F
x

i x ≥ 0, F
u

i u ≥ 0,

F
x

ij x + F
u

ij u ≥ 0}
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where F
x

ij = [F x
j Ai F x

j φi − fx
j ] and F

u

ij = [F x
j Bi 0]. The following

result, in the spirit of [8], [15], and [16], gives a sufficient condition for
PWQ passivity of the PWA system (4) that can be tested by semidefinite
programming.

Theorem 1: Let Ui , V i , i ∈ I, Zh , h ∈ H, and W ij , (i, j) ∈ S, be
unknown matrices of suitable dimensions with nonnegative entries and
define

Gij = (F
x

i )T U iF
x

i + (F
x

ij )
T W ij F

x

ij

J ij = (F
u

i )T V iF
u

i + (F
u

ij )
T W ij F

u

ij

Hij = (F
u

ij )
T W ij F

x

ij

Lh = (F
x

h )T Zh F
x

h . (11)

Let P h ∈ R
(n +1)×(n +1) , h ∈ H, be symmetric matrices. If a selection

of matrices P h , Zh , h ∈ H, Ui , V i , i ∈ I, and W i,j , (i, j) ∈ S exists
that satisfies the set of LMIs in (12) with Gij , J ij , Hij , Lh as in (11),
then system (4) is PWQ passive with storage function (9).



P h − Lh > 0, ∀h ∈ H, h �∈ I0

P h =

[
Ph 0

0 0

]
, [In 0](P h − Lh )

[
In

0

]
> 0, ∀h ∈ H ∩ I0 A

T

i P h (j )Ai − P h (i) + Gij A
T

i P h (j )Bi −
C

T

i

2
+ H

T

ij

B
T

i P h (j )Ai −
Ci

2
+ Hij B

T

i P h (j )Bi −
Di + D

T

i

2
+ Jij


≤ 0, ∀(i, j) ∈ S

(12)

Proof: By the first LMI in (12) and the fourth of (11), it turns out
that xT Lh x ≥ 0, ∀x ∈ χh , h ∈ H, and hence, V (x) in (9) is positive
definite. Moreover, along any trajectory such that [xT

k uT
k ]T ∈ χi and

[xT
k+1u

T
k+1 ]

′ ∈ χj for some (i, j) ∈ S, it holds the condition

V (xk+1 )− V (xk )− yT
k uk = [xT

k uT
k ] A

T

i P h (j )Ai − P h (i) + Gij A
T

i P h (j )Bi −
C

T

i

2
+ H

T

ij

B
T

i P h (j )Ai −
Ci

2
+ Hij B

T

i P h (j )Bi −
Di + D

T

i

2
+ Jij


[

xk

uk

]
− [xT

k Gij xk + 2uT
k Hij xk + uT

k J ij uk ]. (13)

Therefore, by the last LMI in (11) and (12), we have that V (xk+1 )−
V (xk )− yT

k uk ≤ 0 along any system trajectory, and hence, the system
is passive according to Definition 1. �

Note that the condition

P h =

[
Ph 0

0 0

]
in (12) implies linear equality constraints on Ui , W ij , V i , Zh for
i, h ∈ I0 .

A simpler but more conservative version of Theorem 1 can be ob-
tained by removing the unknowns Ui , V i , Zh , W ij and the terms Gij ,
Jij , Hij , Lh from the LMI problem (12). This amounts to ignoring
the switching conditions defined by the sets χi in (7) for the PWA
dynamics.

B. Passivity Enforcement Via Piecewise Linear State Feedback

We now consider the problem of synthesizing a piecewise linear
state feedback control law for PWA systems in order to make the
resulting closed-loop system passive. More specifically, we look for
a piecewise linear function kpl : R

n → R
m such that system (4) with

state feedback
uk = kpl (xk ) + vk (14)

is PWQ passive, i.e., there exists a PWQ storage function V (x) such
that the dissipation inequality V (xk+1 )− V (xk ) ≤ yT

k vk holds for
any system trajectory (xk , vk , yk ), k ∈ T . The approach proposed here
extends the one used in [18] in the context of stabilization. In order to
meet space limitations and to avoid introducing excessive technicalities,
we only address the problem for system (4) with zero affine terms, i.e.,
φi = ψi = 0 ∀i ∈ I.

It is apparent that the partition {χi}i∈I cannot be exploited to define
the piecewise linear feedback in (14), since the partition itself depends
on the control input u. Hence, it is natural to look for a piecewise
linear feedback defined on the polyhedral partition {χ̄h }h∈H of the
state–space defined by (6), i.e., a control law of the form

uk = −Kh xk + vk , xk ∈ χh , h ∈ H. (15)

Based on the PWQ storage function

V (x) = xT Ph x ∀x ∈ χh , h ∈ H (16)

we want to provide a criterion for synthesizing feedback gains Kh ,
h ∈ H, such that the closed-loop system{

xk+1 = Acl
i xk + Bivk ,

yk = Ccl
i xk + Divk ,

if

[
xk

Kh (i)xk + vk

]
∈ χi , i ∈ I

with input vk and output yk , is passive, where Acl
i = Ai −BiKh (i)

and Ccl
i = Ci −DiKh (i) .

The following closed-loop passivity condition can be stated.
Lemma 1: Consider system (4) with φi = ψi = 0 ∀i ∈ I. If there

exist matrices Ph , h ∈ H, and Kh , h ∈ H such that the inequalities

Ph = P T
h > 0 ∀h ∈ H (Acl

i )T PlA
cl
i − Ph (i) (Acl

i )T PlBi −
(Ccl

i )T

2

BT
i PlA

cl
i −

Ccl
i

2
BT

i PlBi −
Di + DT

i

2

 ≤ 0

∀ i ∈ I ∀l ∈ H

(17)

hold, then the system with piecewise linear feedback (15) is PWQ
passive.

Proof: It suffices to note that the second inequality in (17) implies
that V (xk+1 )− V (xk )− yT

k vk ≤ 0 along all possible system trajec-
tories. Indeed, the feedback gain Kh (i) is applied for all xk ∈ χi and
independent of the cell χl the vector xk+1 belongs to. Moreover, all
possible transitions are covered. �

The PWQ passivity condition provided by Lemma 1 is not computa-
tionally appealing since the inequalities in (17) are bilinear in Kh and
Ph , and hence, the synthesis problem cannot be approached by means
of convex optimizations techniques. Nevertheless, such inequalities
can be exploited to derive an LMI sufficient condition for computing
the passifying piecewise linear feedback (15). This is accomplished
through a standard Schur complement argument as the following result
shows.

Theorem 2: Consider system (4) and let φi = ψi = 0 ∀i ∈ I. If
there exist matrices Qh , Rh , Yh , h ∈ H such that the set of LMIs in
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(18) holds, then the system with piecewise linear state feedback (15)
with

Kh = Yh R−1
h , h ∈ H

is PWQ passive with respect to the storage function (16), with Ph =
Q−1

h .
Proof: Since Qh (i) > 0 and Rh (i) + RT

h (i) ≥ Qh (i) by (18),
then Rh (i) is nonsingular, and moreover, it is easy to see
that RT

h (i)Q
−1
h (i)Rh (i) ≥ Rh (i) + RT

h (i) −Qh (i) ≥ 0. Hence, (18), as
shown at the bottom of the page, implies (19), as shown at the bottom
of the page. By left-multiplying (19) by[

R−T
h (i) 0

0 I

]
and right-multiplying by [

R−1
h (i) 0

0 I

]
we obtain

Qh = QT
h > 0 ∀h ∈ H

Q−1
h (i)

CclT

i

2
(Acl

i )T

Ccl
i

2
Di + DT

i

2
BT

i

Acl
i Bi Ql

≥ 0 ∀i ∈ I ∀l ∈ H

which is equivalent to (17) by a Schur complement argument, where
Qh (i) = P −1

h (i) . The result then follows by Lemma 1. �

IV. PASSIVITY ANALYSIS FOR PIECEWISE POLYNOMIAL SYSTEMS

In this section, we consider the problem of assessing the passivity
property of hybrid systems in PWP form, i.e., of systems of the form (1),
(2) when it is assumed that the vector fields fi (x, u), hi (x, u), gx

i,r (x),
and gu

i,r (u) are multivariate polynomials in x and u. Our approach is
based on the computation of PWP storage functions by exploiting the
SOS decomposition of multivariate polynomials. It is well known that
the SOS decomposition provides a satisfactory relaxation for proving
polynomial positivity via semidefinite programming [10].

In the sequel, PWP storage functions V (x) will be considered and
passivity conditions will be formulated in terms of inequalities based on
(8). To employ the convex programming techniques mentioned earlier,
such inequalities must be interpreted in the SOS sense.

Remark 1: The PWA models analyzed in the previous section clearly
fall into the wider class of PWP systems. It is worthwhile to note
that looking for higher order PWP storage functions may generally
yield significantly less conservative passivity tests than those based
on piecewise quadratic storage functions, as it will be pointed out
in Section V. Unfortunately, contrary to PWQ methods, SOS tests
that employ superquadratic storage functions do not easily extend to
compute feedback control laws that ensure passivity of the closed-loop
system. Moreover, such tests may be more sensitive to numerical errors.

Consider a PWP system of the form (1), (2) and the following
PWP candidate storage function V : R

n → R defined on the partition
{χh }h∈H in (3)

V (x) = Vh (x) ∀x ∈ χh , h ∈ H (20)

where Vh (x), h ∈ H are polynomials. Let us define the set of index
pairs

S =
{
(i, j) : ∃x ∈ R

n , u, w ∈ R
m : [xT uT ]T ∈ χi

[fi (x, u)T wT ]T ∈ χj , i, j ∈ I
}

Clearly, this set plays the same role as the set S in (10) for the PWA
case.

A PWP passivity test can be devised by proceeding in the same
fashion as the PWQ test in Section III-A.

For all (i, j) ∈ S, let us introduce the set χ̃j
i ⊆ χi defined as

χ̃j
i =
{
[xT uT ]T ∈ χi : ∃w : [fi (x, u)T wT ]T ∈ χj

}
,

i.e., the subset of state-input pairs in cell χi at time k that are allowed
to evolve into cell χj at time k + 1. Each χ̃j

i is given by

χ̃j
i =


[xT uT ]T ∈ R

n :

gx
i,r (x) ≥ 0, gu

i,t (u) ≥ 0, gx
j,s (fi (x, u)) ≥ 0,

r = 1, . . . ri , t = 1, . . . ti , s = 1, . . . rj

 .



Qh = QT
h > 0,∀h ∈ H

Rh(i) + RT
h(i) −Qh(i)

1
2
(RT

h(i)C
T
i − Y T

h(i)D
T
i ) RT

h(i)A
T
i − Y T

h(i)B
T
i

1
2
(CiRh(i) −DiYh(i))

Di + DT
i

2
BT

i

AiRh(i) −BiYh(i) Bi Ql


≥ 0 ∀i ∈ I ∀l ∈ H (18)



Qh = QT
h > 0, ∀h ∈ H

RT
h(i)Q

−1
h(i)Rh(i)

1
2
(RT

h(i)C
T
i − Y T

h(i)D
T
i ) RT

h(i)A
T
i − Y T

h(i)B
T
i

1
2
(CiRh(i) −DiYh(i))

Di + DT
i

2
BT

i

AiRh(i) −BiYh(i) Bi Ql

 ≥ 0 ∀i ∈ I ∀l ∈ H (19)
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Fig. 1. Spring–mass–damper haptic model with Coulomb friction.

The following result provides the sought PWP passivity test. The de-
tailed proof is omitted due to space limitation but can be easily con-
ducted in the same fashion as that of Theorem 1 by enforcing both
positivity of V (x) in (20) and the dissipation inequality taking into
account the switching behavior described by S and χ̃j

i .
Theorem 3: Consider the PWP system (1). If there exist polynomials

Vh (x), h ∈ H, ax
h ,r (x) ≥ 0, r = 1, . . . , rh , h ∈ H, bi,j,r (x, u) ≥ 0,

r = 1, . . . , ri , ci,j,t (x, u) ≥ 0, t = 1, . . . , ti , and di,j,s (x, u) ≥ 0,
s = 1, . . . , rj , (i, j) ∈ S such that Vh (0) = 0 and

Vh (x)−
rh∑

r=1

ax
h ,r (x)gx

h ,r (x) > 0, ∀x �= 0, ∀h ∈ H

Vh (j ) (fi (x, u))− Vh (i) (x)− hT
i (x, u)u

+
r i∑

r=1

bi,j,r (x, u)gx
i,r (x) +

t i∑
t=1

ci,j,t (x, u)gu
i,t (u)

+
r j∑

s=1

di,j,s (x, u)gx
j,s (fi (x, u)) ≤ 0 ∀(x, u), ∀(i, j) ∈ S

then, the system is passive with storage function (20).
Remark 2: The set of allowed transitions S is in general quite dif-

ficult to compute for an arbitrary PWP system. Clearly, the aforemen-
tioned result can be applied successfully in the case of PWA systems.
Otherwise, a more conservative version of Theorem 3 is readily ob-
tained by replacing S with the Cartesian product I × I and taking
ax

h ,r (x) = bi,j,r (x, u) = ci,j,t (x, u) = di,j,s (x, u) = 0.

V. APPLICATION EXAMPLE

In this section we apply the proposed passivity criteria to stability
analysis of a simple model derived from haptics. Indeed, the stability
of a haptic loop (human operator, haptic device, and virtual environ-
ment) can be assessed provided that passivity of the dynamics relating
the applied force and the velocity of the end effector can be ensured
[2].

Consider the simple haptic interaction model in Fig. 1. The idea
of modeling the interaction between a haptic device and a virtual en-
vironment with a sampled data equivalent of a spring–mass–damper
system with Coulomb friction is quite standard [2]. Clearly, the haptic
device dynamics is continuous time, while the virtual environment is
a computer simulated model, and hence, a pure discrete-time system.
It is well known that the coupling of a discrete-time system with a
continuous-time system can lead to loss of passivity. A possible ap-
proach for analyzing passivity of the overall model, where the input u
is the external force Fext applied to the haptic device and the output y is
the velocity ż of the end effector, is to derive a discrete-time multirate
model in which different sampling times nTs and Ts (n > 1) are used
for the simulated and the haptic device dynamics, respectively [19]. Of
course, this still involves a certain degree of approximation since the
intersample behavior of the “fast” subsystem is neglected. It is worth
noting that the problem of stability analysis and controller design for

haptic systems can indeed be addressed in a purely discrete-time set-
ting by exploiting the framework proposed in [20] and [21]. In this
respect, we believe that an extension of the aforementioned framework
to haptic systems involving hybrid components is viable by exploiting
the results presented here but this goes beyond the scope of this note
and is the subject of current research.

The dynamics of the haptic device (fast system) is modeled in dis-
crete time by sampling every Ts seconds the dynamics of a spring–mass
system (with mass m and damping b) through a passivity–preserving
discretization scheme as described in [12]. The forces exciting the
mass–spring system are the applied force Fext (acting as the input
to the overall system), the Coulomb friction Fc = c · sign (ẋ) acting
on the end effector, and the spring force (with stiffness K) from the
virtual environment (slow system), which is only allowed to change
every nTs (in seconds). The physical parameters of the system are
m = 0.01, b = 0.9, c = 0.1, K = 1, Ts = 10−4 , and n = 10 (in in-
ternational units).

Let x1 and x2 be the position and velocity, respectively, of the end-
effector. Let x3 be the value of x1 at multiples of the slow sampling
time nTs , and let x4 be the state of an auxiliary counter that is reset
every n steps. The overall system can be described as the fourth-order
PWA model (4), defined over four polyhedral cells (I = {1, 2, 3, 4}),
reported in [22]. The set S of admissible switches is S = I × I \
{(1, 1), (1, 3), (3, 1), (3, 3)}.

By applying the PWQ criterion of Theorem 1, a piecewise quadratic
storage function is found that proves the discrete-time passivity of the
system. When damping and Coulomb friction parameters are decreased
to b = 0.01 and c = 0.001, respectively, while Theorem 1 fails to
prove PWQ passivity, Theorem 3 provides a valid piecewise quartic
storage function. The expressions of both functions are reported in
[22].

VI. CONCLUSION

This note has proposed sufficient passivity analysis criteria for
discrete-time hybrid systems in PWA or PWP form, and a tool for
the synthesis of passifying state feedback piecewise linear control
laws for PWA systems. The proposed approach appears particularly
encouraging in the analysis and design of (possibly heterogeneous)
interconnected systems, such as those modeling human–machine
interaction.
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Controllability of a Leader–Follower Dynamic Network
With Switching Topology

Bo Liu, Tianguang Chu, Long Wang, and Guangming Xie

Abstract—This note studies the controllability of a leader–follower net-
work of dynamic agents linked via neighbor rules. The leader is a particular
agent acting as an external input to steer the other member agents. Based on
switched control system theory, we derive a simple controllability condition
for the network with switching topology, which indicates that the control-
lability of the whole network does not need to rely on that of the network
for every specific topology. This merit provides convenience and flexibility
in design and application of multiagent networks. For the fixed topology
case, we show that the network is uncontrollable whenever the leader has
an unbiased action on every member, regardless of the connectivity of the
members themselves. This gives new insight into the relation between the
controllability and the connectivity of the leader–follower network. We also
give a formula for formation control of the network.

Index Terms—Controllability, leader–follower networks, local interac-
tions, multiagent systems, switching topology.

I. INTRODUCTION

In recent years, control and coordination of multiagent network sys-
tems has emerged as a topic of major interest [1]–[22]. This is partly due
to broad applications of multiagent systems in cooperative control of
unmanned air vehicles, scheduling of automated highway systems, for-
mation control of satellite clusters, and congestion control in commu-
nication networks, etc. [2]–[19]. Studies in this direction have greatly
inspired by the ubiquitous cooperative behavior of biological swarms,
such as ant colonies, bird flocks, and fish schools etc., where collective
motions may emerge from groups of simple individuals through limited
interactions. So far, considerable efforts have been devoted to modeling
and understanding the cooperative and operational principles of such
collective behavior (e.g., [23]–[29] and the references therein). Yet,
some fundamental issues concerning control of multiagent networks,
such as the controllability of multiagent networks, are still lacking in
studies.

As in its usual sense in systems theory, the notion controllability of
a multiagent network means that the network system can be steered
from one state to another through certain regulations. In the context of
multiagent networks, however, the issue of controllability bears new
features and difficulties. In particular, as the dynamics of a network
relies crucially on its interconnection topology, it is therefore to think

Manuscript received August 21, 2006; revised June 27, 2007. Recommended
by Associate Editor J. Lygeros. This work was supported in part by the Na-
tional Science Foundation of China (NSFC) under Grant 60674047, Grant
60674050, and Grant 60404001, in part by the National 973 Program un-
der Grant 2002CB312200, in part by the National 863 Program under Grant
2006AA04Z258 and Grant 2006AA04Z247, and in part by the Specialized Re-
search Fund for the Doctoral Program of Higher Education (SRFDP) under
Grant 20060001013.

B. Liu is with the Intelligent Control Laboratory, Center for Systems and
Control, Department of Industrial Engineering and Management, College of
Engineering, Peking University, Beijing 100871, China. She is also with the
College of Science, North China University of Technology, Beijing 100041,
China (e-mail: boliu@ncut.edu.cn).

T. Chu, L. Wang, and G. Xie are with the Intelligent Control Labora-
tory, Center for Systems and Control, Department of Industrial Engineer-
ing and Management, College of Engineering, Peking University, Beijing
100871, China (e-mail: chutg@pku.edu.cn; longwang@mech.pku.edu.cn;
xieming@mech.pku.edu.cn).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TAC.2008.919548

0018-9286/$25.00 © 2008 IEEE


