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Abstract—This paper proposes a three-stage procedure for
parametric identification of piecewise affine autoregressive exoge-
nous (PWARX) models. The first stage simultaneously classifies
the data points and estimates the number of submodels and the
corresponding parameters by solving the partition into a min-
imum number of feasible subsystems (MIN PFS) problem for a
suitable set of linear complementary inequalities derived from
data. Second, a refinement procedure reduces misclassifications
and improves parameter estimates. The third stage determines a
polyhedral partition of the regressor set via two-class or multiclass
linear separation techniques. As a main feature, the algorithm
imposes that the identification error is bounded by a quantity .
Such a bound is a useful tuning parameter to trade off between
quality of fit and model complexity. The performance of the pro-
posed PWA system identification procedure is demonstrated via
numerical examples and on experimental data from an electronic
component placement process in a pick-and-place machine.

Index Terms—Bounded error, MIN PFS problem, nonlinear
identification, piecewise affine autoregressive exogenous models.

I. INTRODUCTION

WHEN linear models are not appropriate for describing
accurately the dynamics of a system, nonlinear identifi-

cation must be employed. Several nonlinear model structures
have been considered and their properties investigated in the
literature, see, e.g., the survey papers [1], [2], and references
therein. This paper focuses on the problem of identifying piece-
wise affine (PWA) models of discrete-time nonlinear and hybrid
systems from input-output data. PWA systems are obtained
by partitioning the state and input set into a finite number of
polyhedral regions, and by considering linear/affine subsystems
sharing the same continuous state in each region [3]. In other
words, the state and output maps of a PWA system are both
piecewise affine. PWA models represent an attractive model
structure for system identification. Thanks to the universal
approximation properties of PWA maps [4], [5], PWA models
form a nonlinear black-box structure, i.e. a model structure
that is prepared to describe virtually any nonlinear dynamics
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[1]. In addition, given the equivalence between PWA systems
and several classes of hybrid systems [6], [7], PWA system
identification is useful for estimating hybrid models from data.

The identification of a PWA model involves the estimation
of the parameters of the affine submodels and the hyperplanes
defining the partition of the state and input set (or the regressor
set, for models in regression form). This issue clearly underlies
a classification problem, namely each data point must be asso-
ciated to the most suitable submodel. As long as partitioning is
concerned, two alternative approaches can be distinguished: 1)
the partition is fixed a priori; and 2) the partition is estimated
together with the submodels. In the first case, data classifica-
tion is very simple, and estimation of the submodels can be
carried out by resorting to standard linear identification tech-
niques. In the second case, the regions are shaped to the clus-
ters of data, and the strict relation among data classification,
parameter estimation and region estimation makes the identi-
fication problem very hard to cope with. The problem is even
more complicated when also the number of submodels must
be estimated. A number of approaches dealing with the esti-
mation of PWA models of nonlinear dynamical systems can
be found in different fields, such as neural networks, electrical
networks, time-series analysis, function approximation. See [8]
for a nice overview and classification. Recently, novel contri-
butions to this topic have been proposed in both the hybrid
systems and the nonlinear identification communities. In [9],
piecewise affine ARX (PWARX) models are considered and
the combined use of clustering, linear identification, and pattern
recognition techniques is exploited in order to identify both the
affine submodels and the polyhedral partition of the regressor
set. In [10] the authors propose an algebraic geometric solution
to the identification of piecewise linear (PWL) models which
establishes a connection between PWL system identification,
polynomial factorization, and hyperplane clustering. [11] de-
scribes an iterative algorithm that sequentially estimates the pa-
rameters of the model and classifies the data through the use
of adapted weights. In [12] the identification problem is formu-
lated for two subclasses of PWA models, namely hinging hy-
perplane ARX (HHARX) and Wiener PWARX (W-PWARX)
models, and solved via mixed-integer linear or quadratic pro-
grams.

In this paper, a different approach inspired by ideas from
set-membership identification (see [13], [14], and references
therein) is proposed. The main feature is to impose that the iden-
tification error is bounded by a given quantity for all the sam-
ples in the estimation data set. In order to meet this condition,
the estimation of the number of submodels, data classification
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and parameter estimation are performed simultaneously by par-
titioning a suitable set of linear complementary inequalities de-
rived from data into a minimum number of feasible subsystems
(MIN PFS problem). A suboptimal solution to the MIN PFS
problem (which is an NP-hard problem) is obtained by applying
a modified version of the greedy algorithm proposed in [15]. A
refinement procedure is also employed in order to reduce mis-
classifications and to improve parameter estimates. Region esti-
mation is lastly performed via two-class [16], [17], or multiclass
[18], [19], linear separation techniques. The bound is used as
a tuning knob to trade off between quality of fit and model com-
plexity: The larger , the smaller the required number of sub-
models at the price of a worse fit of the data. Another interesting
feature of the approach is that a set of feasible parameters can
be associated to each submodel according to the bounded-error
condition, thus allowing the evaluation of the related parametric
uncertainty [13].

Preliminary versions of the proposed identification technique
appeared in [20] and [21]. The present version contains fur-
ther new material, including improvements of the greedy algo-
rithm used to initialize the identification procedure, and a way
to associate undecidable data points to submodels by a suit-
able reassignment in the classification process. In addition, a
case-study is presented, where the identification technique is
tested on real data from the electronic component placement
process in a pick-and-place machine [22].

II. PROBLEM STATEMENT

Given a discrete-time nonlinear dynamical system with input
, output , and possibly discontinuous dynamics,

let and be, respectively, past inputs and outputs gen-
erated by the system up to time . A PWARX model es-
tablishes a relationship between past observations
and future outputs in the form

(1)

where is the error term, is the regression vector
with fixed structure depending only on past outputs and
inputs

(2)

(hence, ), and is the PWA map

if
...

...
if

(3)

which is defined over the regressor set where the
PWARX model is valid. In (3), is the number of submodels
(or discrete modes), is the extended vector , and

, , are the parameter vectors of each
affine ARX submodel. The regions form a complete parti-
tion of (i.e., and , ,
where denotes the interior of ), and are assumed to be
convex polyhedra, described by

(4)

where , , and “ ” denotes compo-
nentwise inequality. Since the PWA map (3) is not assumed to
be continuous, with definition (4) could be multivalued over
common boundaries of the regions . This issue can be easily
overcome by making some of the inequalities strict in the defi-
nitions of the polyhedra .

Remark 1: In (4), is the number of linear inequalities
defining the th polyhedral region. As will be clarified in
Section V, in the identified model.

The identification of a PWARX model (1)–(4) from a finite
data set , , is a very complex problem
involving data classification and the estimation of ,
and . When the number of discrete modes is fixed,
the problem amounts to the reconstruction of the PWA map ,
and identification can be in principle carried out by minimizing
with respect to and , , the cost function

(5)

where is a given error penalty function, such as ,
or . Note that, if the regions , , are
fixed a priori and , the minimization of (5) is carried
out only with respect to , , and reduces to ordi-
nary least-squares. When both and , , must
be estimated, the problem is in general nonconvex and, hence,
much harder to solve. If the number of submodels must be also
estimated, the optimization problem should include additional
terms in the objective and/or additional constraints (e.g., bounds
on ), in order to limit the number of submodels and avoid
overfit. Several heuristic and suboptimal approaches that are
applicable, or at least related, to the identification of PWARX
models, have been proposed in the literature (see [8] for an
overview). Most of them look for good suboptimal solutions of
the minimization of (5), except the one in [12], where the global
optimum can be attained for two subclasses of PWA models by
reformulating the problem as a mixed integer linear or quadratic
program. As regards the number of submodels, most approaches
either assume a fixed , or adjust iteratively (e.g., by adding
one submodel at a time) until the quality of fit is acceptable.

Inspired by ideas from set-membership identification (see
[13], [14] and references therein), the approach presented in
this paper is based on imposing a bound on the error term

in (1) for all the samples in the estimation data set. Feasible
solutions of the identification problem are thus all PWARX
models (1)–(4) satisfying

(6)

for the given . The focus here is on providing a partic-
ular feasible solution. Since the number of submodels is nei-
ther assumed to be known, nor fixed a priori, in order to obtain
a model which is as simple as possible (where “simplicity” is
measured in terms of the number of submodels) the minimum
allowing to satisfy (6) is sought. Hence, the considered identifi-
cation problem is as follows.

Problem 1: Given data points , ,
and , estimate a minimum positive integer , a set of
parameter vectors , and a polyhedral partition
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Fig. 1. Flow diagram of the proposed PWA identification procedure. The
boxes correspond to the procedure steps, and the labels on the edges describe
the inputs and the outputs of each step.

of the regressor set , such that the corresponding PWARX
model (1)–(4) satisfies condition (6).

Note that solving Problem 1 involves to classify the available
data points into clusters such that if and
only if is attributed to the th mode.

The procedure proposed in this paper to solve Problem 1 con-
sists of three steps.

1) Raw classification and estimation via MIN PFS: Data
classification and parameter estimation are carried out
simultaneously, together with the estimation of the
number of submodels, by partitioning a suitable set of
linear inequalities derived from data into a minimum
number of feasible subsystems (MIN PFS problem).

2) Refinement: Misclassifications are reduced and param-
eter estimates are improved through an iterative pro-
cedure alternating between data reassignment and pa-
rameter update.

3) Region estimation: The clusters of regression vectors
are linearly separated via two-class or multiclass linear
separation techniques.

The first two steps will be described in Sections III and IV.
Region estimation will be addressed in Section V. A flow di-
agram clarifying the links between the three steps is shown in
Fig. 1.

It is worthwhile to point out that the bound is not neces-
sarily given a priori, rather it is used as a tuning knob of the
identification procedure. As discussed in Section III-C, can
be adjusted in order to find the desired tradeoff between model
complexity and quality of fit, because the smaller , the larger
is typically the number of submodels needed to fit the data to a
PWA map (3), while on the other hand, the larger , the worse
is the quality of fit, since larger errors are allowed. The case of
different bounds for each data point can be always cast into (6)
by suitably scaling the data.

Fig. 2. Affine subsystems, partition of the regressor set, and available data
points in Example 1.

In the following, pointwise parameter estimates will be com-
puted through the projection estimator [13]. Given a set
of data points , the projection estimate is defined as

(7)

where . Problem (7) can be solved via linear pro-
gramming. The projection estimate is preferred because it
has favorable properties in the refinement procedure, as shown
in Section IV-A. However, it can be replaced by any other pro-
jection estimate, such as least squares.

Remark 2: Problem 1 can be easily extended to multioutput
models (or models in state–space form for which the whole state
is measurable). In this case, the output of the system is ,
the PWA map is a -valued function, and (6) is replaced by

(8)

The approach to the solution of Problem 1 presented in this
paper is also applicable to the case , provided that small
amendments to the procedures described in Sections III and
IV are introduced. The reader is referred to [23] for a detailed
description.

The following example will be used throughout the paper to
clarify the different steps of the identification procedure.

Example 1: Let data points be generated
by the following PWARX system [20]:

if

if
and

if

where . The number of modes is . The
input signal and the noise signal are uniformly distributed
on [ 4,4] and on [ 0.2,0.2], respectively. The data points avail-
able for estimation are shown in Fig. 2. From left to right, 54,
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83, and 63 data points are, respectively, generated by the three
affine subsystem.

III. RAW CLASSIFICATION AND ESTIMATION VIA MIN PFS

For the moment, let us not address the estimation of the hyper-
planes defining the polyhedral partition of the regressor set, and
focus our attention on determining a suitable number of sub-
models, classifying the data points, and estimating the affine
submodels. In view of condition (6), this is accomplished by
solving the following problem.

Problem 2: Given , find the smallest number of
vectors , , and a mapping such that

for all .
Problem 2 consists in finding a partition of the system of

linear complementary inequalities

(9)

into a minimum number of feasible subsystems (MIN PFS
problem). Given any solution of Problem 2, the partition of
the linear complementary inequalities (9), i.e., the mapping

, provides the classification of the data points,
whereas according to the bounded error condition each feasible
subsystem defines the set of feasible parameter vectors for the
corresponding affine submodel [13]. Note that each inequality
in (9) is termed a linear complementary inequality because it
corresponds to the pair of linear inequalities

(10)

The MIN PFS problem is NP-hard. Hence, in [20], Problem
2 was tackled by resorting to the greedy randomized algorithm
proposed in [15]. The basic idea of the algorithm is to find a
vector that makes the inequalities in (9) true for as many
as possible (MAX FS problem), then remove those satisfied
inequalities and repeat over the remaining ones, until all in-
equalities have been accounted for. In the following, a modified
version of the algorithm [15] is proposed in order to obtain a
number of feasible subsystems which is typically closer to be
minimal.

A. A Greedy Algorithm for the MIN PFS Problem

The greedy approach [15] to the MIN PFS problem divides
the overall partition problem into a sequence of MAX FS sub-
problems, each one consisting in finding a vector that satisfies
the maximum number of linear complementary inequalities of
the system at hand. Starting from (9), feasible subsystems of
maximum cardinality are iteratively extracted (and the corre-
sponding inequalities removed), until the remaining subsystem
is feasible.

Finding a feasible subsystem of maximum cardinality of
a system of linear complementary inequalities (MAX FS
problem) is still an NP-hard problem [24]–[26]. Thus, a ran-
domized and thermal relaxation method providing (suboptimal)
solutions with a limited computational burden is also proposed
in [15].

TABLE I
MODIFIED GREEDY ALGORITHM FOR THE MIN PFS PROBLEM WITH

COMPLEMENTARY INEQUALITIES

TABLE II
MODIFIED RANDOMIZED AND THERMAL RELAXATION ALGORITHM FOR THE

MAX FS PROBLEM WITH COMPLEMENTARY INEQUALITIES

However, due to both the suboptimality of the greedy ap-
proach to the MIN PFS problem and the randomness of the al-
gorithm for the MAX FS problem, the greedy randomized al-
gorithm [15] is not guaranteed to find the minimum number of
feasible subsystems. In particular, it has been observed in ex-
tensive trials that both the variance of the results may be quite
large (i.e. the number of extracted subsystems may differ con-
siderably from trial to trial), and the average number of extracted
subsystems may be rather far from the minimum (see Example
2).

Based on the previous discussion, the algorithm in [15] has
been modified as shown in Table I, where denotes the car-
dinality of a finite set , and denotes the difference of two
sets and . The enhanced algorithm differs from the original
version for the addition of the WHILE loop. Let be the system
consisting of the remaining inequalities after having extracted

feasible subsystems from (9), and let be a (suboptimal)
solution of the MAX FS problem for system (see Algorithm
2 in Table II). The solution is applied to the systems with

(WHILE loop). Note that is a subsystem of for all
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, so that satisfies at least as many complementary in-
equalities in as in . Let be the smallest index , if any,
such that satisfies a larger number of complementary inequal-
ities in than those satisfied by . Then, the best solution
for system is set equal to , and is reset to . Since the
number of data points is finite, the algorithm terminates in a fi-
nite number of steps.

Improvements obtained by the proposed modification to the
original algorithm are twofold. First, the cardinalities of suc-
cessively extracted subsystems are not increasing, as one would
expect if all MAX FS problems were solved exactly. Second,
it favors the construction of subsystems with larger cardinality
(e.g., by making it possible to merge subsystems of complemen-
tary inequalities that might be satisfied by the same parameter
vector, but were extracted at different MAX FS iterations due to
the suboptimality of Algorithm 2). The second improvement is
also pursued by suitably modifying the algorithm for the MAX
FS problem in [15], as will be described in the next subsection.

B. A Relaxation Algorithm for the MAX FS Problem

Given a system of complementary inequalities like (9), the
problem of finding a vector that makes the inequalities true
for as many as possible, is an extension of the combina-
torial problem of finding a feasible subsystem of maximum
cardinality of an infeasible system of linear inequalities, which
is known as MAX FS problem. Since the MAX FS problem
is NP-hard, its extension with complementary inequalities
is tackled in [15] by resorting to a randomized and thermal
variant of the classical Agmon–Motzkin–Schoenberg relax-
ation method for solving systems of linear inequalities. In this
section, some modifications to the original algorithm [15] are
proposed in order to get a feasible subsystem whose cardinality
is typically closer to be maximal.

The modified algorithm for the MAX FS problem with com-
plementary inequalities is shown in Table II. It differs from the
original version for the addition of the final IF statement. The al-
gorithm requires to define a maximum number of cycles ,
an initial temperature parameter , an initial estimate

(e.g., randomly generated or computed through
least squares), and a coefficient . It consists in a
simple iterative procedure generating a sequence of esti-
mates, where is the iteration counter, and
is the number of complementary inequalities of the current sub-
system of (9) (see Algorithm 1 in Table I). During each of the

outer cycles, all the complementary inequalities of are
selected in the order defined by a prescribed rule (e.g., cyclicly
or uniformly at random without replacement). If is the index
of the complementary inequality considered at iteration , the
current estimate is updated as follows:

(11)

where is the violation of the th complementary inequality

if
if
otherwise

(12)

Fig. 3. Geometric interpretation in the parameter space of a single iteration
of the relaxation algorithm for the MAX FS problem with complementary
inequalities (� 2 ).

and the step size decreases exponentially with

(13)

Geometrically, the inequality defines a hyper-
strip in the parameter space (see Fig. 3). If the current estimate

belongs to the hyperstrip (i.e. satisfies the th
complementary inequality), then is set equal to . Oth-
erwise, is obtained by making a step toward the hyperstrip
along the line orthogonal to the hyperstrip and passing through

. The basic idea of the algorithm is to favor updates of the
current estimate which aim at correcting unsatisfied inequalities
with a relatively small violation. Decreasing attention to unsatis-
fied inequalities with large violations (whose correction is likely
to corrupt other inequalities that the current estimate satisfies) is
obtained by introducing the decreasing temperature parameter

to which the violations are compared.
If the cycle counter is greater than (last IF statement),

the current best solution (i.e. the one that has satisfied
the largest number of complementary inequalities so far), is re-
placed by the projection estimate (7). More precisely, de-
noting by the set of data points such that the corre-
sponding inequality is in and is satisfied by
the current ( in the following), is updated as fol-
lows:

(14)

The new satisfies at least as many complementary inequal-
ities in as , since

(15)

and could possibly satisfy more complementary inequalities
than , thus providing a better solution of the MAX FS
problem for system . It was found experimentally that suit-
able values for lie between 0.7 and 0.8. Indeed, the current
solution (and hence the number of satisfied complemen-
tary inequalities of ) would not change significantly as
approaches , because the temperature parameter to which
the violations are compared becomes smaller and smaller. By



1572 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 50, NO. 10, OCTOBER 2005

resetting to the current best solution (14) at the exit of a
cycle when approaches , one focuses the future search in a
neighborhood of , where it is more likely to satisfy a larger
number of complementary inequalities. The solution
returned by the algorithm is the one that, during the overall
process, has satisfied the largest number of complementary
inequalities. It is, however, not guaranteed to be optimal, due
to the randomness of the search.

For the choice of , the reader is referred to [15]. In general,
the larger the value of , the better the solution, at the price
of a longer computation time. Typical good choices for are

[23].
Example 2: In order to show the improvements of the mod-

ified randomized greedy algorithm for the MIN PFS problem
(Tables I and II) with respect to the original version [15], the
two algorithms are applied to a system of complementary in-
equalities derived from data points generated by a
PWARX system with orders and , sub-
models, and zero-mean Gaussian noise with variance .

independent runs of the two algorithms are carried
out with the same choice of the parameters ,
and . In addition, is used in the
modified algorithm. The frequency of the number of extracted
feasible subsystems and their average cardinality over the
trials are computed for both algorithms. The results are shown
in Fig. 4. The original algorithm extracts a number of feasible
subsystems varying between 12 and 22 over the trials. The
average is 18 subsystems, which is very far from the minimum,
namely . Moreover, the variance of the results is quite
large. On the other hand, the modified algorithm extracts an
average number of five feasible subsystems, with the number
of feasible subsystems varying between four and seven over
the trials. In addition, the average cardinality of the subsys-
tems extracted after the fourth one is less than the 0.3% of the
total number of complementary inequalities. These subsystems,
that account for very few data points, can be easily discarded
(this issue is addressed in Section IV-B). It is clear from Fig. 4
(bottom) that the better performance of the modified algorithm
is due to the fact that it is able to extract feasible subsystems of
larger cardinality in the first iterations. On the contrary, after ex-
tracting some large subsystems, the original algorithm starts to
extract many small subsystems. It is worthwhile to note that the
average computation time was 7.53 s for the original algorithm
and 6.35 s for the modified algorithm by running MATLAB 6.5
on a 1-GHz Intel Pentium III.

Example 1 (continued): The initialization of the identifica-
tion procedure provides submodels for the given data set
with the choice (equal to the true bound on the noise).
The other parameters of the greedy algorithm are ,

, , and cyclic selection of the complemen-
tary inequalities is used. Note that the estimated number of sub-
models equals the true one. The corresponding three clusters of
regression vectors are shown in Fig. 5, where some data points
marked with circles clearly look as misclassified. They are un-
decidable data points (i.e., consistent with more than one sub-
model), that have been associated by the greedy strategy to the
compatible submodel corresponding to the largest feasible sub-
system extracted from (9).

Fig. 4. Results of the application of the original and the modified version of
the randomized greedy algorithm for the MIN PFS problem in Example 2. Top:
Frequency of the number of extracted feasible subsystems. Bottom: Average
cardinality of the extracted feasible subsystems.

Fig. 5. Initial classification of the regression vectors in Example 1. Each mark
corresponds to a different cluster, for a total of three clusters. From left to right,
the three clusters consist of 51, 87, and 62 points, respectively. The dashed lines
represent the true partition of the regressor set, which is unknown during the
identification process.
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C. On the Choice of

For too large values of , very large subsystems of (9) are
feasible, and beyond a certain value the whole system (9) be-
comes feasible, which corresponds to fitting a linear model to
the data set. Hence, for large the identified PWARX model
is simple because it contains very few affine submodels, but the
submodels do not fit well the corresponding data points, as large
errors are tolerated. Conversely, small values of may lead to a
very large number of subsystems. In this case overfit may occur,
i.e., the model starts to adjust to the particular noise realization.

When a priori information on the system structure and the
noise characteristics is not available, an appropriate value of

can be selected by solving Problem 2 for different values
of . Given the limited computational burden of the random-
ized greedy algorithm for the MIN PFS problem, the curves ex-
pressing the number of feasible subsystems of (9) and the av-
erage quadratic error

(16)

as a function of , can be easily plotted. Typically, when in-
creases starting from a very small value, the number of feasible
subsystems decreases first sharply, and then more smoothly after
a certain value of . Conversely, the average quadratic error in-
creases with . An appropriate value of should be chosen close
to the knee of the first curve, trying to keep the average quadratic
error small, as shown in the following example.

Example 3: data points generated by a PWARX
system composed by subsystems with orders
and , are considered. The additive noise is normally
distributed with zero mean and variance , and the
signal-to-noise ratio is about 10. The number of feasible sub-
systems of (9), and the corresponding average quadratic error
are plotted as a function of in Fig. 6. For values of below 0.9

, the average quadratic error is small, but the large
number of submodels clearly indicates overfit of the data. For
values of between 0.9 and 1.9 , the number of sub-
models remains constant and equal to the true number ,
whereas the average quadratic error grows moderately with .
For values beyond , system (9) becomes feasible, and
only one submodel is sufficient. It is clear in Fig. 6 that the
best tradeoff between model accuracy and model complexity is
achieved in this example for ranging from 0.9 to 1.1.

IV. REFINEMENT

The raw classification and estimation step described in Sec-
tion III returns an estimate of the number of submodels, and
the sets of indices , , characterizing the fea-
sible subsystems extracted from (9). These provide the initial
classification of the data points into the clusters

, .
Such estimate of the number of affine submodels and classi-

fication of the data points may suffer two drawbacks. The major
one is that it is not guaranteed to yield minimum partitions,
i.e., due to both the suboptimality of the greedy approach and
the randomness of the algorithm used to tackle each MAX FS
problem, the number of feasible subsystems extracted from (9)

Fig. 6. Number of submodels (top) and average quadratic error (bottom)
versus the error bound � in Example 3.

might be not minimal. The second drawback is related to a kind
of ambiguity that is inherent with the data. Some data points may
be consistent with more than one affine submodel, i.e. they may
satisfy for more than one . These
data points are termed undecidable. Due to the undecidable data
points, the cardinality and the composition of the feasible sub-
systems could depend on the order in which they are extracted
from (9), as shown in Example 1.

In order to cope with the previous drawbacks, a procedure
for the refinement of the estimates is presented in Table III. It
consists of a basic procedure (steps 2, 4, 5, and 6) whose aim is to
improve iteratively both data classification and quality of fit by
properly reassigning the data points and updating the parameter
estimates. The basic procedure is illustrated in Section IV-A.
The additional steps 1 and 3 allow one to reduce the number
of submodels by exploiting parameter similarities and cluster
cardinalities. These are described in Section IV-B.

A. Dealing With Undecidable Data

As discussed before, there may exist undecidable data points
that satisfy for more than one index
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TABLE III
ALGORITHM FOR THE REFINEMENT OF THE ESTIMATES

. Undecidable data points could be classified correctly only by
exploiting the partition of the regressor set, which is however
not available at this stage of the identification process. When
solving Problem 2 via the greedy strategy described in Sec-
tion III-A, undecidable data points are classified depending on
the order in which the feasible subsystems are extracted from
(9), as it was also clear in Example 1. As an alternative, each un-
decidable data point could be associated a posteriori to
the submodel such that the identification error is minimized,
namely

(17)

Both criteria may lead to misclassifications when the partition of
the regressor set is estimated (see Fig. 7). Thus, in [20], undecid-
able data points were discarded during the classification process.
Although this approach works well in many cases, a nonneg-
ligible amount of information is lost when a large number of
undecidable data points shows up. Hence, a modification to the
classification procedure is proposed here in order to attribute
undecidable data points to submodels by exploiting spatial lo-
calization. This improves both the data classification (in view of
the estimation of the regions) and the parameter estimates.

Initial parameter estimates for each submodel are computed
through the projection estimator (7). Then, at each iteration
indexed by , all data points are processed in step 2 of
the refinement procedure, and classified as feasible, infeasible or

Fig. 7. PWA model with two discrete modes, x 2 . The gray set represents
the region of all possible undecidable data points for a fixed �. By applying
both the greedy strategy for the MIN PFS problem and the criterion (17), the
only undecidable data point in the data set (the black circle) is attributed to the
submodel on the left. This yields two nonlinearly separable clusters of points.

undecidable according to the current estimated parameter vec-
tors , . A feasible data point satisfies
the complementary inequality

(18)

for only one , say . Hence, it can be uniquely asso-
ciated to the th submodel, and assigned to the corresponding
cluster . Note that the classification of the feasible data
points induces also a classification of the (feasible) regression
vectors into the clusters

(19)

Infeasible data points do not satisfy (18) for any .
If the corresponding violations are large, they are most likely
outliers and are, therefore, neglected. Undecidable data points
satisfy (18) for more than one , i.e., they are consis-
tent with more than one submodel.

Step 4 tries to solve the ambiguity concerned with unde-
cidable data points by exploiting spatial localization in the
regressor set. The feasible points around are indeed ex-
pected to provide useful information for correctly classifying
the undecidable data point . To this aim, let be
the set of the feasible regression vectors nearest to , where

is a fixed positive integer and the Euclidean distance is used.
If all points in belong to the same cluster , then

can be most likely associated to submodel , provided
that also

(20)

is satisfied. However, may in general contain regression
vectors from different sets . A candidate submodel is then
selected by computing the sets for all

, and the index such that the cardinality of
is maximized, i.e.,

(21)

If satisfies (20), then it is associated to the th sub-
model and assigned to , otherwise it is left as undecidable.
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Extensive tests have shown that this heuristic criterion is very ef-
fective in reducing the number of undecidable data points, thus
improving data classification. However, it is still conservative,
because is left as undecidable if (20) is not satisfied.

New parameter estimates for each submodel are computed in
step 5 through the projection estimator (7). The use of the

projection estimate is favorable here because it guarantees
that no feasible data point at refinement becomes infeasible at
refinement , since for all

(22)
Good choices for the parameter in step 4 depend on the den-

sity of the data set. A small may originate sets which do
not contain enough points for correct classification. On the other
hand, for large values of , a set might contain points dis-
tant from . In this case, the data point could be badly
assigned to a “far” cluster, or left undecidable. Indeed, if many
data points are still classified as undecidable at the exit of the
refinement procedure, one can reduce , and repeat Algorithm
3. The parameter is the tolerance used to check the termi-
nation condition in step 6. A default value could be .

B. Reducing the Number of Submodels

If the initialization procedure provides an overestimation of
the number of submodels needed to fit the data, this number
can be reduced by exploiting parameter similarities and cluster
cardinalities. Two submodels and characterized by similar
parameter vectors can be merged in step 1, where

(23)

is used as a measure of the similarity of vectors and .
The joined parameter vector at iteration is computed as

. Note that a large number of undecidable
data points is likely to show up in step 2 when two parameter
vectors are very close. If the cardinality of a cluster of feasible
data points is too small, the corresponding submodel (which
accounts only for few data) can be discarded in step 3.

The nonnegative thresholds and in steps 1 and 2 should
be suitably chosen in order to reduce the number of submodels
still preserving a good fit of the data. Tentative values for and

may be chosen after computing and in the first

iteration of Algorithm 3. If , a rule of thumb is to

take . Similarly, if , one may take

. The user may also choose larger values of and so as
to impose the reduction of the number of submodels. However,
for too large values of and , a large number of infeasible
data points will typically show up as the number of submodels
decreases and some significant submodel is neglected. One can
use this information in order to adjust and , and then repeat
Algorithm 3.

Example 1 (continued): Fig. 8 shows the classification of the
regression vectors provided by the refinement procedure. The
parameters and are not used (a reduction of the number of
submodels would result deleterious for the fit), and the other

Fig. 8. Classification of the regression vectors (triangles, circles, diamonds)
in Example 1 after the refinement. The dashed lines represent the true partition
of the regressor set. All data points are correctly classified.

TABLE IV
TRUE (~� ) AND ESTIMATED (� ) PARAMETER VECTORS IN EXAMPLE 1

parameters of the procedure are and . The ter-
mination condition is reached after three refinements. All data
points are correctly classified, and no data point is left unde-
cidable or infeasible. In particular, all undecidable data points
are correctly associated to submodels by exploiting spatial lo-
calization in the regressor set (compare Fig. 5 and Fig. 8). The
parameter vectors estimated for the three submodels are shown
in Table IV.

V. REGION ESTIMATION

Given the clusters , , of feasible data points re-
turned by the refinement procedure, consider the corresponding
sets of regression vectors

(24)

The region estimation problem consists in finding a complete
polyhedral partition of the regressor set such that

for all . The polyhedral regions (4) are
defined by hyperplanes. Hence, the problem of region estima-
tion is equivalent to that of separating sets of points by means
of linear classifiers (hyperplanes). Note that a hyperplane sepa-
rating without errors the points in from those in , ,
does not exist if the sets and have intersecting convex
hulls. In this case, one will look for a separating hyperplane that
minimizes some misclassification index.

Linear separation of the sets can be tackled in
two different ways.

a) Construct a linear classifier for each pair ,
with .
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Fig. 9. Linear separation of four sets of points: pairwise linear separation (left)
and piecewise linear separation (right). The partition on the left is not complete
(the gray area is not covered).

b) Construct a piecewise linear classifier which is able to
discriminate among classes.

In the first approach, a separating hyperplane is constructed
for each pair , with . This amounts to solve

two-class linear separation problems. Redundant
hyperplanes (i.e., not contributing to the boundary of the
corresponding region) can be eliminated a posteriori through
standard linear programming techniques, so that the number
of linear inequalities defining the th polyhedral region is

. Linear separation of two sets can be accomplished
by resorting to, e.g., robust linear programming (RLP) [16] or
support vector machines (SVM) [17] methods. Both RLP and
SVM look for a separating hyperplane of two sets that addition-
ally minimizes a weighted sum of the misclassification errors.
An alternative method is to look for a separating hyperplane
that minimizes the number of misclassified points. As detailed
in [20], this is equivalent to solving a MAX FS problem.
Approach a) is computationally appealing, since it does not
involve all the data simultaneously. A major drawback is that
the estimated regions are not guaranteed to form a complete
partition of the regressor set when , as shown in Fig. 9
(left). This drawback is quite important, since it causes the
model to be not completely defined over the whole regressor
set.

If the presence of “holes” in the partition is not acceptable,
approach b) can be employed to solve a multiclass linear separa-
tion problem, where a piecewise-linear classifier is constructed
as the maximum of linear classification functions. A first way
[19], [27], to tackle the multiclass problem is to compute the
linear classifiers by separating each set from the union of
all the others. This requires the solution of two-class linear
separation problems. Unless each set is linearly separable
from the union of the remaining sets, this approach has the
drawback that multiply classified points or unclassified points
may occur, when all classifiers are applied to the original data
set. This ambiguity is avoided by assigning a point to the class
corresponding to the classification function that is maximal at
that point. A second way to tackle the multiclass problem is to
directly construct classification functions such that, at each
data point, the corresponding class function is maximal. Clas-
sical two-class separation methods such as SVM and RLP have
been extended to this multiclass case [18], [19]. The resulting
methods are called multicategory SVM (M-SVM) or multicate-
gory RLP (M-RLP), to stress their ability of dealing with prob-

Fig. 10. Final classification of the regression vectors (triangles, circles,
diamonds), and true (dashed lines) and estimated (solid lines) partition of the
regressor set in Example 1.

lems involving more than two classes. Multiclass linear sepa-
ration problems involve all the available data, and therefore ap-
proach b) is computationally more demanding than approach a).
For a more detailed overview of several linear separation tech-
niques, see [23].

If a large number of misclassified points shows up when lin-
early separating two sets and , it probably means that at
least one of the two clusters corresponds to either a nonconvex
region (which then needs to be split into convex polyhedra),
or nonconnected regions where the submodel is the same. Re-
call that the classification procedure groups together all the data
points that are fitted by the same affine submodel. Efficient tech-
niques for detecting and splitting the clusters corresponding to
such situations, are currently under investigation.

Once the regions have been estimated, all the data points
can be finally classified by exploiting both the partition and the
bounded-error condition (6). For , if
for some , and , then is
assigned to the cluster , otherwise it is marked as infeasible.
A feasible parameter set

(25)
can be also associated to the th submodel, thus allowing the
evaluation of the related parametric uncertainty [13].

Example 1 (continued): The final classification of the regres-
sion vectors, and the estimated partition of the regressor set are
shown in Fig. 10. The partition is estimated through SVM. The
line separating triangles and diamonds is not drawn, since it is
redundant, while the two solid lines are defined by the coeffi-
cients vectors:

that are very close to the true ones.
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TABLE V
NUMERICAL EXAMPLE: TRUE (~� ) and estimated (� ) PARAMETER VECTORS

VI. EXAMPLES AND APPLICATIONS

In this section, the performance of the proposed PWA identi-
fication procedure is demonstrated on a numerical example, and
on experimental data from an electronic component placement
process in a pick-and-place machine. The effective use of the
parameter of the procedure as a tuning knob to trade off be-
tween model complexity and quality of fit is shown.

A. A Numerical Example

The proposed identification procedure is applied to fit the
data generated by a discontinuous PWARX system with orders

and , and regions. The input signal is
generated according to a uniform distribution on [ 5, 5], and
the noise signal from a normal distribution with zero mean and
variance . The estimation data set contains
data points, of which 292, 234, 361, and 113 are generated by
each of the four subsystems, respectively. The SNR is about 17.
The bound is chosen equal to 1.4, approximately . Since
the noise is normally distributed, pointwise estimates of the pa-
rameters are computed by least squares. The initialization with

, and provides the correct number
of submodels, and clusters containing 363, 287, 229 and

121 data points, respectively. The refinement procedure is run
with , and terminates after 5 iterations. The estimated
parameter vectors after the refinement are shown in Table V. At
this stage, the classification of the data points consists of clusters
with 293, 207, 365 and 101 data points, respectively. One data
point is infeasible, and only 33 data points out of 350 are left
undecidable. Then, the regions are estimated by M-RLP. The
final reassignment of the data points provides clusters with 291,
235, 360 and 113 data points. Only one data point is left infea-
sible. The 99.7% of the data points are correctly classified.

The model is validated by computing the residuals on
validation data. The plot of the residuals is shown in Fig. 11.

They are mostly contained in the interval . Recall that the
noise follows a normal distribution, and that is taken .
Spikes are due to discontinuity of the PWA map and to re-
gression vectors incorrectly classified because of errors in es-
timating the regions. For them, the wrong parameter vector is
used to compute the prediction. Errors in the estimation of the
switching surfaces from a finite data set are in general inevitable.
This example shows that such errors can be detected and cor-
rected a posteriori during the validation of the model. When
distinct spikes show up in the plot of the residuals, the corre-
sponding data points can be re-attributed, e.g., to the nearest re-
gion with a compatible submodel, and the augmented data set
used to re-estimate the regions.

Fig. 11. Plot of the residuals on validation data in the numerical example.
The dashed lines limit the interval [��; �]. Spikes are due to regression vectors
incorrectly classified, and to discontinuity of the PWA map.

Note that this example is quite challenging due to the high
number of parameters to be estimated with respect to the avail-
able data, and the high number ( 35%) of undecidable data.
The solution is determined in about 15 s by running Matlab 6.5
on a 1-GHz Intel Pentium III.

B. A Case Study

We apply the proposed identification procedure to model the
electronic component placement process described in [22]. The
process consists of a mounting head carrying the electronic
component. The component is pushed down until it comes
in contact with the circuit board, and then is released. A real
experimental setup consisting of a mounting head and an im-
pacting surface simulating the printed circuit board, is used to
gather the input-output data used for identification. A physical
model of the experimental setup is shown in Fig. 12. The
mounting head is represented by the mass , whose movement
is only enabled along the vertical axis. The springs and

simulate elasticity. The dampers and provide linear
friction, while the blocks and provide dry friction. The
input to the system is the voltage applied to the motor driving
the mounting head, represented by the force in Fig. 12. The
output of the system is the position of the mounting head. The
reader is referred to [22] for a more detailed description of the
experimental setup.

A data record over an interval of 15 s is available. The con-
sidered data set is sampled at 150 Hz. Two modes of operation
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Fig. 12. Identification of the mounting head: physical model of the
experimental setup.

Fig. 13. Data sets used for estimation (top) and validation (bottom) in the
identification of the mounting head. The solid and the dashed lines represent
the system output and the scaled input, respectively.

are excited. In the free mode, the mounting head moves uncon-
strained, i.e., without being in contact with the impacting sur-
face. In the impact mode, the mounting head moves in contact
with the impacting surface. Input-output data used for identifica-
tion and validation are plotted in Fig. 13. Nonlinear phenomena
due to dry friction damping are evident in both data sets, e.g., in
the upper plot of Fig. 13 on the interval (500, 750). A PWARX
model structure with orders and is considered.
By choosing , , and , models with

, , and discrete modes, respectively, are iden-
tified from estimation data. For completeness, also
a single ARX model with the same model orders is
identified. For and , M-RLP linear separation tech-
niques are applied in the region estimation step in order to avoid
“holes” in the partition. Validation is then carried out by evalu-
ating the fit between the measured and the simulated responses
using validation data. By letting
be the vector of system outputs, the mean value of , and

TABLE VI
IDENTIFICATION OF THE MOUNTING HEAD: FIT BETWEEN THE MEASURED AND

THE SIMULATED RESPONSES WITH THE IDENTIFIED PWARX MODELS

Fig. 14. Identification of the mounting head: plot of the residuals on validation
data using the identified PWARX model with s = 4 discrete modes. The dashed
lines limit the interval [��; �].

the vector of simulated outputs, the values
of the following measure of fit [28]:

(26)

are shown in Table VI for the four identified models. These
values demonstrate that the fit improves as the number of
submodels increases, i.e., as smaller and smaller values of
are chosen in the identification procedure. We stress that single
ARX models are also identified for all combinations of the
model orders and . The best
value of the fit obtained on validation data is 80.00% for

and .
In Fig. 15, the plots of the simulated responses are graphically

compared to the measured response. Fig. 15 (left) clearly shows
that two affine submodels are not sufficient for accurately repro-
ducing the system dynamics. Very good accordance between the
measured and the simulated responses is instead obtained with

and submodels. Difficulties of the identified models
in reproducing the nonlinear phenomena on the interval (210,
240) are likely to be due to incomplete information provided
by the estimation data. Indeed, in the estimation data set (upper
plot of Fig. 13), all significant transitions of the output from low
to high values show an overshoot. Consequently, an overshoot
shows up in the simulated responses on the intervals (60,140)
and (210 240), that are both generated by the same sequence
of affine submodels, and are caused by large variations of the
input signal. It is interesting to note that the identified model
with discrete modes is able to reproduce very faithfully
the peak in the interval (60,140). The discrete mode evolution in
Fig. 15 (left) clearly shows that one of the two submodels is ac-
tive in situations of high incoming velocity of the mounting head
(i.e. rapid transitions from low to high values of the mounting
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Fig. 15. Simulation results for the mounting head using the identified PWARX models with s = 2 (left), s = 3 (center), and s = 4 (right) discrete modes. Top:
simulated output (solid line) and system output (dashed line). Bottom: evolution of the discrete mode.

head position). One submodel modeling the same situation is
also present in the identified models with and dis-
crete modes.

For completeness, the plot of the residuals on validation data
using the identified PWARX model with discrete modes
is shown in Fig. 14. Note that the residuals are mostly contained
in the interval , although the bound on the error cannot
be guaranteed on data not used for estimation.

VII. CONCLUSION

In this paper, a novel procedure for the identification of
PWARX models from input–output data has been presented
and discussed. The key approach is the selection of a bound

on the identification error, that enables one to address si-
multaneously the three issues of data classification, parameter
estimation and estimation of the number of submodels via
the solution of the MIN PFS problem for a suitable set of
linear inequalities derived from data. A refinement procedure
improves both data classification and parameter estimation by
alternating between data point reassignment and parameter
update. In this phase, outliers may be detected and discarded,
as well as the ambiguity concerned with undecidable data
points may be solved. The final step is the estimation of the
partition of the regressor set, that is carried out by resorting
to either two-class or multiclass linear separation techniques.
The performance of the proposed identification procedure with
respect to noise, overestimated model orders and classification
accuracy is analyzed in the recent comparison papers [29], [30]
through extensive testing.

Current research concerns the possibility to include in the
identification procedure the a priori knowledge on the system to
be identified (e.g., saturations, thresholds, dead-zones, Wiener,
or Hammerstein structures), as well as to identify submodels
of different orders for each discrete mode. Techniques for effi-
ciently detecting and handling nonconvex regions, or noncon-
nected regions where the parameter vector is the same, are also
currently investigated.

An interesting issue would be to define suitable criteria for
validating the identified PWA models. Classical criteria like
residual analysis and whiteness tests could be not satisfactory
for this class of models. Since the switching surfaces cannot
be determined exactly from a given finite estimation data set,
even small errors in estimating the boundaries of the regions
might determine large residuals, if the system dynamics is
discontinuous. In this respect, it would be also useful to provide

bounds on the errors when reconstructing the regions. Exper-
iment design and order selection are other issues of interest.
In particular, the choice of the input signal for identification
should be such that not only all the affine dynamics are suffi-
ciently excited, but also accurate shaping of the boundaries of
the regions is possible.
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