
18 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 59, NO. 1, JANUARY 2014

An Accelerated Dual Gradient-Projection Algorithm
for Embedded Linear Model Predictive Control

Panagiotis Patrinos and Alberto Bemporad, Fellow, IEEE

Abstract—This paper proposes a dual fast gradient-projection
method for solving quadratic programming problems that arise in
model predictive control of linear systems subject to general poly-
hedral constraints on inputs and states. The proposed algorithm is
well suited for embedded control applications in that: 1) it is ex-
tremely simple and easy to code; 2) the number of iterations to
reach a given accuracy in terms of optimality and feasibility of
the primal solution can be tightly estimated; and 3) the computa-
tional cost per iteration increases only linearly with the prediction
horizon.

Index Terms—Computational methods, optimization algo-
rithms, predictive control for linear systems.

I. INTRODUCTION

M ODEL predictive control (MPC) is continuously
gaining popularity in industry to solve a very wide

spectrum of control problems due to its ability to explicitly
optimize closed-loop performance and to take into account con-
straints on command inputs, internal states, and outputs [1]–[3].
The key enabler for the spread of MPC in industry is the avail-
ability of algorithms that can solve the quadratic program (QP)
associated with MPC online at each sampling step. This means
the availability of embedded optimization algorithms for QPs
that: 1) can provide a solution within the available sampling
interval (e.g., 10 ms in a typical automotive application) on
relatively simple control hardware (e.g., a microcontroller or
a field-programmable gate array); 2) require a small memory
footprint to store the data defining the optimization problem
and the code implementing the optimization algorithm itself; 3)
lead to a control code that is simple enough to be software-cer-
tifiable, especially in safety-critical applications; and 4) have
worst-case execution time that is well predictable, in order to
satisfy hard real-time system requirements.
During the last years various researchers have spent consid-

erable efforts to develop algorithms that address the above re-
quirements. To date, many good algorithms and packages for

Manuscript received August 05, 2012; revised February 12, 2013 and June 27,
2013; accepted June 27, 2013. Date of publication July 30, 2013; date of current
version December 19, 2013. This work was supported by the HYCON2 Net-
work of Excellence “Highly-Complex and Networked Control Systems” under
Grant Agreement 257462 and by the “E-PRICE: Price-based Control of Elec-
trical Power Systems” under Grant Agreement 249096. Preliminary versions
and parts of this work were presented in [20] and [21]. Recommended by As-
sociate Editor A. Ferrara.
The authors arewith IMT Institute for Advanced Studies Lucca, 55100 Lucca,

Italy (e-mail: panagiotis.patrinos@imtlucca.it; alberto.bemporad@imtlucca.it).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TAC.2013.2275667

QP are available to solve linear MPC problems, mainly ac-
tive-set methods [4]–[6], interior-point methods [7]–[9], and
Newton methods [10].
A different approach to meet the above requirements was

taken in [11], where the authors proposed the use of multipara-
metric quadratic programming to precompute the optimal solu-
tion as an explicit piecewise affine function of the state vector.
Nonetheless, the approach is limited to relatively small prob-
lems (typically: one or two command inputs,short prediction
horizons, up to ten states) and to linear time-invariant (LTI) sys-
tems, so the quest for adequate QP algorithms to be embedded
in control applications for online execution is continuing.
Within the MPC community, fast gradient-projection

methods [12], [13] were also proposed very recently in
[14]–[18]. In [15], [16] a first step was made towards com-
putational complexity certification for the method of [12]
when applied to MPC. The fast gradient-projection method is
applied to the primal problem, so the results are limited only
to input-constrained MPC problems with simple constraint sets
(e.g., a box). In [17] the fast gradient method is applied to the
dual of the MPC problem, where the equality constraints cor-
responding to the state equations are relaxed. This framework
can only handle bound input-state constraints with diagonal
weight matrices and ellipsoidal constraints on the terminal
state, with the Hessian matrix defining the ellipsoid being equal
to that of the terminal cost. Complexity certification is provided
only for the dual cost (whereas in MPC the main concern
is on primal cost and feasibility of primal variables) and the
estimated bounds are not tight in general. In [19] a combination
of the augmented Lagrangian with the fast gradient-projection
method is proposed for linear time-invariant MPC with box
constraints. The algorithm involves an outer and inner loop and
has no complexity certification.
In this paper we propose an algorithm based on the fast gra-

dient-projection method of [12] for linear MPC problems with
general polyhedral constraints on inputs and states. Specifi-
cally, the fast gradient-projection method is applied to the dual
problem resulting by relaxing the inequality constraints. Global
convergence rates of (where is the iteration counter)
are provided not only for dual optimality but also for primal
optimality, primal feasibility, and distance from the primal op-
timizer, which are all that matter in MPC applications. In addi-
tion, practical termination criteria are provided that guarantee
a solution of prespecified accuracy. Furthermore, an efficient
way of calculating the gradient of the dual function with a com-
plexity that increases only linearly with the prediction horizon
is described. Finally, some practical ways for determining the
worst-case number of iterations to achieve a certain accuracy
are provided for MPC problems.

0018-9286 © 2013 IEEE

PATRINOS AND BEMPORAD: ACCELERATED DUAL GRADIENT-PROJECTION ALGORITHM 19

II. NOTATION

Let , , , , , denote the sets of real num-
bers, non-negative integers, column real vectors of length ,
real matrices of size by , symmetric positive semidefinite
and positive definite by matrices, respectively. The trans-
pose of a matrix is denoted by . For any non-
negative integers the finite set
is denoted by . If we simply write . For

, denotes its Euclidean projection on the nonnega-
tive orthant, i.e., the vector whose th coordinate is .
For , the projection of onto the -axis, is de-
noted by . For
a vector , denotes its Euclidean norm, while if

, denotes its spectral norm (unless otherwise
stated). For , denotes the th row of . The
-dimensional vector whose entries are all equal to one is de-
noted by (the dimension should be clear from the context).
The Kronecker product of , is denoted
by . If is continuously differentiable and

for all then
we say that is -smooth. If there exists a such that

for every
belonging to some convex set then we say that is strongly
convex on with convexity parameter . For a set ,

, , denote its interior, its relative interior and
its boundary, respectively. The graph of a set-valued mapping

, is the set , its domain
is , while its range is

.

III. BASIC SETUP

Consider an MPC formulation based on the following
constrained finite-horizon linear-quadratic optimal control
problem:

(1a)

(1b)
(1c)
(1d)
(1e)

where given a vector (the current state
vector) the goal is to compute a state-input sequence

, for the
LTI model (1c), such that it minimizes the finite-horizon cost
(1a) over the prediction horizon of length , while satisfying
initial condition (1b), linear state-input constraints (1d)

and linear terminal constraints (1e) . It
is assumed that the stage cost is

(2)

and that the terminal cost is

(3)

where , , and .

Let , and
. Also, let

,
and

be the affine mapping with
, , .

Then (1) can be expressed as

(4)

By dualizing the inequality constraints, we obtain the following
problem which is dual to (4):

(5)

where the dual function is

(6)

and is the Lagrangian function for
(4). For let , denote the set of optimal
solutions of (4) and (5), respectively.
Since (4) is a convex quadratic program, strong duality holds

as long as (4) is feasible (without the need of any constraint
qualification). Therefore , and in principle one
could solve to obtain a dual optimal vector
and then calculate a primal optimal vector by
solving .

IV. ACCELERATED DUAL GRADIENT PROJECTION

This section describes the Accelerated Dual Gradient Projec-
tion (GPAD for short) scheme for solving (4). The goal is to
compute an -optimal solution for (4), defined as fol-
lows.
Definition 1: Consider two nonnegative constants . We

say that is an -optimal solution for (4) if
and

(7a)
(7b)

Equation (7a) bounds the distance of the corresponding
primal cost from the optimal value, while (7b) bounds the max-
imum primal infeasibility for the primal suboptimal solution.
Note that although in most dual methods (e.g., [17]) the goal is
to find an approximate dual solution (i.e.,),
our aim is to find an approximate primal solution in the sense of
Definition 1. This is very important in MPC applications where
the goal is to compute the optimal input sequence for (1).
To simplify notation, we omit the dependence on the param-

eter appearing in (4), (5), and (6). The results presented in this

20 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 59, NO. 1, JANUARY 2014

section are valid under less stringent assumptions than the ones
satisfied by (1), regarding , , and . Specifically, we as-
sume that is strongly convex and continuous over
, is affine, and is closed, convex. Then
is -smooth and its gradient is given by

with , e.g., see [23]. Furthermore, we
assume that there exists a with , or that is
polyhedral and there exists a with . Then strong
duality holds [24].
GPAD (summarized in Algorithm 1) is the first fast gradient-

projection method of Nesterov [12] (see also [13], [25, Sec.
6.9,], [26, Alg. 2], and [27]) applied to the concave maximiza-
tion problem (5).

Algorithm 1: Accelerated Dual Gradient-Projection

Input: . .

1

2

3

4 . Set and go to
Step 1.

When Algorithm 1 is applied to solve (1), a Lipschitz constant
for can be computed by forming explicitly the Hessian of
as in [21] and calculating its spectral norm. We remark that

Algorithm 1 can also be applied to solve problem (1), in the
case where the dynamics (1c) are linear time-varying (LTV).
For LTV systems where the calculation of the spectral norm is
not affordable in real-time, one can compute an upper bound
on , such as the Frobenius norm or the induced 1-norm, or
perform a backtracking line search during the course of GPAD
(see, e.g., [26] and [27]).
Remark 1: Convergence of Algorithm 1 can be shown for

any stepsize satisfying

(8)

e.g., (see [26]). The stepsize in Step 4 satisfies
(8) as an equality. It also satisfies the inequality
. More importantly, it possesses a crucial property which will

be heavily exploited later [26], i.e.,

(9)

Denote by the first-order Taylor expan-
sion of at , i.e., , and

. Since is concave,
with Lipschitz continuous gradient, one has

[13, Th. 2.1.5]. Let

(10a)
(10b)

and notice that , since . The following
lemma will be instrumental for showing global convergence
rates for the primal problem (4).
Lemma 2 ([26, Proof of Cor. 2]): Let be gen-

erated by Algorithm 1. For any and ,

(11)

The main consequence of Lemma 2 is the global
convergence rate of the dual cost to the optimal value, stated in
the following corollary.
Corollary 3 ([26, Cor. 2]): Let be generated

by Algorithm 1. Then for any

(12)

In Corollary 3 and in what follows, is any element of the
set of dual optimal solutions.

A. Primal Infeasibility Bound

Algorithm 1 solves the dual problem (5). However, in appli-
cations such as MPC were the task is to compute an optimal
input sequence, the main concern is to determine properties of
the algorithm regarding the primal problem (4). In this subsec-
tion we will provide bounds for the convergence rate of the av-
eraged primal sequence

(13)

where . Convergence results for the averaged primal
sequence (13) have been reported in [23, Th. 3], for Nesterov’s
third accelerated gradient scheme which uses two projections
and a weighted sum of all the previous gradients, and in [26,
Cor. 2] for a method similar to the one presented in this paper.
A similar approach for Nesterov’s third method coupled with
the smoothing technique of [23] and dual decomposition for
distributed optimization was followed by [14]. However all
these results concern saddle problems with compact dual
and/or primal constraint sets. In contrast, we do not require any
boundedness assumption on or the dual optimal set .
The next theorem provides bounds on the maximum primal

infeasibility for the averaged primal sequence (13).
Theorem 4: Let be generated by algo-

rithm 1. Then for any

(14)

Proof: For any we have
. Multiplying by and

rearranging terms
, where the equality follows by subtracting

PATRINOS AND BEMPORAD: ACCELERATED DUAL GRADIENT-PROJECTION ALGORITHM 21

(10b) from (10a) and the latter is used to express . Since
, this implies

Multiplying by and using the convexity of each component
of

From (9) it holds . Hence, using the fact that
and that (see Remark 1), we get

(15)

Using

in (11) and dropping and
since they are nonnegative, we obtain

. Therefore

, where the
first inequality follows from nonexpansiveness of , and the
third by the triangle inequality. Combining the last inequality
with (15) and the fact that for any , we
obtain (14).

B. Primal Suboptimality Bounds

Wewill next derive a global convergence rate for the distance
of from . Notice that a lower bound on
is also relevant since could be infeasible, therefore one may
have as well.
Theorem 5: Let be generated by Algo-

rithm 1. Then for any

(16a)

(16b)

Proof: Since and
, for any , the quantity can be ex-

pressed as . Now multiplying
by and summing from 0 to ,

(17)

where the inequality follows from convexity of for
and the second equality follows from (9). Using (17)

in Lemma 2 while dropping since it is
nonnegative, yields

(18)
By replacing in (18), where

if
if

and dropping the term since it is nonnegative, we
obtain

(19)

Now

(20)

since and . Therefore using
and (20) in (19) yields

(21)

Since , (21) implies (16a). To prove
(16b), we notice that

, where the inequality follows from the
saddle point inequality for
all . Therefore .
Since and , it holds that

. There-
fore . Using (14), we
obtain (16b).
Equation (16a) refines the results in [26, Cor. 2], where the

latter assumes that the constraint set is bounded. This is not the
case for GPAD, where the constraint set of the dual is the non-
negative orthant.
If Algorithm 1 starts from , then the cost is

always lower than , as it is shown below. In that case, one has
to worry only about checking feasibility during the iterations.
Corollary 6: Let be generated by Algo-

rithm 1 with . Then for any

(22)

Proof: Simply put in (18) and use
.

The next corollary gives a bound on the number of itera-
tions needed by GPAD to reach an -optimal solution.
Its proof follows directly by Theorems 4 and 5 and Corollary 6.

22 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 59, NO. 1, JANUARY 2014

Corollary 7: Let . For any

(23)

is a -solution for (4). If , for any

(24)

is a -solution for (4).
According to Corollary 7, when started from , GPAD

reaches -optimality in iterations. The com-
plexity estimate to achieve the same level of suboptimality for
the dual cost, which is the standard result found in the litera-
ture (see, e.g., [12]) is of order . In the case of
Problem (1), the only quantity dependent on the initial state is
. In fact, for MPC problems can become very large espe-

cially when the initial state is close to the boundary of the set of
feasible states. When , the bound on the number of iter-
ations becomes less sensitive to large values of (if),
resulting to tighter iteration bounds.
Remark 2: Recently, a double smoothing technique for

computing nearly optimal and primal feasible solutions for
infinite-dimensional optimization problems was proposed in
[28]. The method uses a regularization to obtain an approxi-
mate, differentiable dual function, in the spirit of [23]. Then it
uses a second regularization in order to make the dual function
strongly convex and applies the fast gradient algorithm of
[13]. Translating the result of [28] to the present setting, the
double smoothing technique is applied to problems of the form

, where is closed and convex,
and is closed, convex and bounded. It is based on forming the
dual problem that results from relaxing the constraint .
This means that and must be sufficiently simple so that
the dual function can be computed explicitly. In an optimal
control setting such as MPC, the constraint models
the state equations , while the stage cost,
terminal cost and state-input constraints must be simple enough
for the method to be implementable (see also [16]). Since
we assume that the dual function is differentiable, the first
smoothing is not needed. Taking this into account, the method
of [28] requires iterations to compute a
primal vector with and

, when started from . On the
other hand, GPAD dualizes the input-state constraints and
not the state equations, therefore it can deal with arbitrary
polyhedral sets (for which the projection can be quite involved)
as input-state constraints. According to Corollary 7 GPAD
requires iterations to compute a primal vector
with and , when started
from .
Although the two methods are not directly comparable, it

is obvious that the rate of GPAD is better than the
rate of [28]. Furthermore, the technique of

[28] requires knowledge of the dual bound . As it will be-
come clear in Section VI, the calculation of a tight dual bound
is not trivial for parametric optimization problems, such as those
arising in MPC. A loose dual bound can have negative effects
on the practical convergence of [28].

C. Convergence Rate of Averaged Primal Sequence

The next theorem proves that if the cost function is strongly
convex over , then the squared Euclidean distance of the aver-
aged primal sequence from the unique optimizer, ,
converges to zero with convergence rate , i.e., with
the same convergence rate for primal optimality and primal
feasibility.
Theorem 8: Let be generated by Algo-

rithm 1. If is continuously differentiable and strongly convex
on with convexity parameter , then for any

Proof: By the assumptions of the statement, and sat-
isfy (see e.g. [24])

(25a)
(25b)

The function is strongly convex on , with
convexity parameter , as the nonnegative weighted sum of
the strongly convex function with the convex functions ,

[13, Lem. 2.1.4]. Therefore, we have

(26)

where the first inequality follows from definition of strong con-
vexity [13, Def. 2.1.2] and the second from the fact that
and (25a). Therefore

where the first inequality follows from (26) and the second from
(25b). The proof of the claim completes by invoking Theorems
4 and 5.
We will next show that is strongly convex on for

the MPC problem (1), therefore the assertion of Theorem
8 is valid for (1) (without affecting the validity of the re-
sult we assume that , , are all 0). By performing the
transformation , the stage cost be-
comes ,
where is the Schur complement of

. Thus, without loss of generality we can

assume that . In that case, the cost function of (1) is

PATRINOS AND BEMPORAD: ACCELERATED DUAL GRADIENT-PROJECTION ALGORITHM 23

and ,

where , , and

...
...
. . .

...
...

...

Since is lower triangular with diagonal elements
equal to 1, it follows that it is nonsingular. Let

. For any

where the second equality follows from , the
first inequality from and and the last
inequality from .

D. Termination Criteria

Given accuracies , , Theorems 4 and 5 pro-
vide a theoretical bound on the worst-case number of iterations
needed by GPAD to compute an -solution (cf. Corollary
7). In addition they can serve as practical termination criteria,
since appearing in (16a) can be computed during the
course of the algorithm. Therefore at every iteration one can
test -optimality of the averaged iterate by examining if

, are sat-
isfied. Note that, in case , by Corollary 6 one needs
only to test if since
always holds. This has the advantage of avoiding the compu-
tationally expensive calculation of the primal and dual cost.
Note also that if is affine [as in Problem (1)], then calcula-
tion of requires flops using the already calculated

, .
One can also test the current iterate for -opti-

mality. We have observed experimentally that the cost accu-
racy and maximum constraint violation for the averaged iterate

converge smoothly (almost monotonically) with a behavior
that is in accordance with the corresponding bounds.
On the other hand, the corresponding sequences for the run-
ning iterate are less predictable, exhibiting an oscillatory
behavior. However, most often the latter reaches the required
accuracy levels faster than the averaged iterate.
For QPs such as (1), the absolute accuracy criterion with re-

spect to primal feasibility can be made scale-free; one can scale
the linear constraints so as to have , in problem
(1), provided that the origin is contained in the interior of the
constraint set. This type of scaling has been recently shown to
improve an upper bound on the theoretical number of iterations
for dual gradient methods [29].

However, for parametric optimization problems like (4), im-
posing a termination criterion based on absolute accuracy re-
garding the value function may be overly conservative
in practice. For example, when MPC is applied to a regulation
problem, if the current state is far from the origin, the value
function can be quite large, making an absolute accuracy
termination criterion very hard to satisfy. On the other hand,
when the current state is close to the origin, the value function
can be arbitrarily close to zero, making a relative termination
criterion hard to satisfy. Notice that if , the latter issue
concerns the optimality test for the current iterates only, since

always. In practice it is more sensible to use a
termination criterion that strikes a balance between absolute and
relative accuracy

(27)

where now is the desired relative cost accuracy.
Since , satisfaction of (27) implies

. The termination
criterion (27) is particularly suitable for MPC problems
where usually one has . In that case, if is larger
than 1, then GPAD will provide a primal solution such that

is satisfied, which is more sensible
than the absolute accuracy criterion. On the other hand, if
is nonnegative and close to zero, a relative accuracy stopping
criterion becomes impractical. Equation (27) switches automat-
ically between the two options without requiring knowledge of
.
In many cases the calculation of the dual cost in (27) can

be avoided. Specifically, if then
, where the inequality fol-

lows from dual feasibility of and the equality by (6) and
Step 2 of GPAD. Therefore, if

(28)

then . Since
, it is easy to see that condition (28) is

satisfied if and only if either

(29)

or

(30)

is satisfied. Although in theory may not be nonnegative
(cf. Step 1 of GPAD), in practice holds after the first
few iterations since converges rapidly to 1. The
aforementioned observations lead to Algorithm 2 for the case

, which is very effective in practice according to our
experience.
Due to Corollary 6, Algorithm 1 started with and the

termination criterion given by Algorithm 2 will terminate after
at most steps.

24 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 59, NO. 1, JANUARY 2014

V. EFFICIENT CALCULATION OF THE GRADIENT
OF THE DUAL FUNCTION

The main computational burden of GPAD lies in solving
problem (Step 2 in Algorithm 1). Notice
that the dual cost (6) can be written as

(31)

where
. The next proposition describes how the optimal input-

state sequences for (31) can be calculated efficiently, for any
vector . It is an extension of the standard Riccati recur-
sion for finite-horizon LQ unconstrained optimal control prob-
lems, adjusted appropriately to account for the contribution of
the dual vector in the cost function in a computationally efficient
manner.
Proposition 9: Let , , , , , , ,

be calculated by Algorithm 3. Given , the unique op-
timal input sequence for (29) is given by Algorithm 4.

Proof: See Appendix A.
Counting only arithmetic operations of cubic order (ma-

trix-matrix products, factorizations and forward-backward
substitutions for linear systems with matrix-valued right
hand-sides), the total complexity for Algorithm 3 is roughly

flops, which increases only linearly with the prediction
horizon. Having performed the factor step, calculating the
gradient of (29) is very cheap. Specifically, computing takes

flops, which
again increases only linearly with the prediction horizon. In
many cases, one can explore additional problem structure to
further reduce the computational cost of Algorithm 4. For
example, in the usual case of state-input box constraints the
cost is roughly . In the
context of MPC for LTI systems, the factor step (Algorithm 3)
can be performed off-line. Algorithms 3 and 4 can be trivially
extended to MPC for LTV systems. In that case, the factor step
needs to be performed only once at every sampling time.
Remark 3: For LTI systems, if the terminal weight

matrix is the solution of the discrete-time alge-
braic Riccati equation (DARE) corresponding to the infi-
nite-horizon unconstrained problem, then Algorithm 3 takes

flops,

independently of the horizon length , since all quantities
appearing in Algorithm 3 become time-invariant. Furthermore
memory requirements are very small and independent of the
horizon length.
Remark 4: Riccati-like recursions coupled with block elim-

ination for factoring the KKT matrix arising in interior point
methods for MPC problems have been proposed in the litera-
ture [30], [31]. The factor step needs exactly the same number
of flops as Algorithm 3 (excluding the calculation of ,
and Step 3 which becomes null in the setting described in [31]).
However, in [31], the solve step costs ,
while Algorithm 4 takes . Therefore, our ap-
proach requires flops less.
Remark 5: Note that if the condensed dual formulation of

[21] was used, then Steps 2 and 3 of Algorithm 1 would require
a matrix-vector product whose cost is of order . The cost
of forming the matrices of the condensed dual is of order
since the Cholesky factorization of matrix is re-
quired to form the Hessian of the dual. Therefore, the condensed
approach is less suitable for LTV systems than the approach of
Algorithms 3 and 4. Finally, in the case of open-loop unstable
systems, the condition number of the Hessian of the primal may
increase with the prediction horizon, possibly causing potential
numerical instabilities, which also makes the use Algorithms 3
and 4 more suitable.

VI. CERTIFICATION OF COMPUTATIONAL COMPLEXITY

The problem of certifying the computational complexity of
GPAD algorithm when applied to solve amounts to de-
termining a uniform iteration bound [cf. (4), equivalently (1)],

PATRINOS AND BEMPORAD: ACCELERATED DUAL GRADIENT-PROJECTION ALGORITHM 25

defined as follows. For simplicity, it is assumed that GPAD is
started from .
Definition 10: Given , where

, , integer is called an -uniform
iteration bound (-UIB, for short) for GPAD on if for every

and every , is a -optimal solution
for .
Determining a UIB a priori is important in embedded control

applications to enforce hard real-time properties of the MPC
controller. One can easily infer from Corollary 7 that in order to
obtain a UIB for GPAD on , one must derive a bound on

(37)

where is the single-valued mapping
giving for each the minimum Euclidean-norm dual
optimal solution, i.e.,

(38)

Definition 11: For a , we say that is
a uniform dual bound (UDB) for on if .
The calculation of a UDB immediately leads to the -UIB

[cf. (24)]

(39)

The next two subsections show how to compute a UDB for
. The first approach provides easily computable UDBs by

calculating a bound for on compact
subsets of . The second approach provides a tight
UDB, valid on the entire set of parameters for which is
feasible, i.e., and it requires the solution of a Linear
Programwith Linear Complementarity Constraints (LPCC), for
which dedicated solvers providing globally optimal solutions
exist.

A. UDB Based on Slater’s Condition

It turns out that finding an upper bound for
on a compact subset of

(assuming that has a nonempty interior) is a much
easier problem than calculating . The need to confine the
search for such a bound only on a compact set
is dictated by Lemma 13 presented below. First, the following
definition is needed.
Definition 12: We say that satisfies the Slater condition

(at) if there exists a such that . We
call any such vector a Slater vector for .
The first uniform dual bound is valid on a polytope

given as the convex hull of a set of parameter vec-
tors in . It requires the solution of an optimization
problem for every point in the set. It is largely based on the
following lemma which is an extension of [22, Ex. 5.3.1], [32,
Lem. 1] for parametric optimization problems.

Lemma 13: Consider . If , then
satisfies the Slater condition if and only if , in
which case is bounded and

(40)

for all , where and
is a Slater vector for .

Proof: See Appendix B.
Remark 6: For , the tightest pos-

sible bound of the form (41) can be obtained by solving
. Although

this problem may not be convex, it is equivalent to ,
where

(41)

Notice that is a univariate function for which one can compute
a root by employing a generalized Newton method with respect
to , where at each iteration we solve (41), which is a convex
QP, cf. [33]. The algorithm is very efficient and it converges
only in a few iterations.
Proposition 14: Let , with

, and

(42a)
(42b)

where is a Slater vector for , . If ,
then is a UDB for on .

Proof: See Appendix B.
Lemma 13 can also be exploited to calculate an easily com-

putable UDB for on , where

(43)

and , as shown in the following proposition.
Proposition 15: Given , if then

is a UDB for on , where

(44)

Proof: According to (43), for any there exists
a Slater vector such that , . Invoking
Lemma 13, this implies

, where the second inequality follows from nonnega-
tivity of . Taking the maximum in both sides of the inequality
among all , we arrive at (44).
Problem (44) entails the maximization of a convex quadratic

function over a polyhedral set. Calculating a globally optimal
solution for such a problem is NP-hard [34]. However, there
exist efficient global optimization techniques [35], such as
spatial branch-and-bound methods [36] or branch-and-bound
combined with linear [37] and semidefinite [38] programming
relaxations, to name a few. Notice that Proposition 15 remains
valid if is merely an upper bound of the cost function of
along the polyhedral set . The following corollary shows
how one can compute such an upper bound, and therefore a
UDB for on , by solving a single convex QP.

26 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 59, NO. 1, JANUARY 2014

Corollary 16: Given , if then
is a UDB for on , where is the optimal value

of the following concave quadratic maximization problem

(45)

and are such that
.

Proof: Clearly, the function is con-
cave due to the choice of , while implies

, therefore
overapproximates on (see, e.g.

[39, p. 278]). This implies that (45) is a concave quadratic
maximization problem and . Invoking Proposition 15
we conclude that is a UDB for on .

B. UDB Based on Minimum-Norm Dual Optimal Solution

Although UDBs based on Proposition 14 and Corollary 16
are easy to compute even for large-scale systems, usually they
are not tight, leading to conservative UIBs. Furthermore, these
UDBs are valid only on a subset of the interior of . How-
ever, tight UIBs valid on the entire can be crucial in em-
bedded MPC applications for systems with fast sampling rates,
where stability and invariance guarantees are required. On the
other hand, the tightest UDB is clearly [cf. (37)].
Notice that since for , is a nonempty poly-
hedral set, there always exists a unique that attains the
minimum in (38). In principle one can determine explic-
itly (by solving the convex parametric quadratic optimization
problem using the algorithm of [40]) and then calculate

for each critical region. However, this procedure is valid
for small-scale problems only.
In this subsection we will show how one can efficiently com-

pute the UDB

(46)

without solving the parametric problem explicitly. The
quantity is a tight approximation of
as the next proposition shows.
Proposition 17: Consider , given by

(37), (47) respectively. Then

Proof: Follows directly from
, .

We next present a new characterization of the minimum Eu-
clidean-norm dual optimal solution of . To keep notation
simple, the results are presented for the condensed dual formu-
lation

(47)

where , , can be computed from (1) [21] (see also Remark
5). First, we need the following lemma.

Lemma 18: Consider a , a and let
. The solution set

of (47) is given by

(48)

Proof: See [40, Prop. 1].
Theorem 19: Consider . Then is the

minimum-norm solution of (47) if and only if there exists a
such that

(49a)
(49b)

Proof: See Appendix B.
Based on Theorem 19 we can compute the UDB

[cf. (47)] by solving the optimization problem

(50)

Assuming that bounds on are available, Problem (50)
can be modeled as a Mixed-Integer Linear Program (MILP) by
employing the so-called “big- ” technique (see e.g. [41, Prop.
2]) and using a small tolerance (e.g., the machine precision)
beyond which any number is considered to be positive to model
the clause (see, e.g., [42, Eq. (4e)]). In
practice one can iterate on estimating large-enough bounds on

. The resulting MILP would contain binary variables
and the choice of tolerance in conjunction with large bounds
on the variables can cause numerical problems to MILP solvers.
Next, another UDB valid on will be presented, whose

calculation requires the solution of an LPCC, for which there
exist specialized global optimization algorithms, e.g., [43] and
[44], that do not rely on the big- formulation and thus, do not
require bounds on variables.
Notice that every index set defines a (pos-

sibly empty) face of the polyhedral set [cf. (48)], i.e.,
. The next

lemma sets the stage for the establishment of a tight UDB on
which is easier to compute than . The key

idea is that instead of computing the minimum-norm element
of , one could more easily compute the minimum-norm
optimal solution along some face of , which at the same
time lies in the relative interior of the face. Notice that since

is pointed (it does not contain a line) it has at least
one extreme point, which automatically satisfies the above
requirement.
Lemma 20: Consider any and let and

. Then
if and only if there exists a such that
, .

Proof: See Appendix B.
Based on Lemma 20, the following theorem characterizes

all such dual optimal solutions via complementarity conditions.
Furthermore, it provide an alternative characterization for the
minimum-norm element of .

PATRINOS AND BEMPORAD: ACCELERATED DUAL GRADIENT-PROJECTION ALGORITHM 27

Theorem 21: For , let

(51)
Then is nonempty, bounded, and

(52)

Proof: See Appendix B.
Next, define the following UDB:

(53)

Taking into account (51), UDB can be expressed
as the optimal cost of the LPCC

(54)

As the next proposition shows, is no smaller than
. However, the next proposition provides a practical

criterion (involving only the calculation of at some
point) which ascertains their equality without calculating

. Specifically, after an optimal solution of
(55) has been computed, one can solve the QP defined in (39)
for . If the resulting dual vector is equal to then

is equal to .
Proposition 22: One has .

If then
.

Proof: Notice that
and
due to Proposition 21. There-

fore, every feasible solution of (47) is also a feasible
solution of (53) proving .
Now, if the premise of the proposition holds, one has

.

VII. SIMULATIONS

A. Ball and Plate Example
The example considers a plate tilted around two axes to

control the position of a ball [16]. Assuming a sampling
time equal to 0.01 s, the motion of the ball along each axis
on the plate can be described by a discrete-time LTI model,
whose states are the ball position and velocity along the
axis, the input is the tilt angle, and the state-update matrices

are , . The state vector is

constrained in , while the input
must belong to . The stage cost is the
same as in [16], i.e., with

, .

1) Comparison With [17]: In the first experiment we com-
pare GPAD against the fast dual gradient method proposed in
[17]. We remark that the purpose of the experiment is mainly to

TABLE I
COMPARISON WITH [17] ON THE BALL AND PLATE EXAMPLE

FOR ACHIEVING DUAL ACCURACY

highlight the fact that although both of the algorithms are based
on Nesterov’s accelerated gradient method, their behavior can
be completely different in practice.
The comparison concerns both the performance of the algo-

rithms in terms of observed iterations and the tightness of the
proposed UDBs. For this reason, we replicate the simulation
setting of [17]. The terminal weight matrix and ,
represent the bound constraints on the state vector. The re-

quired accuracy on the dual cost is and horizon
length varies from to with step 2. The set
of initial states is obtained by scaling the maximum admissible
set for , in accordance to Figure 1 of [17]. We com-
pute a worst-case number of iterations for both algorithms, by
forming a uniform grid on the set of initial states and computing
for each point of the grid a dual solution whose dual cost is no
larger than from the optimal cost. Since there is no termi-
nation criterion presented in [17], for each parameter point the
exact optimal cost is computed using Gurobi [45] and used by
the algorithms for their termination. The results of the simula-
tions are presented in Table I. In the third column, the worst-case
number of iterations for [17] is shown, which is aligned with
the results appearing in that paper. As it can be seen from the
second column of Table I, the worst-case number of iterations
for GPAD is much smaller. We remark that the cost per iteration
of both algorithms is of the same order. In the last three columns
of Table I, the UIBs computed according to (53), Corollary 16,
and Proposition 14 are reported. The UIBs coming from Propo-
sition 14 are roughly one order of magnitude smaller than the
ones reported in Fig. 2 of [17]. However, UIBs coming from
(53) and Corollary 16 are much tighter.
2) Certification Analysis: The purpose of the next experi-

ment is to test the tightness of the UDBs proposed in Section VI.
Two separate scenarios are analyzed. In the first scenario, the
terminal cost is , where is the solu-
tion of the corresponding DARE and there are no terminal con-
straints in theMPC formulation; in the second scenario, is the
same while , represent the maximal positively invariant
(MPI) set of the system in closed-loop with the LQR feedback
law. We remark here, that both scenarios cannot be handled by
the algorithm in [17], since is not diagonal, and the polyhe-
dral terminal constraint set has a complicated structure. Tomake
the comparison fair, the obtained UIBs are compared on

, , where
is calculated via projection. However, we remark that the cal-
culation of UDBs of (53) and Corollary 16 does not require the
projection of a polytope, in general. The certification analysis is
carried out for GPAD when applied to Problem (1) with predic-
tion horizon ranging from to with step 2 and

28 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 59, NO. 1, JANUARY 2014

Fig. 1. Complexity certification of MPC without terminal constraints for the ball on the plate example: -UIB based on (53) (solid-diamond), based on
Proposition 14 (dash-square), based on Corollary 16 (dash-dot-star), and observed maximum number of iterations based on sampling (dash-dot-circle). (a) Without
terminal constraints; (b) with terminal constraints.

Fig. 2. Complexity certification of MPC with terminal constraints for the masses example: -UIB based on (53) (solid-diamond), based on Proposition 14
(dash-square), based on Corollary 16 (dash-dot-star), and observed maximum number of iterations based on sampling (dash-dot-circle) for various values of . (a)
Masses , horizon ; (b) masses , horizon .

parameter . Notice that UDBs given by Corollary
16 and Proposition 14 are finite only in the case of being pos-
itive. The certification analysis is conducted for each and ,
by applying the following steps:

1) constraints of (1) are normalized so as to have ,
;

2) the Lipschitz constant is calculated as in [21];
3) compute UDB (53) for on . Problem (54) giving
UDB (53) is solved using the mixed-integer solver of
CPLEX [46], by modeling the complementarity con-
straints with indicator variables, thus removing the need
to select proper big- values;

4) compute UDB of Corollary 16, for on ;
5) compute UDB of Proposition 14, for on , with the
collection of points being the vertices of ;

6) for each UDB compute the corresponding -UIB ac-
cording to (39), where ;

7) compute a worst-case number of iterations based on sam-
pling, by forming a uniform grid on and computing
for each point of the grid a -solution, using
Algorithm 2.

The results of the analysis of the two scenarios are summa-
rized in Fig. 1. One can observe that the UIBs obtained by the
UDB (53) are much tighter than the ones of Proposition 14 and
Corollary 16, as expected. In fact, in all cases the assumptions
of Proposition 22 are satisfied, showing that UDB (53) is tight in
the sense of Proposition 17. Furthermore, contrary to the UDBs
of Proposition 14 and Corollary 16, the UDBs of (53) are also
valid on the boundary of , and one can observe that for
the particular example, the UDB does not increase too much as
one moves from the interior to the boundary. However, exten-
sive simulations have shown that for many MPC problems this
is not the case, with the corresponding UDB increasing rapidly
as the boundary of is approached.
The worst-case iteration counts of Algorithm 2 are within

15–59% of the tight UIBs obtained by (53), confirming that
the theoretical bound of (39) is quite tight. On the downside,
UDB (53) is harder to compute than the UDBs based on Propo-
sition 14 and Corollary 16. Interestingly, one can observe that
the UIBs obtained for the scenario where no terminal constraints
are present are tighter for . On the other hand, the number
of iterations, both in theory and in practice, are smaller for the
scenario in which terminal constraints are present, although the

PATRINOS AND BEMPORAD: ACCELERATED DUAL GRADIENT-PROJECTION ALGORITHM 29

Fig. 3. Runtime results for the masses example .

problem is more “complex” due to the presence of the terminal
set.

B. Masses Example
The setup for this example is similar to [8], [9]. It consists

of a sequence of objects of equal mass serially connected
to each other, by spring-dampers of equal spring constant and
damping coefficient , and to walls on either side. Between two
consecutive masses there is and actuator exerting tensions. The
discrete-time LTI model is obtained after discretization with
sampling period of 0.5 s, and it consists of states
and inputs. Each state of the system is constrained
to lie in , while each input in . The stage cost is

with , .
1) Complexity Certification: The purpose of the first set of

simulations is to test the tightness of the UDBs proposed in
Section VI to problems of larger dimension than the previous
example. It is assumed that , , . Further-
more the terminal cost is , where is
the solution of the corresponding DARE, and , repre-
sent the MPI set of the system in closed-loop with the LQR
feedback law. The UIBs obtained by computing the UDBs of
(53), Corollary 16, and Proposition 14 are compared on the
masses example for , ,

. The certification analysis follows
exactly the same Steps 1–7 of Section VII-A. The results are
summarized in Fig. 2. The worst-case iteration counts for Algo-
rithm 2 are within 14–83% and 49–60% of the UIBs obtained
by (53), for and , respectively. Therefore for the
specific example the theoretical bound of (24) is quite tight. In
both cases, Proposition 22 is valid confirming that the UDBs of
(53) are tight. The parameter value appearing in Proposition
22 lies always on the boundary of , a phenomenon which
appears in most of our simulations. For , the tight UDBs
obtained by (53) are 588 and 545 . In fact,
UDBs can take significantly large values especially for ,
as we have observed in numerous simulations. In such cases,
the advantage of choosing is evident since the UIB of
(39) is of order , while the iteration bounds for primal
and dual optimality are of order .
2) Performance Comparison: The purpose of the next

experiment is to compare the practical performance of GPAD
against existing solvers: the interior-point, primal active set,

and dual active set solvers of GUROBI 5.0 [45] and CPLEX
v12.4 [46], the interior-point solver QUADPROG of MATLAB
R2012a Optimization Toolbox, QPOASES [5], the QP solver
of the MPC Toolbox [47] DANTZGMP, based on the active set
method described in [4], and the new QP solver of the MPC
Toolbox implementing the QPKWIK algorithm [6].
As the emphasis of the comparison is on worst-case execution

time that is a fundamental parameter in real-time embedded op-
timization, all algorithms are cold-started. The negative effect of
this choice is more significant for active-set solvers, especially
for QPOASES which takes most advantage of warm-starting.
The algorithms are tested on the MPC problem (1) for the

masses example, with the number of masses ranging from
5 to 25 with step 5 and horizon length ranging from 10 to
90 with step 10. Here, , and the terminal
conditions are the same as in the previous subsection.
For GPAD, the inequality constraints of the MPC problem

were scaled so as to have , , the initial iterate is
always , and the termination criterion of Algorithm
2 is checked at every iteration. The resulting MPC problem
was solved for relative accuracies

. GPAD was programmed in C (com-
piler GCC 4.2) using BLAS for matrix-vector and inner prod-
ucts, and called through MATLAB via a mex interface. The
MPC problem matrices were passed in sparse form (keeping the
states as decision variables) to the interior-point solvers, and in
condensed form (having eliminated the states) to the active set
solvers. For each of the solvers their default termination criteria
were used. For every different combination of , , 100 dif-
ferent initial states were chosen at random by solving the LP

, where the elements of
are drawn from the standard normal distribution and

is uniformly distributed between 0 and 0.6.
Simulations were performed on a MacBook Pro (2.66 GHz

Intel Core 2 Duo, 4 GB RAM). All algorithms were called in
MATLAB through their mex interfaces and runtimes were mea-
sured using the tic-toc command of MATLAB. The results
of the simulation experiments are summarized in Figs. 3–5. The
active-set solvers QPOASES, DANTZGMP, QPKWIK were
run only for and since their av-
erage runtime well exceeds the sampling time of .
The same is true for the active set solvers of GUROBI and
CPLEX when .

30 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 59, NO. 1, JANUARY 2014

Fig. 4. Runtime results for the masses example .

Fig. 5. Runtime results for the masses example .

As the running time of active set solvers grows rapidly with
problem size, we do not report the corresponding results for
large problems. Clearly, as observed earlier, their performance
can be significantly improved by warm-starting, an informa-
tion that might not always be available during MPC operations,
such as after a set-point change or the occurrence of a large
disturbance.
One can observe that GPAD outperforms all the solvers in

terms of average runtime by more than an order of magnitude.
For relative accuracies its worst-
case runtime is well below the sampling time of 500ms, even for
long horizons and large number of masses. For ,
the worst-case runtime of GPAD with relative accuracy or

exceeds the sampling time for some values of the
horizon length. Among the rest of the solvers, the interior-point
algorithm of GUROBI seems to be the most efficient. For up
to 10 masses, its worst-case runtime is less than , while for
larger number of masses it exceeds it for horizon length above
certain threshold. Overall, the conclusion drawn is that, if only
medium accuracy solutions are sought, GPAD is the algorithm
of choice for the specific example, not to mention that it is even
the simplest to implement.
We remark that the offline time needed to build problem ma-

trices for the active-set problems is not included in the figures.
However this grows very fast with the prediction horizon and
number of masses. Due to the choice of the terminal cost and
Remark 3, the time needed by the factor step (cf. Algorithm 3)
is independent of the horizon length. Specifically, the execution

time of Algorithm 3 is 47, 110, 169, 288, 811 s for ,
10, 15, 20, 25, respectively. In all cases it is almost negligible
compared to the average time per iteration of GPAD.
Regarding the efficacy of the termination criterion (cf. Algo-

rithm 2), in 35.9% of the cases the algorithm was stopped due
to criterion (28), in 52.5% due to criterion (29) and in 11.43%
due to criterion (27). Criterion (28) was successful 25.7% of
the times it was tested, while the corresponding percentage for
(29) and (27) is 51% and 65.27% respectively. Finally, criterion
(28) was tested in 6% of the total number of iterations, while
the corresponding percentage for (29) and (27) is 4.48% and
0.76% respectively. The conclusion drawn from these numbers
is that Algorithm 2 reduces the number of iterations needed for
the termination of Algorithm 1 in practice, since the criterion

dictated by theory is hardly ever satisfied before
(28), (29) or (27). Furthermore, the most computationally ex-
pensive criterion (27) which requires the calculation of the dual
function is rarely checked and when it does, almost 2/3 of the
times is successful.

VIII. CONCLUSIONS AND FUTURE WORK
This paper has proposed an accelerated dual gradient pro-

jection algorithm that is particularly tailored to embedded
applications of linear MPC designs. Although GPAD is a dual
algorithm, its convergence properties derived in this paper
regard primal optimality and feasibility. Specifically, GPAD
can compute an -optimal solution for the primal problem
in iterations. Although GPAD has a computation

PATRINOS AND BEMPORAD: ACCELERATED DUAL GRADIENT-PROJECTION ALGORITHM 31

performance that is comparable to other existing QP solvers,
its main purpose is to be extremely simple to code (as it only
involves products, sums, and comparisons), and to have rather
tight upper-bounds (computable offline) on the maximum
number of iterations. These characteristics ease the certification
of the control code and make it quite suitable for implementa-
tion in embedded systems, compared to other (possibly faster,
but more complicated) solvers.
One drawback of GPAD is its sensitivity to scaling, a fact that

is well known for first-order methods [22]. Preconditioning can
dramatically improve the convergence rate of GPAD.According
to our experience, one simple choice of preconditioning that
works well in practice is to compute a diagonal approximation

of the Hessian of the dual cost in (47) and perform
a change of coordinates in the dual space with scaling matrix
equal to [22, Sec. 2.3.1]. An alternative approach was
suggested recently in [29] and [48].
Ongoing and future work includes closed-loop stability anal-

ysis of MPC under -optimality, and derivation of con-
vergence and bounds for the algorithm in the presence of errors
due to fixed-point computations [49], [50].

APPENDIX A
Proof of Proposition 9: For each consider the

Hamiltonian function [22, Sec.
1.9], . Since is
jointly convex in and strictly convex in , the necessary
and sufficient condition for to be the unique optimal input-
state sequence for (5) is

(56)

where the costate vectors satisfy the adjoint equations

(57a)
(57b)

Next, we claim that

(58)

with and , given by (36). For
, the claim is valid since by (57b),
. Assume that (58) holds for some .

Solving (56) with respect to , one gets

(59)

Substituting (58) in (59), we obtain
. Substituting the state equation

, and solving for , we arrive at (37a),
with , , , given by (34).
Next, multiplying the state equation by and using

(58) we arrive at

Adding in both sides, using (57a), (37a)
and rearranging terms we obtain , where is
given by (36) in Algorithm 4 with , , given by (35)
confirming the induction argument and completing the proof.

APPENDIX B

Proof of Lemma 13: Let
. We have

, where the first equality follows from
being nonempty, the second by the definition of

the domain of a set-valued mapping and the third by [51, Prop.
2.44]. Using the well-known representation for the relative in-
terior of polyhedral sets this means that if and
only if there exists a such that and , i.e.,
the Slater condition holds for , which in turn is equivalent
to the boundedness of and implies (41), [22, Ex. 5.3.1],
[32, Lem. 1].

Proof of Proposition 14: Let .
Any can be expressed as , for some

such that . Let .
Then since is an affine subspace, ,
i.e., . Furthermore, for any ,

, the first inequality
being valid due to convexity of each component of and the
choice of [cf. (42a)]. Therefore is a Slater vector for .
Thus,

where the first inequality is due to Lemma 13, the second fol-
lows by convexity of , and the last by the nonnegativity of
and (42b).

Proof of Theorem 19: Since , it must
satisfy the KKT conditions for (48), which are given by (49a).
Using Lemma 18, is the solution of the following
strictly convex quadratic program:

(60a)

(60b)
(60c)

where is any optimal solution. According to the KKT condi-
tions for (60), must be primal feasible [cf. (60b), (60c)]
and there must exist a such that (49b) holds. Notice
that one can use in (60b) making it re-
dundant. This concludes the proof.

Proof of Lemma 20: Since

(61)

is a strictly convex QP and is nonempty [indeed
], it has a unique optimal solution which must

satisfy the KKT conditions, i.e., feasibility and

(62)

By definition is feasible and , . Therefore,
is optimal for (61) if and only if , for every

, which can be equivalently written as ,
, since , .

32 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 59, NO. 1, JANUARY 2014

Proof of Theorem 21: By Lemma 20, is the set of
all that are minimum-norm optimal solutions along
some face of . Since is a polyhedral set, it has a
finite number of faces. This means that the set is finite
and therefore bounded. We next show that
proving that is nonempty. According to Theorem 19
there exists a such that
, , , while for one has

, therefore for
as well. This also implies that

.
On the other hand, since , it follows that

,
proving (53).

ACKNOWLEDGMENT

The authors express their gratitude to P. Sopasakis for imple-
menting GPAD in C. The authors also thank the Associate Ed-
itor and the anonymous reviewers for their valuable comments
and suggestions for improving the original manuscript.

REFERENCES
[1] D. Mayne and J. Rawlings, Model Predictive Control: Theory and De-

sign. Madison, WI, USA: Nob Hill, 2009.
[2] J. Maciejowski, Predictive Control With Constraints. Harlow, U.K.:

Prentice-Hall, 2002.
[3] A. Bemporad, “Model-based predictive control design: New trends and

tools,” in Proc. 45th IEEE Conf. Decision and Control, San Diego, CA,
USA, 2006, pp. 6678–6683.

[4] N. Ricker, “Use of quadratic programming for constrained internal
model control,” Ind. Eng. Chem. Process Des. Dev., vol. 24, no. 4, pp.
925–936, 1985.

[5] H. Ferreau, H. Bock, and M. Diehl, “An online active set strategy to
overcome the limitations of explicit MPC,” Int. J. Robust Nonlin. Con-
trol, vol. 18, no. 8, pp. 816–830, 2008.

[6] C. Schmid and L. Biegler, “Quadratic programming methods for re-
duced Hessian SQP,” Comput. Chem. Eng., vol. 18, no. 9, pp. 817–832,
1994.

[7] J. Mattingley and S. Boyd, “CVXGEN: A code generator for em-
bedded convex optimization,” Optim. Eng., vol. 13, no. 1, pp. 1–27,
Mar. 20102.

[8] Y. Wang and S. Boyd, “Fast model predictive control using online
optimization,” IEEE Trans. Control Syst. Technol., vol. 18, no. 2, pp.
267–278, Mar. 2010.

[9] A. Domahidi, A. Zgraggen, M. Zeilinger, M. Morari, and C. Jones,
“Efficient interior point methods for multistage problems arising in re-
ceding horizon control,” in Proc. 51st IEEE Conf. Decision and Con-
trol, 2012, pp. 668–674.

[10] P. Patrinos, P. Sopasakis, and H. Sarimveis, “A global piecewise
smooth Newton method for fast large-scale model predictive control,”
Automatica, vol. 47, no. 9, pp. 2016–2022, 2011.

[11] A. Bemporad, M. Morari, V. Dua, and E. Pistikopoulos, “The explicit
linear quadratic regulator for constrained systems,” Automatica, vol.
38, no. 1, pp. 3–20, 2002.

[12] Y. Nesterov, “A method of solving a convex programming problem
with convergence rate ,” Sov. Math. Doklady, vol. 27, no. 2,
pp. 372–376, 1983.

[13] Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic
Course. Dordrecht, The Netherlands: Kluwer Academic, 2004.

[14] I. Necoara and J. Suykens, “Application of a smoothing technique to
decomposition in convex optimization,” IEEE Trans. Autom. Control,
vol. 53, no. 11, pp. 2674–2679, Nov. 2008.

[15] S. Richter, C. Jones, andM.Morari, “Real-time input-constrainedMPC
using fast gradient methods,” in Proc. 48th IEEE Conf. Decision and
Control, 2009, pp. 7387–7393.

[16] S. Richter, C. Jones, and M. Morari, “Computational complexity cer-
tification for real-time MPC with input constraints based on the fast
gradient method,” IEEE Trans. Autom. Control, vol. 57, no. 6, pp.
1391–1403, Jun. 2012.

[17] S. Richter, M. Morari, and C. Jones, “Towards computational com-
plexity certification for constrained MPC based on lagrange relaxation
and the fast gradient method,” in Proc. 50th IEEE Conf. Decision
and Control and Eur. Control Conf., Orlando, FL, USA, 2011, pp.
5223–5229.

[18] M. Kögel and R. Findeisen, “A fast gradient method for embedded
linear predictive control,” in Proc. 18th IFAC World Congr., 2011, vol.
18, no. 1, pp. 1362–1367.

[19] M. Kögel and R. Findeisen, “Fast predictive control of linear systems
combining Nesterov’s gradient method and the method of multipliers,”
in Proc. 50th IEEE Conf. Decision and Control and Eur. Control Conf.,
Orlando, FL, USA, 2011, pp. 501–506.

[20] P. Patrinos and A. Bemporad, “An accelerated dual gradient-projection
algorithm for linear model predictive control,” inProc. 51st IEEEConf.
Decision and Control, Maui, HI, USA, Dec. 2012, pp. 662–667.

[21] A. Bemporad and P. Patrinos, “Simple and certifiable quadratic pro-
gramming algorithms for embedded linear model predictive control,”
in Proc. 4th IFAC Conference on Nonlinear Model Predictive Control,
F. A. M. Lazar, Ed., Noordwijkerhout, The Netherlands, Aug. 2012,
pp. 14–20.

[22] D. Bertsekas, Nonlinear Programming, 2nd ed. Belmont, MA, USA:
Athena Scientific, 1999.

[23] Y. Nesterov, “Smooth minimization of non-smooth functions,” Math.
Program., vol. 103, no. 1, pp. 127–152, 2005.

[24] D. Bertsekas, A. Nedic, and A. Ozdaglar, Convex Analysis and Opti-
mization. Belmont, MA, USA: Athena Scientific, 2003.

[25] D. Bertsekas, Convex Optimization Theory. Belmont, MA, USA:
Athena Scientific, 2009.

[26] P. Tseng, On accelerated proximal gradient methods for convex-con-
cave optimization Dept. Math., Univ. Washington, Seattle, WA, USA,
2008, Tech. Rep.

[27] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding al-
gorithm for linear inverse problems,” SIAM J. Imaging Sci., vol. 2, no.
1, pp. 183–202, 2009.

[28] O. Devolder, F. Glineur, and Y. Nesterov, “Double smoothing tech-
nique for large-scale linearly constrained convex optimization,” SIAM
J. Optim., vol. 22, no. 2, pp. 702–727, 2012.

[29] P. Giselsson, “Execution time certification for gradient-based opti-
mization in model predictive control,” in Proc. 51st IEEE Conf. on
Decision and Control, Maui, HI, USA, Dec. 2012, pp. 3165–3170.

[30] C. Rao, S. Wright, and J. Rawlings, “Application of interior-point
methods to model predictive control,” J. Optim. Theory Appl., vol. 99,
no. 3, pp. 723–757, 1998.

[31] L. Vandenberghe, S. Boyd, and M. Nouralishahi, Robust linear pro-
gramming and optimal control Dept. Elect. Eng., Univ. California, Los
Angeles, CA, USA, 2002, Tech. Rep..

[32] A. Nedic and A. Ozdaglar, “Approximate primal solutions and rate
analysis for dual subgradient methods,” SIAM J. Optim., vol. 19, no.
4, pp. 1757–1780, 2009.

[33] A. Zhang and S. Hayashi, “Celis–Dennis–Tapia based approach to
quadratic fractional programming problems with two quadratic con-
straints,” Numer. Alg., Control Optim., vol. 1, no. 1, pp. 83–98, 2011.

[34] P. Pardalos and S. Vavasis, “Quadratic programming with one negative
eigenvalue is NP-hard,” J. Global Optim., vol. 1, no. 1, pp. 15–22,
1991.

[35] P. Pardalos, “Global optimization algorithms for linearly constrained
indefinite quadratic problems,” Comput. Math. Appl., vol. 21, no. 6–7,
pp. 87–97, 1991.

[36] I. Androulakis, C. Maranas, and C. Floudas, “ : A global optimiza-
tion method for general constrained nonconvex problems,” J. Global
Optim., vol. 7, no. 4, pp. 337–363, 1995.

[37] H. Sherali and C. Tuncbilek, “A reformulation-convexification ap-
proach for solving nonconvex quadratic programming problems,” J.
Global Optim., vol. 7, no. 1, pp. 1–31, 1995.

[38] S. Burer and D. Vandenbussche, “A finite branch-and-bound algorithm
for nonconvex quadratic programming via semidefinite relaxations,”
Math. Program., vol. 113, no. 2, pp. 259–282, 2008.

[39] H. Tuy, Convex Analysis and Global Optimization. Dordrecht, The
Netherlands: Kluwer Academic, 1998.

[40] P. Patrinos and H. Sarimveis, “A new algorithm for solving convex
parametric quadratic programs based on graphical derivatives of solu-
tion mappings,” Automatica, vol. 46, no. 9, pp. 1405–1418, 2010.

[41] W. Heemels, B. D. Schutter, and A. Bemporad, “Equivalence of hybrid
dynamical models,” Automatica, vol. 37, no. 7, pp. 1085–1091, Jul.
2001.

[42] A. Bemporad and M. Morari, “Control of systems integrating logic,
dynamics, and constraints,” Automatica, vol. 35, no. 3, pp. 407–427,
1999.

PATRINOS AND BEMPORAD: ACCELERATED DUAL GRADIENT-PROJECTION ALGORITHM 33

[43] J. Júdice, “Algorithms for linear programming with linear complemen-
tarity constraints,” TOP, pp. 1–22, 2011.

[44] J. Hu, J. Mitchell, J. Pang, K. Bennett, and G. Kunapuli, “On the global
solution of linear programs with linear complementarity constraints,”
SIAM J. Optim., vol. 19, no. 1, pp. 445–471, 2008.

[45] “Gurobi Optimizer Reference Manual” Gurobi Optimization, Inc.,
2012 [Online]. Available: http://www.gurobi.com

[46] “IBM ILOG CPLEX Optimization Studio 12.4—User Manual,” IBM,
Inc., 2012.

[47] A. Bemporad, M. Morari, and N. Ricker, Model Predictive Con-
trol Toolbox for Matlab—User’s Guide. : The Mathworks,
Inc., 2004 [Online]. Available: http://www.mathworks.com/ac-
cess/helpdesk/help/toolbox/mpc/

[48] P. Giselsson, “Optimal preconditioning and iteration complexity
bounds for gradient-based optimization in model predictive control,”
in Proc. 2013 Amer. Control Conf., 2013.

[49] M. Rubagotti, P. Patrinos, and A. Bemporad, “Stabilizing embedded
MPC with computational complexity guarantees,” in Proc. 12th Eur.
Control Conf. (ECC), Zurich, Switzerland, Jul. 2013.

[50] P. Patrinos, A. Guiggiani, and A. Bemporad, “Fixed-point dual gra-
dient projection for embeddedmodel predictive control,” inEur. Contr.
Conf., Zurich, Switzerland, Jul. 2013, pp. 3602–3607.

[51] R. Rockafellar and R. J. Wets, Variational Analysis. New York, NY,
USA: Springer Verlag, 2009.

Panagiotis Patrinos received the M.Eng. degree in
chemical engineering, the M.Sc. degree in applied
mathematics, and the Ph.D. degree in control and op-
timization, all from the National Technical Univer-
sity of Athens, Athens, Greece, in 2003, 2005, and
2010, respectively.
He is currently an Assistant Professor at the

IMT Institute for Advanced Studies, Lucca, Italy.
Previously, he was a Postdoctoral Fellow at IMT
Lucca and at the University of Trento. His current
research interests are focused on devising efficient

algorithms for distributed and nonsmooth optimization with applications in
embedded model predictive control (MPC) and machine learning. He is also
interested in stochastic, risk-averse and distributed MPC with applications in
the energy and power systems domain.

Alberto Bemporad (S’95–M’99–SM’06–F’10) re-
ceived the master’s degree in electrical engineering
in 1993 and the Ph.D. degree in control engineering
in 1997 from the University of Florence, Florence,
Italy.
He spent the academic year 1996/97 at the

Center for Robotics and Automation, Department
of Systems Science and Mathematics, Washington
University, St. Louis, MO, USA, as a Visiting
Researcher. In 1997–1999 he held a postdoctoral
position at the Automatic Control Laboratory,

ETH Zurich, Switzerland, where he collaborated as a Senior Researcher
in 2000–2002. In 1999–2009 he was with the Department of Information
Engineering, University of Siena, Italy, becoming an Associate Professor in
2005. In 2010–2011 he was with the Department of Mechanical and Structural
Engineering, University of Trento, Italy. In 2011 he joined as a Full Professor
at the IMT Institute for Advanced Studies Lucca, Italy, where he became the
Director in 2012. He cofounded the spinoff company ODYS S.r.l. He has
published more than 250 papers in the areas of model predictive control, hybrid
systems, automotive control, multiparametric optimization, computational
geometry, robotics, and finance. He is author or coauthor of various Matlab
toolboxes for model predictive control design, including the Model Predictive
Control Toolbox (The Mathworks, Inc.).
Dr. Bemporad was an Associate Editor of the IEEE TRANSACTIONS ON

AUTOMATIC CONTROL during 2001–2004 and Chair of the Technical Com-
mittee on Hybrid Systems of the IEEE Control Systems Society in 2002–2010.
He has been an IEEE Fellow since 2010.

