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Abstract— This note presents a method for the combined de-
sign of an integrating disturbance model and of the observer (for
the augmented system) to be used in offset-free model predictive
controllers. A dynamic observer is designed for the original
(non-augmented) system by solving an H∞ control problem
aimed at minimizing the effect of unmeasured disturbances and
plant/model mismatch on the output prediction error. It is shown
that, when offset-free control is sought, the dynamic observer is
equivalent to choosing an integrating disturbance model and an
observer for the augmented system. An example of a chemical
reactor shows the main features and benefits of the proposed
method.

I. INTRODUCTION AND PRELIMINARY RESULTS

Model Predictive Control (MPC) algorithms achieve offset-
free control by introducing additional fictitious integrating
disturbances in the system model. These are estimated at
each sampling instant by feeding the prediction error (i.e., the
difference between the measured and the predicted output) to
a state estimator. Unlike other feedback controllers (e.g. PID)
that achieve offset-free convergence by directly feeding back
the integrated tracking error, in MPC the same goal is obtained
as the result of the inherent integration of the prediction error
while updating the estimated additional states. The effect of the
estimated disturbances is cancelled by the MPC optimization
and the controlled variables are tracked at their setpoint.

Industrial algorithms like DMC [1] use, for stable plants, the
so-called “output disturbance model” in which a constant step
disturbance is added to each output. Output disturbance models
are also currently used in the state-space MPC algorithm of
the Model Predictive Control Toolbox for Matlab [2]. A first
theoretical analysis of the offset-free properties of such an
augmentation, within the MPC framework, can be found in [3],
where it is shown that a constant output disturbance guarantees
offset-free performance for square systems without integrating
modes. More general results were derived in [4] and [5], which
present conditions that ensure detectability of the augmented
system. In particular, the authors in [5] consider the following
augmented system[
xk+1

dk+1

]
=

[
A Bd

0 I

] [
xk

dk

]
+

[
B
0

]
uk, yk =

[
C Dd

] [
xk

dk

]
,

(1)
and show that a sufficient condition for (a subset of) the
measured outputs to track the corresponding set-points with
zero offset is that the system model is augmented with a
number of integrating disturbances equal to the number of
measured outputs, independently of the number of controlled
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variables, i.e., dim(d) = dim(y). Moreover, the following
condition:

rank
[
I − A −Bd

C Dd

]
= dim(x) + dim(d) (2)

must hold in order for the augmented system to be detectable,
and hence for an asymptotically stable observer to exist.
They also show that the maximum number of integrating
disturbances is equal to the number of measurements.

In principle any pair (Bd, Dd), referred to as “disturbance
model”, such that (2) holds is acceptable to achieve offset-
free control, and the most common choice is Bd = 0,
Dd = I . However, a number of different studies [4], [5],
[6], [7], [8] emphasized that different disturbance models
lead to different closed-loop performance in the presence of
different unmeasured disturbances or plant/model mismatch.
Therefore, a natural and interesting question is what kind of
disturbance model should be used for a given plant. Still,
the previous question is not completely well posed since
the observer gain used for the augmented system plays an
important role as well as the disturbance model itself. In
fact, since two augmented systems (with the same number
of integrators) are two different non-minimal realizations of
the same input/output process, it is possible to show [9] that
there exist filter gain matrices for each disturbance model that
achieve the same input/output behavior.

In this paper we propose a criterion and a procedure for
the simultaneous design of the disturbance model and of the
observer gain for the augmented system which minimizes the
effect of exogenous disturbances and of plant/model mismatch.
This goal is achieved by designing a “dynamic” observer for
the original system and by showing that, when offset-free
control is enforced, such a dynamic observer is equivalent to
choosing an integrating disturbance model and an observer
gain for the augmented system.

II. MODELS AND OBSERVERS

A. Plant and Internal Model

Consider the discrete-time linear time-invariant model of the
plant

xk+1 = Axk + Buk + Bwwk, yk = Cxk + Dwwk, (3)

in which x ∈ R
n is the state, u ∈ R

m is the input, y ∈ R
p is

the measured output, and w ∈ R
q is a vector of unmeasured

signals lumping the effects of all unmodelled disturbances and
sources of mismatch between the linear model with matrices
(A, B, C) and the real process. For instance, if the true plant
is given by

xk+1 = f(xk, uk, dk), yk = h(xk, dk),

where d ∈ R
� is a vector of disturbances, we can recover the

model in (3) by defining Bwwk = f(xk, uk, dk)−Axk−Buk,
Dwwk = h(xk, dk) − Cxk .

Without any loss of generality, we shall assume that
dim(w) = n + p and that

Bw =
[
In 0

]
, Dw =

[
0 Ip

]
. (4)



Also, let yc ∈ R
r be the vector of controlled variables to

be regulated on the corresponding set-point ȳ c, where yc is
defined as the linear combination of the measured outputs

yc := Hy. (5)

Assumption 1 (General): A measurement of output y is
available at each sampling time, (A, B) is stabilizable and
(A, C) is detectable. Moreover, the following condition holds:

rank
[
I − A −B
HC 0

]
= n + r. (6)

Remark 1: Condition (6) is necessary and sufficient for the
controlled variables yc to track an arbitrary setpoint without
offset when the disturbance w is not present or known (see
e.g. [5]). It clearly implies than dim(u) ≥ dim(y c) and for
square systems it is equal to assuming that the DC-gain from
u to yc is non-singular.

Based on output measurements y, we use the internal model

x̂k+1 = Ax̂k + Buk + ABvvk, ŷk = Cx̂k + Dvvk, (7)

to get an estimate x̂ of the state vector and ŷ of the model
output, where v is taken as the output of the dynamic observer

ξk+1 = ALξk + BLek, vk = CLξk + DLek, (8)

in which AL, BL, CL and DL are matrices of appropriate
dimensions to be defined, and

e := y − ŷ (9)

is the error between the measured output and the model output.
Without loss of generality, we assume that dim(v) = n + p
and

Bv =
[
In 0

]
, Dv =

[
0 Ip

]
. (10)

B. Connection with Offset-free Disturbance Models

By combining model (7) and observer (8) we obtain the
following closed-loop augmented system:[

x̂k+1

ξk+1

]
=

[
A ABvCL

0 AL

] [
x̂k

ξk

]
+

[
B
0

]
uk +

[
ABvDL

BL

]
ek

ek = (I + DvDL)−1

(
yk − [

C DvCL

] [
x̂k

ξk

])
,

(11)

where we assume that matrix DL is synthesized in such a way
that (I + DvDL)−1 exists.

Remark 2: The closed-loop system (11) is clearly equiva-
lent to using a Luenberger observer for the augmented system[
xk+1

dk+1

]
=

[
A Bd

0 AL

] [
xk

dk

]
+

[
B
0

]
uk, yk =

[
C Dd

] [
xk

dk

]
,

where Bd = ABvCL and Dd = DvCL, with observer gain

L =
[
L1

L2

]
=

[
ABvDL(I + DvDL)−1

BL(I + DvDL)−1

]
.

Moreover, if AL = Ip we obtain that (11) is a Luenberger
observer for the offset-free augmented system (1).

P

L
v

ws

e

Fig. 1. Closed-loop (system and observer) block diagram

C. Problem Statement

In [5] it is shown that in order to achieve offset-free control
of yc (for instance of a subset of the measured outputs) the
observer must be designed in a way that there is no steady-
state error between the measured and the estimated value
of all outputs, i.e., such that limk→∞ yk − ŷk = 0, in the
presence of arbitrary asymptotically constant disturbances. The
rationale for this requirement is that any MPC algorithm (as
the one described later in Section IV) is such that the predicted
controlled variables asymptotically reach the desired setpoints,
i.e., limk→∞ Hŷk = ȳc. Combining this fact with the previous
requirement, it follows that:

lim
k→∞

yc
k = lim

k→∞
Hyk = lim

k→∞
Hŷk = ȳc.

A detailed proof can be found in [5, Th. 1]. Moreover, in
many applications one is interested that some of the output
variables lie within a given range, without even specifying a
setpoint for such variables (or, equivalently, by zeroing the
corresponding weight in the MPC performance index). In this
case, since output constraints are imposed on ŷk in the MPC
optimization, ensuring limk→∞ yk − ŷk = 0 provides better
chances that output constraints are also fulfilled by the actual
system outputs yk.

We are ready now to state the main problem tackled in this
paper:

Problem 1: Given plant model (3) with (A, C) is de-
tectable, determine a disturbance model (Bd, Dd) and a matrix
gain L such that the static observer (1) makes the predicted
output-variable error (y − ŷ) converge to zero asymptotically
for any asymptotically constant lumped disturbance w.

III. METHOD AND RESULTS

A. Observer Design Problem

We design the dynamic observer (8) by exploiting ideas
from linear H∞ control theory. Consider the block diagram
depicted in Figure 1, and let

δ := x − x̂, s := e, (12)

From (3) and (7) we obtain

δk+1 = Aδk + Bwwk − ABvvk

ek = Cδk + Dwwk − Dvvk

sk = Cδk + Dwwk − Dvvk

(13)



which gives a complete description of block P in Figure 1.
Equivalently, we can describe the block P in terms of discrete-
time transfer matrices:(

s
e

)
= P

(
w
v

)
=

(P11 P12

P21 P22

) (
w
v

)
, (14)

in which Pij are transfer matrices whose definition is straight-
forward. The dynamic observer is described in transfer matrix
form:

v = Le, (15)

where L is easily obtained from (8). Finally, we express the
closed-loop transfer matrix from w to s as

G = P11 + P12L(I − P22L)−1P21. (16)

We wish to design L such that the following goals are
achieved:

1) The closed-loop system from w to s is asymptotically
stable, i.e., the transfer matrix G has all poles in the open
unit circle.

2) The DC-gain G(1) from w to s is zero.

In addition to these basic requirements, we wish to design L
such that the effect of w on s is minimized in some sense.
For instance, given two stable transfer matrices Wo and Wi

and a positive scalar γ, we may want to design L such that

‖WoGWi‖∞ < γ, (17)

in which ‖ · ‖∞ denotes the H∞ norm (see e.g. [10]).
Remark 3: For given transfer matrices Wo and Wi, there

exists a positive scalar γmin such that:

γmin = min
L

‖WoGWi‖∞ < ∞. (18)

Remark 4: Satisfaction of (17) implies that G is asymptot-
ically stable. Moreover, if we let

Wo =
1

z − 1
Ip, (19)

then G(1) = 0.

B. Technical Results

Lemma 1: Suppose that Assumption 1 holds, assume that
Wo is given by (19) and that Wi is a strictly stable transfer
matrix. Then, any dynamic observer (8), with dim(ξ) = p,
that satisfies (17) is such that

AL = Ip. (20)
Proof: Since G(1) = 0, we have that 0 = ē = G(1)w̄ for

any w̄ ∈ R
n+p. From (8) and (13), after some straightforward

algebraic manipulations, this is equivalent to:⎡
⎣I − A −ABvCL

C DvCL

0 I − AL

⎤
⎦

[
δ̄
−ξ̄

]
=

⎡
⎣ Bw

−Dw

0

⎤
⎦ w̄. (21)

Since w̄ ∈ R
n+p can be arbitrary and because of (4), the right

hand side of (21) is a vector with the first n + p components
arbitrary and the last p components equal to zero. Hence, (21)

can have a solution for any w̄ if and only if the following
conditions hold:

rank
[
I − A −ABvCL

C DvCL

]
= n + p, AL = I. (22)

Theorem 1: Under the assumptions of Lemma 1, given a
dynamic observer (8) with dim(ξ) = p that satisfies (17), let

Bd = ABvCL, Dd = DvCL, (23)

and

L1 = ABvDL(I + DvDL)−1, L2 = BL(I + DvDL)−1.
(24)

Then:
i) Condition (2) holds.
ii) The matrix

Acl =
[
A Bd

0 I

]
−

[
L1

L2

] [
C Dd

]
(25)

is strictly Hurwitz.
iii) For any disturbance sequence such that limk→∞ wk =

w̄ ∈ R
n+p, we have that

lim
k→∞

[yk − (Cx̂k + Ddξk)] = 0. (26)

Proof: Result i) follows trivially from (22), (23). In
order to prove result ii) we first rewrite G from (8), (13), (23)
and (24) in the state-space form[

δk+1

−ξk+1

]
=

{[
A Bd

0 I

]
−

[
L1

L2

] [
C Dd

]} [
δk

−ξk

]

+
[
Bw − L1Dw

−L2Dw

]
wk (27)

Since G is a strictly stable transfer matrix, result ii) follows
from (27) and (25). Moreover, since G(1) = 0 we have
that limk→∞ ek = 0 for any disturbance sequence such that
limk→∞ wk = w̄. Thus, result iii) follows by simply noticing
that

yk − [
C Dd

] [
x̂k

ξk

]
= (I + DvDL)ek. (28)

C. Design Procedure

We exploit the theoretical results of the previous sections
now to design the dynamic observer L from the H∞ control
problem defined in (18), which can be efficiently solved as
an LMI convex optimization problem [11]. The proposed
procedure is outlined below.

Procedure 1: Given the system matrices (A, C), (Bw, Dw)
as in (4), (Bv, Dv) as in (10), the outer filter as in (19):

1) Choose a non-negative scalar α and define the inner filter
as the following stable transfer matrix:

Wi =
(1 + α)z − α

z
In+p. (29)

2) Solve (18) and compute a minimal realization of order
p the solution L.

3) Define the disturbance model matrices (Bd, Dd) from
(23) and the corresponding observer matrices from (24).



Remark 5: The maximal state dimension of L is equal to
that of the plant (including the outer and inner filters), i.e.,
2(n + p). Conditions for reduced order design are discussed
in [11]. Nonetheless, a large number of tests on random
systems, performed using the Robust Control Toolbox (version
3) of Matlab (version 7.0sp1), suggests the conjecture that the
minimal realization of L always has a state dimension of p.

Remark 6: The filter defined in (29) corresponds to the
difference equation wf

k = wk +α(wk −wk−1) in which wf
k is

the filtered disturbance. Hence, α can be regarded as a tuning
parameter which can be varied to ensure low sensitivity of
the dynamic observer to high frequency disturbances (e.g., to
measurement noise).

IV. MPC ALGORITHM

We now describe in details the “overall” model predictive
control algorithm used in this work, which is based on the
three main modules depicted in Figure 2.

u y

ȳc

Optimization

Model Predictive Controller

Target
calculator Observer

Plant
Dynamic

x̂, d̂(x̄, ū)

Fig. 2. Model predictive controller scheme (ȳc = desired setpoint for
controlled variables)

Notation: we denote by (·)k the actual value of variable (·)
at time k, by (·)j|k (with j ≥ k) the predicted value of (·) at
time j based on the measurements up to time k.

A. Observer

At each sampling time, given the measured output yk and
a previous estimate of the augmented state, we compute

x̂k|k = x̂k|k−1 + Lx(yk − Cx̂k|k−1 − Ddd̂k|k−1)

d̂k|k = d̂k|k−1 + Ld(yk − Cx̂k|k−1 − Ddd̂k|k−1),
(30)

in which Lx = Bv(DL−CLBL)(I+DvDL)−1, Ld = BL(I+
DvDL)−1.

Remark 7: It is trivial to show that (Lx, Ld) satisfy
[
L1

L2

]
=

[
A Bd

0 I

] [
Lx

Ld

]
,

where (L1, L2) are given in (24). Moreover, the results of
Theorem 1 imply that (30) is an asymptotically stable offset-
free filter, i.e., such that limk→∞ yk−Cx̂k|k−1−Ddd̂k|k−1 = 0
whenever the “lumped” plant disturbance wk in (3) reaches a
constant (yet unknown) value.

B. Constrained Target Calculation

At each sampling time, given the current estimate of the
disturbance and the setpoint for the controlled variables ȳ c, we
compute the state and input targets that drive the controlled
variables to their setpoints, in the presence of constraints, by
solving the following quadratic program (QP):

(ūk, x̄k) = arg min
us,xs

uT
s R̄us (31a)

subject to[
I − A −B
HC 0

] [
xs

us

]
=

[
Bdd̂k|k

ȳc − HDdd̂k|k

]
(31b)

umin ≤ us ≤ umax (31c)

ymin ≤ Cxs + Ddd̂k|k ≤ ymax, (31d)

in which R̄ is a positive definite matrix of appropriate dimen-
sions.

Remark 8: The QP (31) may be infeasible because of the
presence of output inequality constraints (31d) and because
of the equality constraint H(Cxs + Ddd̂k|k) = ȳc. The
former case of infeasibility can be addressed by softening the
output inequality constraints (see e.g. [12]). The latter case of
infeasibility instead means that, given the current disturbance
estimate, offset-free control of yc to the setpoint is not possible
because the input constraints are overly stringent. In such case
we can solve a second QP aimed at minimizing the offset [13].

C. Constrained Dynamic Optimization

At each sampling time, given the current state and input
targets, we compute an optimal finite-horizon input sequence
π∗

k = (u∗
k|k, u∗

k+1|k, ..., u∗
k+N−1|k) as the solution of the

following optimization problem:

π∗
k = argmin

πk

k+N−1∑
j=k

{
‖x̂j|k − x̄k‖2

CT QC

+‖uj|k − ūk‖2
R

}
+ ‖x̂k+N |k − x̄k‖2

P (32a)

subject to:

x̂j+1|k = Ax̂j|k + Buj|k + Bdd̂k|k (32b)

umin ≤ uj|k ≤ umax (32c)

ymin ≤ Cx̂j|k + Ddd̂k|k ≤ ymax, (32d)

in which ‖x‖2
Y = xT Y x, Q and R are positive definite

matrices, and P is a positive semi-definite matrix. Common
choices for P are the solution of a Lyapunov equation as in
[13] or the solution of a Riccati equation as in [14]. The latter
is used in this work.

Then, the current input is chosen as the first component of
the optimal input sequence π∗

k:

uk := u∗
k|k, (33)

and the augmented state estimate for the next sampling time
is computed accordingly:

x̂k+1|k = Ax̂k|k + Buk + Bdd̂k|k, d̂k+1|k = d̂k|k. (34)



V. APPLICATION EXAMPLE

A. Results

A simulated jacketed continuous stirred tank reactor (CSTR)
in which an exothermic irreversible reaction A → B oc-
curs [15], [5] is chosen as an example to show the main
features of the proposed method. The system has two ma-
nipulated variables (coolant temperature, outlet flow rate) and
three measured outputs (molar concentration of A, reactor
temperature, tank level), and a discrete-time state space real-
ization is reported in [5]. The second and third outputs (reactor
temperature and the tank level) are the controlled variables.

Remark 9: Although only two variables must be controlled
without offset, in order to achieve such a goal it is necessary,
in general, to augment the system model with three integrating
states [5]. It is also important to remark that the system is only
Lyapunov stable, because it has one pole equal to 1 (associated
to the tank level). Hence, it is easy to see that the output
disturbance model (Bd = 0, Dd = I3) cannot be used because
it violates condition (2).
We compare four MPC regulators designed with the following
tuning parameters: N = 20, Q =

[
0.1 0
0 I2

]
, R = R̄ = 0.1I2,

−umin = umax = [2 20]T . The four controllers only differ
from each other in the disturbance model and observer used,
as detailed below.

• MPC 0 uses a “mixed” input/output disturbance model
(a disturbance enters the second input channel, and two
disturbances enter the second and third output channels)
with a steady-state Kalman filter as observer.

• MPC 1 uses an “optimal” disturbance model and estima-
tor obtained for α = 0.1.

• MPC 2 uses an “optimal” disturbance model and estima-
tor obtained for α = 1.0.

• MPC 3 uses an output disturbance model in which two
disturbances enter the second and third output channels
with a steady-state Kalman filter as observer.

We compare the behavior of the four MPC controllers in the
rejection of a sequence of step disturbances. The first step
appears at t = 5 on the inlet flow rate up to t = 50. Then, at
time t = 50 three steps appear superimposed on the second
input channel and the second and third output channels, in
accordance with the disturbance model used by MPC 0.

Closed-loop results (controlled and manipulated variables)
are reported in Figure 3 for the case of noise-free measure-
ments and in Figure 4 for the case of noisy measurements (out-
put noise is uniformly distributed in ±[0.001, 0.050, 0.050]).

B. Brief Discussion

The results presented above clearly show that the distur-
bance model and the observer used for the augmented system
affect significantly the closed-loop performance of MPC in
the presence of plant/model mismatch and unmeasured dis-
turbances. In Figure 3 we can see that MPC 1 and MPC 2,
based on disturbance models and observers designed with the
proposed method, reject the unmeasured disturbances much
more efficiently than MPC 0, even during the second phase of
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Fig. 3. CSTR: closed-loop results without noise
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Fig. 4. CSTR: closed-loop results in the presence of noise

the rejection (t ≥ 50) when the actual disturbance is consistent
with the disturbance model used by MPC 0. Most likely the
reason for the worse behavior of MPC 0 is that it is based on a
fixed-structure observer (steady-state Kalman filter), while the
design of MPC 1 and MPC 2 exploits its freedom in choosing
the observer gain. Indeed, the existence result of [9] proves
that an observer gain exists for MPC 0 that provides the same
behavior of MPC 1 or MPC 2.

Notice that this performance improvement is associated to
a “better” (not a “larger”) input usage. In fact, this occurs
because the output prediction errors go to zero much more
quickly for MPC 1 and MPC 2 than for MPC 0. We can
also see, as expected [5], that MPC 3 is not able to guarantee
offset-free control in the two controlled variables because it
uses a disturbance model with two integrating disturbances
only. Figure 4 shows that efficient disturbance rejection and
low sensitivity to output noise is achieved by the proposed
method. It is also interesting to notice the effect of the tuning
parameter α on the closed-loop performance: the lower α,
the more effective the estimator in rejecting disturbances (but
also the more sensitive to output and process noise). Hence,
by simply varying this single tuning parameter, one can trade
off between effectiveness in obtaining offset-free control and
low sensitivity to noise.



VI. CONCLUSIONS

In this paper we proposed a novel method to design a
disturbance model and its associated observer for offset-free
model predictive control. This objective was achieved by
synthesizing a “dynamic” observer for the nominal system
and by showing that, when offset-free control is required, this
is equivalent to choosing an integrating disturbance model
and a static observer gain for the augmented system. The
dynamic observer was designed by solving an appropriate H∞
control problem, aimed at minimizing the effect of external
unmeasured disturbances (and plant/model mismatch) on the
output prediction. There is a single scalar parameter to choose
in the proposed design method, which trades off between
the aggressiveness in the rejection of disturbances and the
resiliency to output and process noise. A simple application
example showed the effectiveness of the proposed method and
the benefits that can be achieved with respect to other more
common choices of disturbance models and observers.
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