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IV. SIMULATIONS RESULTS On Hybrid Systems and Closed-Loop MPC Systems

The performance of the estimator was tested by extensive Sim”'/i‘rberto Bemporad, W. P. Maurice H. Heemels, and Bart De Schutter
tions, some of which are presented in the following figures. First, we ' '

show in Fig. 1 the behavior of the estimator for a single frequency and
A=1,v=10,{( =1,k =1,k =1, =1 andy(t) = sin(at). Abstract—The following five classes of hybrid systems were re-
We stress the fact that if the frequency is increased, then the mageitly proven to be equivalent: linear complementarity, extended
tude ofw, increase too, and therefore, we may increatereduce the linear gomlplemenlt_anty, mixed Icéglcal d¥nﬁm|cal,_p|?ceW|se aﬁlne,t)and d
. - _ ] . . max-min-plus-scaling systems. Some of the equivalences were obtaine
magnitude 0fl2_an(_j reducdsg andA’{ for which the dynamics o, under additional assumptions, such as boundedness of certain system
are faster. In this situation, we can incregsand thus we have faster yariables. In this note, for linear or hybrid plants in closed-loop with
dynamics ofi:3. The response of the estimator for= 100, where the a model predictive control (MPC) controller based on a linear model,
parameters ark, = 0.5, ks = .25, A = 100, v = 1000, ¢ = 1000 fulfilling linear constraints on input and state variables, and utilizing a

andy(t) = 10sin(100¢) is shown in the Fig. 2. We observe the good]uadratic cost criterion, we provide a simple and direct proof that the
behavior of the estimator T closed-loop system is a subclass of any of the former five classes of hybrid

systems. This result is of extreme importance as it opens up the use of
Taking now two frequencies, let us say = 1, a2 = 2, we get tools developed for the mentioned hybrid model classes, such as (robust)

ap = 4 andaz = 5 and the performance of the filter with parameterstability and safety analysis tools, to study closed-loop properties of MPC.

ki =06,k =11, k3 = 6, ks = 1, A, = 1fori = 1...,3 and Index Terms—Complementarity systems, hybrid systems, mixed logical

y(t) = 10(sin(t) + sin(2t)), are shown in Figs. 3 and 4. dynamical systems, model predictive control (MPC), piecewise affine sys-
As it may be observed, the estimator exhibites a good convergerte®s.

properties, so this results suggest the validity of the proposed estimator.

|. INTRODUCTION
V. CONCLUSION

Hybrid dynamical models describe systems where both analog (con-
Otlﬂ’?uous) and logical (discrete) components are relevant and interacting
_rL?.' Recently, hybrid systems received a lot of attention from both the

. N ” omputer science and the control community, but general analysis and
mator Is glqbally con\(erg.ent for. aII.|n|t|a| conditions and frequencxomrol design methods for hybrid systems are not yet available. For this
vz_alues gnd Its dl_men5|on 'm;Wh'Ch Is, as far as we_know, the IoWerreason, several authors have focused on special subclasses of hybrid
dlm_en5|onal estimator for this pro_bl_em. The extensive perfo_rmed S"%Vstems for which analysis and synthesis techniques are currently being
ulations allows us to state the validity of the proposed solution. developed. Some examples of such subclasses are: linear complemen-
tarity (LC) systems [2], [3], extended linear complementarity (ELC)
systems [4], mixed logical dynamical (MLD) systems [5], [6], piece-
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combination with [10] to convert from PWA to LC and MLD, which Remark 2: As will also be clarified later for PWA systems, for

would require additional assumptions and would yield more complsvell-posedness of several instances of (1) over compact sets of

models, we provide a simple, direct, and constructive proof to rewrii&* x R™, the inequalities in (1) should be split as strict inequal-

cl-MPC systems as LC and MLD systems. ities h;(w(k), u(k),w(k)) > 0,7 € I, and nonstrict inequalities
Despite the fact that MPC schemes are typically designed so thatz(k), u(k),w(k)) > 0,5 € J,INJ =0, TUJ = {1,...,q}.

they are intrinsically stable and fulfill operating constraints, stability i8lthough this would be important from a system theoretical point of

usually guaranteed through the introduction of stability constraints, thaéw, it is not of practical interest from a numerical point of view, as

are often removed in practical MPC schemes as they typically detéri>" cannot be represented in numerical algorithms working in finite

orate performance or complicate the optimization problem. Moreoverecision. Indeedy > 0 can be only represented as> ¢, ande is

such guarantees only halkhen the nominal model of the plant and thesome pre-specified tolerance, e.g., the machine precision. [

prediction model coincide and the full state is available at each sample

instant An important issue is to analyze the behavior of the closed-lodp PWA Systems

system when the nominal model and the plant model differ, e.g., be-p\ya systems are described by

cause of the presence of nonlinearities, or when an observer is used

to estimate the state. Robust MPC techniques [11] partially solve this e(k+1) :Aiw(k) n Biu(k) 4 fi

issue, by taking into account a class of linear uncertain models rather , o ' -

than one single prediction model, although this typically requires in- y(k) =C'z(k)+ D'u(k)+g" for {

creased computation effort and, again, leads to deterioration of per- u

formance. Now, based on the results of this note, the (robust) stability

analysis, well-posedness results, and safety analysis tools availablexfbere(?; = { e Hir+ Hiu < K;},i =1,...,(, are convex

any of the five mentioned classes of hybrid systems (PWA, MLD, LC Y

. N . olyhedra in the input+state spact., B*, C¢, D', H: and H. are
tErlc;I(Ife,r'\g'\rfgi)l'cn aer;:)e I?r)l‘tjléegst(s)'gln y.ﬁglmg.'rr:atg).gtoisal:]nciir el\l/rlzcmcgiélal matrices of appropriate dimensions ghdindg’ are real vectors
: P possibly inciuding distu rall¢ = 1,...,¢. PWA systems have been studied by several au-

ungertaintie_s). The results can be easily _extended to arbitrary c_om[ﬁlc-)rs (see [6], [7], [12], and the references therein) as they form the
nations of linear MPC controllers aribrid plants, such as hybrid “simplest” extension of linear systems that can still model nonlinear

approximations of complex nonlinear dynamic models of the process . .
. ) nd nonsmooth processes with arbitrary accuracy and are capable of
to be controlled. An example will demonstrate the use of hybrid tooﬁs

- . N i andling hybrid phenomena.
for stability analysis and verification in the setting of cl-MPC systems. System (2) belongs to the general class (1) by letfing be PWA

functions defined ovef2 £ Ut Qi andr = ¢ =0 (i.e., the auxil-

Il. CLASSES OFHYBRID DYNAMICAL MODELS iary variablew (%) and the mappin@g are not required). A necessary
and sufficient condition for the PWA system (2) to be well-posed over
Q is therefore thaff, ¢ are single-valued PWA functions. Therefore,
typically the set$2; have mutually disjoint interiors, and are often de-
) (1a) fined as the partition of a convex polyhedral 8etin case of disconti-
) (1b) nuities of f, g over overlapping boundaries of the regiéns to ensure

well-posedness we should write some of the inequalities in the form
) (1c) (H) 2 + (H*)u < K/ (see Remark 2). In the following we shall
neglect this issue for the sake of compactness of notation and the fact
where the variables(k) € R™, (k) € R" andy(k) € R’ denote that we will actually deal witltontinuousgiecewise affine systems, as
the input, state and output, respectively, at timandw(k) € R"isa we will see.
vector of auxiliary variables (this notation also holds for all the hybrid
models introduced laterf,: R* x R™ x R" — R",g: R® x R™ x  B. MLD Systems
R" — R, h: R" X R" x R" — R?, and the inequality (1c) should
be interpreted componentwise. The evolution of (1) is determined
follows. Given the current state(k) and inputu (%) the collection of
inequalities (1c) is solved far (k). By substitution ofv (%) in (1a) and
(1b), the state updat€ 4+ 1) and the current outpuyt k) are obtained.
Specific choices of the form of the functiorfs g, ~ will determine

e o

In this note, we consider discrete-time models of the form

z(k+1) =f(x(k), u(k),w(k
y(k) =g(e(k), u(k), w(k)

‘)
0 <h(x(k),u(k),w(k)

SIn [5], a class of hybrid systems has been introduced in which logic,
éiynamics and constraints are integrated. This lead to a description of
the form

x(k+1) =Aw(k) + Biu(k) + B26(k) + Bsz(k) (3a)

different classes of hybrid systems, as we will detail in the rest of this y(k) =Cua(k) + Dru(k) + D26(k) + D3z(k)  (3b)

section. Eix(k) + Eou(k)+ Es6(k) + Eqz(k) < gs (3c)
Definition 1: Let 2 C R™ x R™ be a set of input+state pairs.

A hybrid system of the form (1) is calledell-posedon €2, if for all  wherex(k) = [z./(k) ' (k)], (k) € R"" andas(k) €

pairs (x(k),u(k)) € € the equations (1) have a solutigm(k + {0,1}"* (y(k) and «(k) have a similar structure), and where
1),y(k),w(k)), and moreover(z(k + 1),y(k)) are uniquely deter- z(k) € R andé(k) € {0,1}" are auxiliary variablesA, B;,
mined. C', D; and E; denote real constant matrices apdis a real vector.
Definition 1 implies thate(k + 1), y(k) are unique functions of The inequalities (3c) have to be interpreted componentwise. Systems
(z(k),u(k)), and therefore, that the possible nonuniqueness(éf) that can be described by model (3) are called MLD systems. By
is removed through the mappingsandg. lettingw (k) £ [2'(k) §'(k)]', clearly (3) together with the integrality
Remark 1: The general formulation (1) allows some of the stategonditions overs, =y, y,, and u, (expressed as inequalities, see
input, output, or auxiliary variables to attain only discrete value®emark 1), forms a subclass of (1).
e.g.,w;(k) € {0,1} can be represented by the two inequalities The MLD formalism allows specifying the evolution of continuous
max(w; (k) — 1, —w;(k)) > 0, — max(w;(k) — 1, —w;(k)) > 0,0r variables through linear dynamic equations, of discrete variables
by w; (k)(1 — w;(k)) < 0,w;(k) > 0,1 —w,(k) > 0. O  through propositional logic statements and automata, and the mutual
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interaction between the two. The key idea of the approach consist?Assume for the moment that a full measurement of the s{dtgand

of embedding the logic part in the state equations by transformitige previously implemented control value (%) = w(k — 1) (which
Boolean variables into 0-1 integers, and by expressing the relationght be considered as an additional state) are available at the current
as mixed-integer linear inequalities (see [5] and references thereiime k. Then, the optimization problem

MLD systems are therefore capable of modeling a broad class of

systems, in particular those systems that can be modeled through the o , N“_l/ o )
hybrid system description language HYSDEL [13]. M D Qi + D Ay, RAuky
t=1 t=0
C. LC Systems subj. taDy w44k + Dougts + DsAugys < da,
LC systems are given in discrete-time by the equations t=0,1,....N.
Thots1k =Axpiee + Buggs, t >0
o(k+ 1) =Aw(k) + Bru(k) + Baw(k) (4a) k;““ I
y(k) =Cxz(k)+ Diu(k) + Dow(k) (4b) I:,-H‘k u ‘ k+i|k_;_ A_" +>1
e+t —Uk+t—1 ety U Z
v(k) =E z(k) + Exu(k) 4+ Esw(k) + g4 (4c) Aty =0, Ny <t < N,
0 <v(k)Lw(k) >0 (4d)

e =x(k), ur = u(k — 1) + Auy @)

with v(k),w(k) € R* and wherelL denotes the orthogonality of vec- is  solved with respect to  the column  vector
tors (i.e.,v(k) Lw (k) means that' (k)w(k) = 0). We callu(k) and P

T A 1AL A 4 h £ N i v
w(k) the complementarity variablest, B;, C, D;, and E; are real L [Aug..... Aujyy, ] € RY, h mN., at each timek,
. . . where x4, denotes the predicted state vector at tiet ¢,
matrices andy. is a real vector. Clearly, (4) is a subclass of (1). ) : .
obtained by applying the input sequeneg,. .., ux+¢—1 to model

. In [2]’.[3]' and [14}-{16], (I_|near) co_mp!eme_ntarlty systemsc_nm 5) starting from the state(k), ande, = Yeteje — (k) is the
tinuoustime have been studied. Applications include constrained meg- " . ,
. . L . redicted tracking errdr. In (7), we assume thaf) = Q" > 0,
chanical systems, electrical networks with ideal diodes or other dynai)- | o . . e .
= R’ > 0 (“>" denotes matrix positive definitenessy,,, N,

ical systems with piecewise affine relations, variable structure systems, . . : . .
. . . . N/ are the output, input, and constraint horizons, respectively, with
constrained optimal control problems, projected dynamical systems, - - -
N, < Ay and N, < Ay — 1.

and so on [15, Ch.2]. The MPC control law is based on the following idea. At tirhe
compute the optimal solutiofi* (k) = [Au}/,..., Auj,in, 1] tO

) ) ] problem (7), apply
In [9], we discussed the relationships between the model classes

mentioned above and two others: MMPS and ELC systems. As ELC w(k) = x, (k) + Auj, (8)

systems are of similar nature as LC systems, we will not define them

here, but refer to [4] and [9]. MMPS systems are obtained by choosifg input to system (5), and repeat the optimization (7) at the next time

£, g, hin (1) as (nested) combinations of the operations maximizatiofteP% + 1, based on the new measured (or estimated) stdtet 1).

minimization, addition and scalar multiplication. More details on thidlote that

class can be found in [8] and [9]. Aul = LU* (k) ©)
Fact 1: PWA systems, MLD systems, LC systems, and MMPS sys- k= Y

tems are equivalgnt (certain equivale_n_ces require assumptions Onvm%rell Y [I. 0 ... 0]. By substitutingz; ox = A'w(k) +

boundedness of input, state, and auxiliary varlables.or on We||-p03%é:(1] AJ Buyi,—1_, in (7), this can be written as

ness), and form subsets of the general class of hybrid systems (1). —

Proof: See [9] for full details on assumptions, relationships, and.
a constructive proof. m U

D. Equivalence of Hybrid Model Classes

%U’HU + ¢ (k)FU + %5’@)%%)
subj.to GU < W + S¢(k)  (10)

. CL-MPC SYSTEMS AND HYBRID SYSTEMS A , L , .
where¢ (k) = [2'(k) (k) r' (k)] H = H' > 0,andH, F,Y, G,

MPC has become the accepted standard for complex constraingd s are easily obtained from (7).
multivariable control problems in the process industries. Here at eachrhe optimization problem (10) is a quadratic program (QP), which
sampling time, starting at the current state, an open-loop optimal c@epends on the current staté:), past inputz., (k) = u(k — 1), and
trol problem is solved over a finite horizon. Only the first computegeference: (k).
control value in the sequence is implemented. At the next time step, theonsider the closed-loop model predictive control system depicted

computation is repeated starting from the new state and over a shifigtig. 1. The plant is described by the difference equations
horizon, leading to a moving horizon policy [17].

For the discrete-time linear time-invariant system o. [x(tk+1) = Ax(k)+ Bu(k)+ Hd(k)
3 i (11)
, y(k) = Cx(k)+ Dd(k)
z(k+1) = Ax(k)+ Bu(k) 5
y(k) = Cua(k) ) wherex(k) € R™ is the state vector, and(k) € R? is a vector of

N . , ] unmeasured disturbances. We distinguish between niodel(11),
wherez(k) € R",u(k) € R™, andy(k) € R” are the state, input, and yhich is the actual plant, and model (5), which is the linear model used
output vector, respectively, consider the problem of tracking the outgy} gesigning the MPC controller. Typically (5) is an approximation of
reference signal(k) € R” while fulfilling the constraints (11), e.g., a low-order approximation where only the relevant dynamics

Dia(k) + Dsu(k) + DsAu(k) < dy ©6) are kept. As the MPC optimization problem (7) is based on model (5),
. . A 1ifthe reference is known in advance, one can reptékg with r(k+t), with

at all time instantg: > 0, whereAu(k) = u(k) — u(k — 1) are the 5 consequent anticipative action of the resulting MPC controller. Otherwise, we

increments of the input. setr(k +t) = r(k) fort > 0.
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disturbance d(k)l Remark 3: In [10], by exploiting the fact that the coefficients of the
linear term in the cost function and the right-hand side of the constraints

reference r()| MPC iput uB | Plant 3 Loutput vih in (10) depend linearly on a vectgtk) of parameters, the quadratic
Controller program (10) has been tackled as a multiparametric quadratic program
(mp-QP), and it has been shown that the optimal solution is a con-
z(® tinuous piecewise affine function of the state. Consequently, the MPC

Ob controller admits the explicit continuous PWA form
server |+——

u(k)=Fie(k)+ g if (k) € Q% i=1,...,N

Fig. 1. Closed-loop model predictive control system. Wherle A {¢ Hgf(k,) < Ké}, and {Qi}i\il is a partition of a
given state+input+reference $etOr stated differently, every cl-MPC
it requires a state:(k) that is coherent with the same model (5). Asystem (7), (9)—(12) can be written as a continuous PWA system. By

common solution consists of generating:) via the state observer ~ applying Fact 1, one can now also show that cl-MPC systems can be
equivalently rewritten as LC systems. However, this requires bound-

x(k+1) = Ax(k) + Bu(k) + K.(y(k) — Ca(k)). (12) edness assumptions over some of the variables, as the transformation
through MLD is involved, plus a large humber of complementarity
Now, we prove that cI-MPC systems are a subclass of LC system@airs. An alternative could be based on [19] in which continuous PWA
Theorem 1: Every cl-MPC system (7), (9)—(12) can be written agunctions are transferred into linear complementarity problems [20] of

an LC system. the form (4c) and (4d). However, the proof presented above is more
Proof: The proof  follows  from the first-order direct, does not require any assumptions, and limits the number of re-

Karush—Kuhn—Tucker (KKT) conditions for QP (10) [18, Ch. 10.6]guired complementarity pairs. O

which are necessary and sufficient for optimalityl6f(%) In order to show directly that cI-MPC systems are also a subclass of

MLD systems, we prove the following lemma.

!

HU (k) + F'e(k) + G'\(k) =0, (k) € R* (13a) Lemmal:Let¢ = [+’ &, '] belongtoabounded s&t Then,

N () (GU™ (k) = W — Sé(k)) =0 (13b) there exists an u.pper-bo.u?d > 0 such tha.t.at least one vector of
Lagrange multipliers satisfies the KKT conditions (13) aid< A <
A(k) >0 (13c) \+
W+ S&(k) — GU* (k) >0. (13d) Proof: Consider the combinatiod C {1,...,k} of active
constraints&;U* = W; + S;¢ at the optimum, wheré&'; denotes
From (13a), it follows that: the submatrix ofG obtained by collecting the rows indexed by the
elements of (similar forWr andSt), and assume thétr has full row
U(ky=—H '"F'¢(k) — H 'G'\(k) rank. From the KKT conditions (13)]* = —H ™' (F'¢ + G/ \;(¢)),
éT;n(k) + Vau(k) + Zr(k) + AN(E). (14) Where \; (¢) > 0 is a vector collecting the subset of Lagrange

multipliers relative to the active constraints [the remaining mul-
By letting Ma(k) + Nay (k) + Lr(k) £ SE(E), v(k) £ 1 4 tipliers are zero due to (13b)—(13d)]. Substitutify, we obtain
Ma(k) + Nau(k) 4+ Lr(k) — GU*(k), w(k) = A(k), and recalling A:(&§) = —(GiH'GY) 7 W, + 5.6 + G H ™ F'¢], which admits
(8) and (9) we can rewrite the closed-loop MPC system in the LC foréi upper-bound} £ maxec= A;(€) > 0. TakeA™ = max AT over

all combinationsI of linearly independent active constraints. If for

x(k+1) somet a linearly dependent combination of constraints is active at the
x(k+1) optimum, (i.e., the QP is primal degenerate, arid not unique), then
xo(k+1) a subset of linearly independent constraints and a vedior < A*
A BT B, + L) V) can be chosen which provides the same solutién(cf. [15, Lemma
=|K.C A-K.C+BLT B(I,.+LV)]|-: 4.4.5] and [20, Theorem 2.6.12]).
0 LT (I T LV) An _alternative proof follqws by considering the KKT conditions (13)
(k) BLZ H as a linear complementarity problem [20F (GH G\ + [W +
i (k) (GH™'F' + 5)¢],0 < v L A > 0, and directly applying [15,
' [ o(k) | +|BLZ K.D {d(k)} Lemma 7.6.14], showing that, for &l € = such that the QP (10) is
u (k) Lz 0 feasible, there exists a unique least-norm soludgf) satisfying, for
BLiA some scalar € R
+ | BLA | w(k) (15a)
A INE)| <allW + (GH ' F' + S)¢|
y(k) =Cx(k) + Dd(k) (15b) <a(|[W]| + |GH ' F' + 8)|| - max ||€]]).
X (k) €=
o(k)=[0 M -GT N-=GV]| =(k) |+ -
zu(k) Remark 4: A more efficient way of computing™ than enumerating
+(L—-GZ)r(k) — GAw(k)+ W (15¢c) all possible combinations of linearly independent active constraints (as
0 <v(k)Luw(k) >0 (15d) proposed in the first part of the proof of Lemma 1) consists of com-

puting the solution to the mp-QP problem (10) by applying the algo-
X rithm of [10], which provides all and only the combinations of linearly
where| = |, {;} are the state and input vectors, respectively, of tHedependent active constraints which are optimal for sgraez (= is
Zu partitioned into polyhedral cells, each one characterized by a different
LC system. ® combination). O
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Using arguments similar to those used to prove the relationship heriables; (%) is nonunique, whem; (k) = w;(k) = 0 in the proof
tween LC and MLD models of Fact 1 , we obtain the following resuliof Proposition 1 (i.e., a constraint is active and the corresponding La-

Proposition 1: Every cl-MPC system (7), (9)—(12) can be writtengrange multiplier in (13) is zero). O
as an MLD system, provided that bounds on the states, inputs, and refNote that the result of Theorem 1 and Proposition 1 also holds when
erences, are specified. model (11) is replaced by any of the hybrid models described in the pre-
Proof : Introduce a vector of binary variablésk) € {0,1}¢. vious sections. Consequently, stability, feasibility/safety, constraint ful-
The idea is to represent (k) = 0, w;(k) > 0 with 6;(k) = 1, and fillment and performance properties of cI-MPC where a simple linear
vi(k) > 0, w;(k) = 0 with §;(k) = 0. This can be achieved by model is used (a common choice for obtaining an easily implementable

introducing the constraints controller) in thesynthesiof the controller, and a more accurate hy-
brid model approximating the plant dynamics is usedsfoalysis can
w(k) <Mud(k) v(k) < Mo (e — 8(k)) be tested using tools developed for hybrid systems. The hybrid model

can be for instance a PWA system obtained by linearizing a nonlinear
process model at different operating points, an LC system obtained by a
discretizing a mechanical model, or an MLD system obtained by using
whereM,, and M, are diagonal matrices containing upper bounds diie description language HYSDEL [13]. These considerations prove
w(k) andv(k) (provided by Lemma 1), respectively, andenotes the immediately the following corollary.
vector for which all entries are equal to one. By settifg) = w(k) Corollary 1: The cl-MPC system formed by an LC (MLD, PWA)
and replacing (%) asin (15c), itis easy to rewrite the MPC closed-loogystem in feedback with a MPC controller of the form (7), (9), and (12)
system in the MLD form shown in (16) at the bottom of the pagm is an LC (MLD, PWA) system.

Note that the numbey of integer variables equals the number of
constraints of the MPC optimization problem (10). Hence, if the MLD
system were translated into PWA form as in [6], the resulting PWA

system would have at most Zegions. This confirms the result of [10], Based on the above results, a long list of available hybrid tools devel-
where the explicit PWA form of the MPC controller (obtained by usingped for PWA, LC, MLD, MMPS and ELC systems can now be applied
multiparametric programming) is defined over a polyhedral partition g c|-MPC systems: controller synthesis based on MPC for MLD [5],
the state space composed by at mdsegjions (note that2equals the  MMPS [8] and ELC systems [21], PWA control/observer techniques
number of all possible combinations of active constraints). Since magy nonlinear plants [7], state estimation and fault detection [22], veri-
of such combinations are infeasible, in general the resulting numbefightion and safety analysis [23] for MLD systems, stability results for
regions is much lower tharf'2 PWA systems [12], [24], controllability and observability for PWA and

Remark 5: For each weight matri® > 0, the cl-MPC system (7), MLD systems [6], well-posedness of LC systems [2], [3], [15], [16],
(9)-(12) is well-posed on the set ofk), z.(k), r(k) where (10) is  simulation and discretization of continuous-time LC systems [14], [15],
feasible. In fact, the Hessian matr&¥ > 0 in (10), and therefore and hybrid modeling languages [13]. The use of some of the above tools
Auj, is uniquely determined once(k), r(k), x.(k) are assigned. will be immediately shown in the following example.

Consequently, the equivalent LC form (15) and MLD model (16) is Example 1: Consider the second-order open-loop unstable system
well-posed on the feasible set, despite the fact#h@t) might not be

w(k) >0 v(k) >0

IV. APPLICATION OF THERESULTS

uniquely defined by the KKT conditions [e.g., in case of primal degen- s+1
eracy of the QP problem (10)], and the fact that for MLD systems the Y 2 03541
\(k+1) rA BLT B, +1,V)
2(k+1) | = | K.C A-—K.C+BLT B(I,+LV)
v(k+1)] |0 LT (Im + V)
(k) (BLZ H
[ «(k) |+ |BLZ K.D
wt)) LLz o
[ BI: A
”(k)} + | BLA | 2(k)
Li(k) A
y(k) =Cx(k)+ Dd(k)
0 0 0 i 0 0
0 M—cr N-cgv |[X® L-GZ 0| [r(k)
0 0 0 w(k) | + 0 0 Ll(k)}
0 —m+ar -v+ov] I riaz o
—M,, I [ 0
M, —GA M,e — W
+ sk + | _; (k)< 0 (16)
0 GA L w
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output y(k) MPC - Polyhedral Patrtition

uO=l-2.84 0 801 4 14

Fig. 2. Closed-loop MPC trajectories for plant model prediction model 00 80 60 Z40 “o0 o 20 40
(17), state-feedback. X

which is sampled with a sample time Bf= 0.3 s to obtain the state- Fi9-|.3-. PV\? represlelntation of the cl-MPC system: partition ofittgpace and
; explicit MPC control law.
space representation

z(k+1) = { 1'046.‘ _0'%09 2}} z(k) observer is a static one instead of (12). In this way we obtain a QP (10)
030923~ 0.93397 depending or(k) = (k) (and not onu(k — 1), #(k) = 0). The
{ 0.095 00{} u(k) an controller is a function of:(%k) and the closed-loop system will turn
0.00060418 out to have a state dimension of 2.
y(k) = [1 1]a(k).

In order to obtain the PWA equivalent of the closed-loop MPC, we
The task s to regulate the system to the origin while fulfilling the outpise the mp-QP Algorithm [10] to compute the explicit MPC control
constraint law, which provides the polyhedral partition (in thespace) with four
regions as depicted in Fig. 3. It canposterioribe verified that the
y(k) > =3, VE > 0. (18) optimal control value:™ (), being equal to the first computed control

value out of the QP similar to (9), coincides in two regions, so that the
To this aim, we design an MPC controller based on the optimizatignya system has in fact three regions.

problem An LC equivalent of the cl-MPC system is obtained ac-
R cording to (15). In order to compute the MLD equivalent,
min  2hoa. Porysis + Ykl kY s + 02 we use Lemma 1 orfE = {z : |zl < 100} to ob-
uguggy  FTOIRT TSI 2[ ke etk + Ui tain M, = diag[92.0965, 15.3846], and then we compute
subj.to yi4r > —3, k=1,2 max,es |(AM — GT)_:U|,; + max,ecz |GAN(=)]; > max,ez |vi()],
—y 19 ‘= 1,2, which providesi/,, = diag[62.143 30,51.1102].

In order to test if the autonomoud(¢) = 0) closed-loop MPC

where P solves the Riccati equatioR = (A + BEK/q) P(A + system is asymptotically stable, we compute a common quadratic

BKLo)+ KLoRELo+Q, Kig = —(R+B'PB)"'B'PAisthe Lyapunov function accordingOtCT)SBh4e Lll\élgggged algorithm of [24],
= 2 ’ ) x, which proves

. 1 1 . . . ini .
LQgain,R=1,Q = El | |- Fig. 2 depicts the closed-loop trajec-OPtAINING Pryap () = 10.8968 37.3396

7) is in feedback with the MPC controller baSgHa_dratic stability of the hybrid system.

tories obtained when
( Finally, when the plant (20) is in closed-loop with the MPC con-

on (19) (nominal cl-MPC system), for the initial conditiani0) = - P
[0 2(0]/_) ( y ) ari0) troller, for the set of initial states(0) such thaf|z(0)—[0 20]'|| < 2,

We want to obtain the equivalent PWA, LC, and MLD form of theand when the disturbandék) arbitrarily varies between 1 and 1, we

cl-MPC system that results from connecting the MPC controller bas¥@Nt {0 compute the worst violation of the constraint (18). To this end,
on (19) with the plant model we use the MLD equivalent model and mixed-integer programming to

run a verification algorithm based on the ideas of [23]. The worst vio-

1) = { 1.0567 —0.329 23} (k) lation is obtained at = 4 from the initial stater(0) = [-0.7289 22]',
’ 0.31923  0.93397 |~ by applying the disturbance sequence shown in Fig. 4 (we arbitrarily
P { 0.31923 } (k) + {()} d(k) (20) setd(k) = 0 for k > 4). Fig. 4 depicts also the corresponding output
0.036032 | 1] trajectory. O
y(k) = [1 1]x(k)

whered (%) € R is an additive, norm-bounded, input disturbance. We V. CONCLUSION

assume that the state vector is measurable, so that no state observedisthis note we showed that closed-loop MPC systems can be treated
used (¢) = «(t)). Note that this setting differs somewhat from theand analyzed as hybrid systems, in particular as LC systems, MLD sys-
description given before in the sense that we now consider a regulatiems, PWA systems, and indirectly, by exploiting the equivalences of
problem instead of a tracking problem (hence, there is no referencf9], also as ELC and MMPS systems. The result is of paramount im-
and an endpoint penalh;&,HlL,Pngw is added to the quadratic costportance for applying the tools developed for such subclasses of hy-
criterion) and no constraints on the incremefits(%). Moreover, the brid systems to study any closed-loop combinations of a linear MPC
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