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IV. SIMULATIONS RESULTS

The performance of the estimator was tested by extensive simula-
tions, some of which are presented in the following figures. First, we
show in Fig. 1 the behavior of the estimator for a single frequency and
� = 1, 
 = 10, � = 1, k1 = 1, k2 = 1, � = 1 andy(t) = sin(�t).

We stress the fact that if the frequency is increased, then the magni-
tude ofw2 increase too, and therefore, we may increase� to reduce the
magnitude ofx2 and reducek2 andk1 for which the dynamics ofx1
are faster. In this situation, we can increase� and thus we have faster
dynamics ofx3. The response of the estimator for� = 100, where the
parameters arek1 = 0:5, k2 = :25, � = 100, 
 = 1000, � = 1000
andy(t) = 10 sin(100t) is shown in the Fig. 2. We observe the good
behavior of the estimator.

Taking now two frequencies, let us say�1 = 1, �2 = 2, we get
a0 = 4 anda2 = 5 and the performance of the filter with parameters
k1 = 6, k2 = 11, k3 = 6, k4 = 1, �i = 1 for i = 1; ::; 3 and
y(t) = 10(sin(t) + sin(2t)), are shown in Figs. 3 and 4.

As it may be observed, the estimator exhibites a good convergence
properties, so this results suggest the validity of the proposed estimator.

V. CONCLUSION

In this note the problem of global state and frequency simultaneous
estimation is addressed. We propose a new simple estimator which pro-
vides a solution to this important problem in system theory. This esti-
mator is globally convergent for all initial conditions and frequency
values and its dimension is 3n, which is, as far as we know, the lower
dimensional estimator for this problem. The extensive performed sim-
ulations allows us to state the validity of the proposed solution.
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On Hybrid Systems and Closed-Loop MPC Systems

Alberto Bemporad, W. P. Maurice H. Heemels, and Bart De Schutter

Abstract—The following five classes of hybrid systems were re-
cently proven to be equivalent: linear complementarity, extended
linear complementarity, mixed logical dynamical, piecewise affine, and
max-min-plus-scaling systems. Some of the equivalences were obtained
under additional assumptions, such as boundedness of certain system
variables. In this note, for linear or hybrid plants in closed-loop with
a model predictive control (MPC) controller based on a linear model,
fulfilling linear constraints on input and state variables, and utilizing a
quadratic cost criterion, we provide a simple and direct proof that the
closed-loop system is a subclass of any of the former five classes of hybrid
systems. This result is of extreme importance as it opens up the use of
tools developed for the mentioned hybrid model classes, such as (robust)
stability and safety analysis tools, to study closed-loop properties of MPC.

Index Terms—Complementarity systems, hybrid systems, mixed logical
dynamical systems, model predictive control (MPC), piecewise affine sys-
tems.

I. INTRODUCTION

Hybrid dynamical models describe systems where both analog (con-
tinuous) and logical (discrete) components are relevant and interacting
[1]. Recently, hybrid systems received a lot of attention from both the
computer science and the control community, but general analysis and
control design methods for hybrid systems are not yet available. For this
reason, several authors have focused on special subclasses of hybrid
systems for which analysis and synthesis techniques are currently being
developed. Some examples of such subclasses are: linear complemen-
tarity (LC) systems [2], [3], extended linear complementarity (ELC)
systems [4], mixed logical dynamical (MLD) systems [5], [6], piece-
wise affine (PWA) systems [7], and max-min-plus-scaling (MMPS)
systems [8].

In [9], we showed that the previous five subclasses of hybrid
systems are equivalent. Some of the equivalences were obtained
under additional assumptions related to well-posedness (i.e., existence
and uniqueness of solution trajectories) and boundedness of (some)
system variables. These results are extremely important, as they allow
to transfer all the analysis and synthesis tools developed for one
particular class to any of the other equivalent subclasses of hybrid
systems.

The main result of this note will show that all these hybrid tools
can be used for the analysis of closed-loop model predictive control
(cl-MPC) systems as well. Indeed, as we will prove that cl-MPC sys-
tems can be written as LC and MLD systems, the transfer of the ma-
chinery is immediate. Related results were obtained in [10], where the
authors showed that MPC control is equal to a piecewise affine control
law that can be computed offline by using multiparametric quadratic
programming solvers (and, therefore, that the closed-loop system is a
PWA system). Rather than exploiting the equivalence results of [9] in
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combination with [10] to convert from PWA to LC and MLD, which
would require additional assumptions and would yield more complex
models, we provide a simple, direct, and constructive proof to rewrite
cl-MPC systems as LC and MLD systems.

Despite the fact that MPC schemes are typically designed so that
they are intrinsically stable and fulfill operating constraints, stability is
usually guaranteed through the introduction of stability constraints, that
are often removed in practical MPC schemes as they typically deteri-
orate performance or complicate the optimization problem. Moreover,
such guarantees only holdwhen the nominal model of the plant and the
prediction model coincide and the full state is available at each sample
instant. An important issue is to analyze the behavior of the closed-loop
system when the nominal model and the plant model differ, e.g., be-
cause of the presence of nonlinearities, or when an observer is used
to estimate the state. Robust MPC techniques [11] partially solve this
issue, by taking into account a class of linear uncertain models rather
than one single prediction model, although this typically requires in-
creased computation effort and, again, leads to deterioration of per-
formance. Now, based on the results of this note, the (robust) stability
analysis, well-posedness results, and safety analysis tools available for
any of the five mentioned classes of hybrid systems (PWA, MLD, LC,
ELC, MMPS) can be applied to any combination of a linear MPC con-
troller and a linear plant (possibly including disturbances and model
uncertainties). The results can be easily extended to arbitrary combi-
nations of linear MPC controllers andhybrid plants, such as hybrid
approximations of complex nonlinear dynamic models of the process
to be controlled. An example will demonstrate the use of hybrid tools
for stability analysis and verification in the setting of cl-MPC systems.

II. CLASSES OFHYBRID DYNAMICAL MODELS

In this note, we consider discrete-time models of the form

x(k + 1) =f(x(k); u(k);w(k)) (1a)

y(k) =g(x(k); u(k);w(k)) (1b)

0 �h(x(k); u(k);w(k)) (1c)

where the variablesu(k) 2 m, x(k) 2 n andy(k) 2 l denote
the input, state and output, respectively, at timek, andw(k) 2 r is a
vector of auxiliary variables (this notation also holds for all the hybrid
models introduced later),f : n � m � r 7! n, g : n � m �
r 7! p, h : n � m � r 7! q , and the inequality (1c) should

be interpreted componentwise. The evolution of (1) is determined as
follows. Given the current statex(k) and inputu(k) the collection of
inequalities (1c) is solved forw(k). By substitution ofw(k) in (1a) and
(1b), the state updatex(k+1) and the current outputy(k) are obtained.
Specific choices of the form of the functionsf , g, h will determine
different classes of hybrid systems, as we will detail in the rest of this
section.

Definition 1: Let 
 � n � m be a set of input+state pairs.
A hybrid system of the form (1) is calledwell-posedon 
, if for all
pairs (x(k); u(k)) 2 
 the equations (1) have a solution(x(k +
1); y(k); w(k)), and moreover,(x(k + 1); y(k)) are uniquely deter-
mined.

Definition 1 implies thatx(k + 1), y(k) are unique functions of
(x(k); u(k)), and therefore, that the possible nonuniqueness ofw(k)
is removed through the mappingsf andg.

Remark 1: The general formulation (1) allows some of the state,
input, output, or auxiliary variables to attain only discrete values,
e.g., wi(k) 2 f0; 1g can be represented by the two inequalities
max(wi(k)� 1;�wi(k)) � 0,�max(wi(k)� 1;�wi(k)) � 0, or
bywi(k)(1� wi(k)) � 0,wi(k) � 0, 1� wi(k) � 0.

Remark 2: As will also be clarified later for PWA systems, for
well-posedness of several instances of (1) over compact sets of
n � m, the inequalities in (1) should be split as strict inequal-

ities hi(x(k); u(k); w(k)) > 0; i 2 I , and nonstrict inequalities
hj(x(k); u(k); w(k)) � 0; j 2 J , I \ J = ;, I [ J = f1; . . . ; qg.
Although this would be important from a system theoretical point of
view, it is not of practical interest from a numerical point of view, as
“>” cannot be represented in numerical algorithms working in finite
precision. Indeed,h > 0 can be only represented ash � �, and� is
some pre-specified tolerance, e.g., the machine precision.

A. PWA Systems

PWA systems are described by

x(k + 1) =Ai
x(k) +B

i
u(k) + f

i

y(k) =Ci
x(k) +D

i
u(k) + g

i for
x(k)

u(k)
2 
i (2)

where
i f
x

u
: Hi

xx + Hi
uu � Kig, i = 1; . . . ; `, are convex

polyhedra in the input+state space.Ai, Bi, Ci, Di, Hi
x andHi

u are
real matrices of appropriate dimensions andf i andgi are real vectors
for all i = 1; . . . ; `. PWA systems have been studied by several au-
thors (see [6], [7], [12], and the references therein) as they form the
“simplest” extension of linear systems that can still model nonlinear
and nonsmooth processes with arbitrary accuracy and are capable of
handling hybrid phenomena.

System (2) belongs to the general class (1) by lettingf , g be PWA
functions defined over
 [`i=1
i, andr = q = 0 (i.e., the auxil-
iary variablew(k) and the mappingh are not required). A necessary
and sufficient condition for the PWA system (2) to be well-posed over

 is therefore thatf , g are single-valued PWA functions. Therefore,
typically the sets
i have mutually disjoint interiors, and are often de-
fined as the partition of a convex polyhedral set
. In case of disconti-
nuities off , g over overlapping boundaries of the regions
i, to ensure
well-posedness we should write some of the inequalities in the form
(Hx

i )
jx + (Hu

i )
ju < K

j
i (see Remark 2). In the following we shall

neglect this issue for the sake of compactness of notation and the fact
that we will actually deal withcontinuouspiecewise affine systems, as
we will see.

B. MLD Systems

In [5], a class of hybrid systems has been introduced in which logic,
dynamics and constraints are integrated. This lead to a description of
the form

x(k + 1) =Ax(k) +B1u(k) +B2�(k) +B3z(k) (3a)

y(k) =Cx(k) +D1u(k) +D2�(k) +D3z(k) (3b)

E1x(k) + E2u(k) + E3�(k) +E4z(k) g5 (3c)

where x(k) = [ xr
0(k) xb

0(k) ]0, xr(k) 2 n and xb(k) 2
f0; 1gn (y(k) and u(k) have a similar structure), and where
z(k) 2 r and �(k) 2 f0; 1gr are auxiliary variables.A, Bi,
C, Di andEi denote real constant matrices andg5 is a real vector.
The inequalities (3c) have to be interpreted componentwise. Systems
that can be described by model (3) are called MLD systems. By
lettingw(k) [z0(k) �0(k)]0, clearly (3) together with the integrality
conditions over�, xb, yb, and ub (expressed as inequalities, see
Remark 1), forms a subclass of (1).

The MLD formalism allows specifying the evolution of continuous
variables through linear dynamic equations, of discrete variables
through propositional logic statements and automata, and the mutual
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interaction between the two. The key idea of the approach consists
of embedding the logic part in the state equations by transforming
Boolean variables into 0–1 integers, and by expressing the relations
as mixed-integer linear inequalities (see [5] and references therein).
MLD systems are therefore capable of modeling a broad class of
systems, in particular those systems that can be modeled through the
hybrid system description language HYSDEL [13].

C. LC Systems

LC systems are given in discrete-time by the equations

x(k + 1) =Ax(k) +B1u(k) +B2w(k) (4a)

y(k) =Cx(k) +D1u(k) +D2w(k) (4b)

v(k) =E1x(k) +E2u(k) +E3w(k) + g4 (4c)

0 �v(k)?w(k) � 0 (4d)

with v(k); w(k) 2 s and where? denotes the orthogonality of vec-
tors (i.e.,v(k)?w(k) means thatv0(k)w(k) = 0). We callv(k) and
w(k) the complementarity variables.A, Bi, C, Di, andEi are real
matrices andg4 is a real vector. Clearly, (4) is a subclass of (1).

In [2], [3], and [14]–[16], (linear) complementarity systems incon-
tinuoustime have been studied. Applications include constrained me-
chanical systems, electrical networks with ideal diodes or other dynam-
ical systems with piecewise affine relations, variable structure systems,
constrained optimal control problems, projected dynamical systems,
and so on [15, Ch.2].

D. Equivalence of Hybrid Model Classes

In [9], we discussed the relationships between the model classes
mentioned above and two others: MMPS and ELC systems. As ELC
systems are of similar nature as LC systems, we will not define them
here, but refer to [4] and [9]. MMPS systems are obtained by choosing
f , g, h in (1) as (nested) combinations of the operations maximization,
minimization, addition and scalar multiplication. More details on this
class can be found in [8] and [9].

Fact 1: PWA systems, MLD systems, LC systems, and MMPS sys-
tems are equivalent (certain equivalences require assumptions on the
boundedness of input, state, and auxiliary variables or on well-posed-
ness), and form subsets of the general class of hybrid systems (1).

Proof: See [9] for full details on assumptions, relationships, and
a constructive proof.

III. CL-MPC SYSTEMS AND HYBRID SYSTEMS

MPC has become the accepted standard for complex constrained
multivariable control problems in the process industries. Here at each
sampling time, starting at the current state, an open-loop optimal con-
trol problem is solved over a finite horizon. Only the first computed
control value in the sequence is implemented. At the next time step, the
computation is repeated starting from the new state and over a shifted
horizon, leading to a moving horizon policy [17].

For the discrete-time linear time-invariant system

x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k)
(5)

wherex(k) 2 n,u(k) 2 m, andy(k) 2 p are the state, input, and
output vector, respectively, consider the problem of tracking the output
reference signalr(k) 2 p while fulfilling the constraints

D1x(k) +D2u(k) +D3�u(k) � d4 (6)

at all time instantsk � 0, where�u(k) u(k)� u(k � 1) are the
increments of the input.

Assume for the moment that a full measurement of the statex(k) and
the previously implemented control valuexu(k) u(k � 1) (which
might be considered as an additional state) are available at the current
time k. Then, the optimization problem

min
U

N

t=1

�
0

k+tjkQ�k+tjk +

N �1

t=0

�u0k+tR�uk+t

subj. toD1xk+tjk +D2uk+t +D3�uk+t � d4;

t = 0; 1; . . . ; Nc

xk+t+1jk =Axk+tjk +Buk+t; t � 0

yk+tjk =Cxk+tjk; t � 0

uk+t =uk+t�1 +�uk+t; t � 1

�uk+t =0; Nu � t < Ny

xkjk =x(k); uk = u(k � 1) + �uk (7)

is solved with respect to the column vector
U [�u0k; . . . ;�u

0
k+N �1]

0 2 h, h mNu, at each timek,
where xk+tjk denotes the predicted state vector at timek + t,
obtained by applying the input sequenceuk; . . . ; uk+t�1 to model
(5) starting from the statex(k), and�k+tjk yk+tjk � r(k) is the
predicted tracking error.1 In (7), we assume thatQ = Q0 � 0,
R = R0 � 0 (“�” denotes matrix positive definiteness),Ny , Nu,
Nc are the output, input, and constraint horizons, respectively, with
Nu � Ny andNc � Ny � 1.

The MPC control law is based on the following idea. At timek
compute the optimal solutionU�(k) = [�u�0k ; . . . ;�u

�0
k+N �1]

0 to
problem (7), apply

u(k) = xu(k) + �u�k (8)

as input to system (5), and repeat the optimization (7) at the next time
stepk + 1, based on the new measured (or estimated) statex(k + 1).
Note that

�u�k = I1U
�(k) (9)

whereI1 [Im 0 . . . 0]. By substitutingxk+tjk = Atx(k) +
t�1
j=0

AjBuk+t�1�j in (7), this can be written as

min
U

1

2
U

0
HU + �

0(k)FU +
1

2
�
0(k)Y �(k)

subj. to GU �W + S�(k) (10)

where�(k) [x0(k) x0u(k) r
0(k)]0, H = H 0 � 0, andH , F , Y , G,

W , S are easily obtained from (7).
The optimization problem (10) is a quadratic program (QP), which

depends on the current statex(k), past inputxu(k) = u(k � 1), and
referencer(k).

Consider the closed-loop model predictive control system depicted
in Fig. 1. The plant� is described by the difference equations

� :
�(k+ 1) = A�(k) + Bu(k) +Hd(k)

y(k) = C�(k) +Dd(k)
(11)

where�(k) 2 �n is the state vector, andd(k) 2
�d is a vector of

unmeasured disturbances. We distinguish between model� in (11),
which is the actual plant, and model (5), which is the linear model used
for designing the MPC controller. Typically (5) is an approximation of
(11), e.g., a low-order approximation where only the relevant dynamics
are kept. As the MPC optimization problem (7) is based on model (5),

1If the reference is known in advance, one can replacer(k)with r(k+t), with
a consequent anticipative action of the resulting MPC controller. Otherwise, we
setr(k + t) = r(k) for t � 0.



866 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 47, NO. 5, MAY 2002

Fig. 1. Closed-loop model predictive control system.

it requires a statex(k) that is coherent with the same model (5). A
common solution consists of generatingx(k) via the state observer

x(k + 1) = Ax(k) +Bu(k) +Ke(y(k)� Cx(k)): (12)

Now, we prove that cl-MPC systems are a subclass of LC systems.
Theorem 1: Every cl-MPC system (7), (9)–(12) can be written as

an LC system.
Proof: The proof follows from the first-order

Karush–Kuhn–Tucker (KKT) conditions for QP (10) [18, Ch. 10.6],
which are necessary and sufficient for optimality ofU�(k)

HU
�(k) + F

0
�(k) +G

0
�(k) =0; �(k) 2 q (13a)

�
0(k)(GU�(k)�W � S�(k)) =0 (13b)

�(k) �0 (13c)

W + S�(k)�GU
�(k) �0: (13d)

From (13a), it follows that:

U
�(k) =�H

�1
F
0
�(k)�H

�1
G
0
�(k)

Tx(k) + V xu(k) + Zr(k) + ��(k): (14)

By letting Mx(k) + Nxu(k) + Lr(k) S�(k), v(k) W +
Mx(k) +Nxu(k) + Lr(k)�GU�(k),w(k) �(k), and recalling
(8) and (9) we can rewrite the closed-loop MPC system in the LC form

�(k+ 1)

x(k + 1)

xu(k + 1)

=

A BI1T B(Im + I1V )

KeC A�KeC +BI1T B(Im + I1V )

0 I1T (Im + I1V )

�

�

�(k)

x(k)

xu(k)

+

BI1Z H

BI1Z KeD

I1Z 0

r(k)

d(k)

+

BI1�

BI1�

�

w(k) (15a)

y(k) =C�(k) +Dd(k) (15b)

v(k) = [ 0 M �GT N �GV ]

�(k)

x(k)

xu(k)

+

+ (L�GZ)r(k)�G�w(k) +W (15c)

0 �v(k)?w(k) � 0 (15d)

where
�

x

xu

,
r

d
are the state and input vectors, respectively, of the

LC system.

Remark 3: In [10], by exploiting the fact that the coefficients of the
linear term in the cost function and the right-hand side of the constraints
in (10) depend linearly on a vector�(k) of parameters, the quadratic
program (10) has been tackled as a multiparametric quadratic program
(mp-QP), and it has been shown that the optimal solution is a con-
tinuous piecewise affine function of the state. Consequently, the MPC
controller admits the explicit continuous PWA form

u(k) = Fi�(k) + gi if �(k) 2 
�
i ; i = 1; . . . ; N

where
�
i f� : Hi

��(k) � Ki
�g, andf
ig

N
i=1 is a partition of a

given state+input+reference set�. Or stated differently, every cl-MPC
system (7), (9)–(12) can be written as a continuous PWA system. By
applying Fact 1, one can now also show that cl-MPC systems can be
equivalently rewritten as LC systems. However, this requires bound-
edness assumptions over some of the variables, as the transformation
through MLD is involved, plus a large number of complementarity
pairs. An alternative could be based on [19] in which continuous PWA
functions are transferred into linear complementarity problems [20] of
the form (4c) and (4d). However, the proof presented above is more
direct, does not require any assumptions, and limits the number of re-
quired complementarity pairs.

In order to show directly that cl-MPC systems are also a subclass of
MLD systems, we prove the following lemma.

Lemma 1: Let� [ x0 x0u r0 ]0 belong to a bounded set�. Then,
there exists an upper-bound�+ � 0 such that at least one vector of
Lagrange multipliers� satisfies the KKT conditions (13) and0 � � �
�+.

Proof: Consider the combinationI � f1; . . . ; kg of active
constraintsGIU

� = WI + SI� at the optimum, whereGI denotes
the submatrix ofG obtained by collecting the rows indexed by the
elements ofI (similar forWI andSI ), and assume thatGI has full row
rank. From the KKT conditions (13),U� = �H�1(F 0� +G0

I�I(�)),
where �I(�) � 0 is a vector collecting the subset of Lagrange
multipliers relative to the active constraints [the remaining mul-
tipliers are zero due to (13b)–(13d)]. SubstitutingU�, we obtain
�I(�) = �(GIH

�1G0

I)
�1[WI + SI� +GIH

�1F 0�], which admits
an upper-bound�+I max�2� �i(�) � 0. Take�+ max�+I over
all combinationsI of linearly independent active constraints. If for
some� a linearly dependent combination of constraints is active at the
optimum, (i.e., the QP is primal degenerate, and� is not unique), then
a subset of linearly independent constraints and a vector�(�) � �+

can be chosen which provides the same solutionU� (cf. [15, Lemma
4.4.5] and [20, Theorem 2.6.12]).

An alternative proof follows by considering the KKT conditions (13)
as a linear complementarity problem [20]v = (GH�1G0)� + [W +
(GH�1F 0 + S)�], 0 � v ? � � 0, and directly applying [15,
Lemma 7.6.14], showing that, for all� 2 � such that the QP (10) is
feasible, there exists a unique least-norm solution�(�) satisfying, for
some scalar� 2

k�(�)k ��kW + (GH�1
F
0 + S)�k

��(kWk+ kGH�1
F
0 + S)k �max

�2�
k�k):

Remark 4: A more efficient way of computing�+ than enumerating
all possible combinations of linearly independent active constraints (as
proposed in the first part of the proof of Lemma 1) consists of com-
puting the solution to the mp-QP problem (10) by applying the algo-
rithm of [10], which provides all and only the combinations of linearly
independent active constraints which are optimal for some� 2 � (� is
partitioned into polyhedral cells, each one characterized by a different
combination).
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Using arguments similar to those used to prove the relationship be-
tween LC and MLD models of Fact 1 , we obtain the following result:

Proposition 1: Every cl-MPC system (7), (9)–(12) can be written
as an MLD system, provided that bounds on the states, inputs, and ref-
erences, are specified.

Proof : Introduce a vector of binary variables�(k) 2 f0; 1gq.
The idea is to representvi(k) = 0, wi(k) � 0 with �i(k) = 1, and
vi(k) � 0, wi(k) = 0 with �i(k) = 0. This can be achieved by
introducing the constraints

w(k) �Mw�(k) v(k) �Mv(e� �(k))

w(k) �0 v(k) � 0

whereMw andMv are diagonal matrices containing upper bounds on
w(k) andv(k) (provided by Lemma 1), respectively, ande denotes the
vector for which all entries are equal to one. By settingz(k) = w(k)
and replacingv(k) as in (15c), it is easy to rewrite the MPC closed-loop
system in the MLD form shown in (16) at the bottom of the page.

Note that the numberq of integer variables equals the number of
constraints of the MPC optimization problem (10). Hence, if the MLD
system were translated into PWA form as in [6], the resulting PWA
system would have at most 2q regions. This confirms the result of [10],
where the explicit PWA form of the MPC controller (obtained by using
multiparametric programming) is defined over a polyhedral partition of
the state space composed by at most 2q regions (note that 2q equals the
number of all possible combinations of active constraints). Since many
of such combinations are infeasible, in general the resulting number of
regions is much lower than 2q.

Remark 5: For each weight matrixR � 0, the cl-MPC system (7),
(9)–(12) is well-posed on the set ofx(k), xu(k), r(k) where (10) is
feasible. In fact, the Hessian matrixH � 0 in (10), and therefore
�u�k is uniquely determined oncex(k), r(k), xu(k) are assigned.
Consequently, the equivalent LC form (15) and MLD model (16) is
well-posed on the feasible set, despite the fact thatw(k) might not be
uniquely defined by the KKT conditions [e.g., in case of primal degen-
eracy of the QP problem (10)], and the fact that for MLD systems the

variable�i(k) is nonunique, whenvi(k) = wi(k) = 0 in the proof
of Proposition 1 (i.e., a constraint is active and the corresponding La-
grange multiplier in (13) is zero).

Note that the result of Theorem 1 and Proposition 1 also holds when
model (11) is replaced by any of the hybrid models described in the pre-
vious sections. Consequently, stability, feasibility/safety, constraint ful-
fillment and performance properties of cl-MPC where a simple linear
model is used (a common choice for obtaining an easily implementable
controller) in thesynthesisof the controller, and a more accurate hy-
brid model approximating the plant dynamics is used foranalysis, can
be tested using tools developed for hybrid systems. The hybrid model
can be for instance a PWA system obtained by linearizing a nonlinear
process model at different operating points, an LC system obtained by a
discretizing a mechanical model, or an MLD system obtained by using
the description language HYSDEL [13]. These considerations prove
immediately the following corollary.

Corollary 1: The cl-MPC system formed by an LC (MLD, PWA)
system in feedback with a MPC controller of the form (7), (9), and (12)
is an LC (MLD, PWA) system.

IV. A PPLICATION OF THERESULTS

Based on the above results, a long list of available hybrid tools devel-
oped for PWA, LC, MLD, MMPS and ELC systems can now be applied
to cl-MPC systems: controller synthesis based on MPC for MLD [5],
MMPS [8] and ELC systems [21], PWA control/observer techniques
for nonlinear plants [7], state estimation and fault detection [22], veri-
fication and safety analysis [23] for MLD systems, stability results for
PWA systems [12], [24], controllability and observability for PWA and
MLD systems [6], well-posedness of LC systems [2], [3], [15], [16],
simulation and discretization of continuous-time LC systems [14], [15],
and hybrid modeling languages [13]. The use of some of the above tools
will be immediately shown in the following example.

Example 1: Consider the second-order open-loop unstable system

y =
s+ 1

s2 � 0:3s+ 1
u

�(k+ 1)

x(k + 1)

xu(k + 1)

=

A BI1T B(Im + I1V )

KeC A �KeC +BI1T B(Im + I1V )

0 I1T (Im + I1V )

�(k)

x(k)

xu(k)

+

BI1Z H

BI1Z KeD

I1Z 0

r(k)

d(k)
+

BI1�

BI1�

�

z(k)

y(k) = C�(k) +Dd(k)

0 0 0

0 M �GT N �GV

0 0 0

0 �M +GT �N +GV

�(k)

x(k)

xu(k)

+

0 0

L�GZ 0

0 0

�L+GZ 0

r(k)

d(k)

+

�Mw

Mv

0

0

�(k) +

I

�G�

�I

G�

z(k) �

0

Mve�W

0

W

: (16)
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Fig. 2. Closed-loop MPC trajectories for plant model= prediction model
(17), state-feedback.

which is sampled with a sample time ofT = 0:3 s to obtain the state-
space representation

x(k + 1) =
1:0467 �0:309 23

0:30923 0:953 97
x(k)

+
0:095004

0:00060418
u(k)

y(k) = [ 1 1 ] x(k):

(17)

The task is to regulate the system to the origin while fulfilling the output
constraint

y(k) � �3; 8k � 0: (18)

To this aim, we design an MPC controller based on the optimization
problem

min
u ;u

x
0

k+3jkPxk+3jk +

2

t=0

y
0
k+tjkyk+tjk + u

2
k+t

subj. to yt+k �� 3; k = 1; 2

xkjk =x(k) (19)

whereP solves the Riccati equationP = (A + BKLQ)
0P (A +

BKLQ)+K 0
LQRKLQ+Q,KLQ = �(R+B0PB)�1B0PA is the

LQ gain,R = 1, Q =
1 1

1 1
. Fig. 2 depicts the closed-loop trajec-

tories obtained when (17) is in feedback with the MPC controller based
on (19) (nominal cl-MPC system), for the initial conditionx(0) =
[0 20]0.

We want to obtain the equivalent PWA, LC, and MLD form of the
cl-MPC system that results from connecting the MPC controller based
on (19) with the plant model

� :

�(k+ 1) =
1:0567 �0:32923

0:31923 0:93397
�(k)

+
0:31923

0:036032
u(k) +

0

1
d(k)

y(k) = [ 1 1 ]�(k)

(20)

whered(k) 2 is an additive, norm-bounded, input disturbance. We
assume that the state vector is measurable, so that no state observer is
used (�(t) = x(t)). Note that this setting differs somewhat from the
description given before in the sense that we now consider a regulation
problem instead of a tracking problem (hence, there is no referencer

and an endpoint penaltyx0k+3jkPxk+3jk is added to the quadratic cost
criterion) and no constraints on the increments�u(k). Moreover, the

Fig. 3. PWA representation of the cl-MPC system: partition of thex-space and
explicit MPC control law.

observer is a static one instead of (12). In this way we obtain a QP (10)
depending on�(k) = x(k) (and not onu(k � 1), r(k) � 0). The
controller is a function ofx(k) and the closed-loop system will turn
out to have a state dimension of 2.

In order to obtain the PWA equivalent of the closed-loop MPC, we
use the mp-QP Algorithm [10] to compute the explicit MPC control
law, which provides the polyhedral partition (in thex-space) with four
regions as depicted in Fig. 3. It cana posterioribe verified that the
optimal control valueu�(k), being equal to the first computed control
value out of the QP similar to (9), coincides in two regions, so that the
PWA system has in fact three regions.

An LC equivalent of the cl-MPC system is obtained ac-
cording to (15). In order to compute the MLD equivalent,
we use Lemma 1 on� = fx : kxk1 � 100g to ob-
tain Mw = diag[92:0965; 15:3846], and then we compute
maxx2� j(M � GT )xji + maxx2� jG��(x)ji � maxx2� jvi(x)j,
i = 1; 2, which providesMv = diag[62:14330; 51:1102].

In order to test if the autonomous (d(k) � 0) closed-loop MPC
system is asymptotically stable, we compute a common quadratic
Lyapunov function according to the LMI-based algorithm of [24],

obtaining PLyap(x) = x0
20:7804 10:8968

10:8968 37:3396
x, which proves

quadratic stability of the hybrid system.
Finally, when the plant (20) is in closed-loop with the MPC con-

troller, for the set of initial statesx(0) such thatkx(0)�[0 20]0k1 � 2,
and when the disturbanced(k) arbitrarily varies between�1 and 1, we
want to compute the worst violation of the constraint (18). To this end,
we use the MLD equivalent model and mixed-integer programming to
run a verification algorithm based on the ideas of [23]. The worst vio-
lation is obtained att = 4 from the initial statex(0) = [�0:7289 22]0,
by applying the disturbance sequence shown in Fig. 4 (we arbitrarily
setd(k) = 0 for k > 4). Fig. 4 depicts also the corresponding output
trajectory.

V. CONCLUSION

In this note we showed that closed-loop MPC systems can be treated
and analyzed as hybrid systems, in particular as LC systems, MLD sys-
tems, PWA systems, and indirectly, by exploiting the equivalences of
[9], also as ELC and MMPS systems. The result is of paramount im-
portance for applying the tools developed for such subclasses of hy-
brid systems to study any closed-loop combinations of a linear MPC
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Fig. 4. Worst-case closed-loop MPC trajectories (prediction model (17), plant
model (20),kx(0) � [0 20] k � 2, jd(k)j � 1).

controller, a linear observer, and a linear plant. This can be easily ex-
tended to any feedback interconnection of a linear MPC controller and
a hybrid plant, such as hybrid approximations of complex nonlinear
dynamic models of the process under control. Here we only demon-
strated through a very simple example the application of the presented
results for stability and safety analysis. We believe, however, that the
development of a theory and tools for hybrid systems is still in its early
stages, and therefore that the full potential of the results is still to be
exploited.
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