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Abstract—Active-set methods are recognized to often
outperform other methods in terms of speed and solution
accuracy when solving small-size quadratic programming
(QP) problems, making them very attractive in embedded
linear model predictive control (MPC) applications. A draw-
back of active-set methods is the lack of tight bounds on
the worst-case number of iterations, a fundamental require-
ment for their implementation in a real-time system. Exten-
sive simulation campaigns provide an indication of the ex-
pected worst-case computation load, but not a complete
guarantee. This paper solves such a certification problem
by proposing an algorithm to compute the exact bound on
the maximum number of iterations and floating point op-
erations required by a state-of-the-art dual active-set QP
solver. The algorithm is applicable to a given QP problem
whose linear term of the cost function and right-hand side
of the constraints depend linearly on a vector of parame-
ters, as in the case of linear MPC. In addition, a new solver
is presented that combines explicit and implicit MPC ideas,
guaranteeing improvements of the worst-case computation
time. The ability of the approach to exactly quantify memory
and worst-case computation requirements is tested on a few
MPC examples, also highlighting when online optimization
should be preferred to explicit MPC.

Index Terms—Active-set methods, complexity certifica-
tion, linear model predictive control (MPC), quadratic pro-
gramming (QP).

I. INTRODUCTION

IN THE last decade, embedded model predictive control
(MPC) has become increasingly important in many engi-

neering fields, like automotive, aerospace, and power systems
[1]–[5]. The control problems that arise in such contexts usually
involve a high sampling frequency and/or low-power comput-
ing boards [6], [7]. MPC optimizes the closed-loop response of
multivariable systems subject to state and input constraints [8].
A constrained finite-horizon optimal control problem must be
solved at each time step, making the online implementation of
MPC in embedded boards a challenge.
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The standard formulation of MPC based on a linear time-
invariant model, quadratic performance index, and linear con-
straints can be cast into a quadratic program (QP) [9], whose
linear term of the cost function and right-hand side of the con-
straints depend linearly on a vector of parameters, such as states
and reference signals. Explicit MPC drastically reduces the com-
putational load by presolving offline the QP and converting the
MPC law into a continuous and piecewise affine (PWA) func-
tion of the parameter vector [9], [10]. Unfortunately, explicit
MPC is manageable only when the dimensions of the QP are
very small, due to the high memory requirements for storing the
resulting polyhedral partitions and gains defining the control
law.

When the complexity of explicit MPC becomes prohibitive,
one must solve the QP problem online, which clearly requires
to embed the QP solver in the real-time control board [6]. The
literature on QP solvers is extremely rich, among several popular
approaches, we mention interior-point methods [11], gradient
projection methods [12], [13], the alternating directions method
of multipliers [14], [15], and active-set methods [7], [16]–[18].
For the small-size QP’s that arise in embedded MPC, active-set
methods are usually the best in terms of speed and accuracy [4],
[19], [20]. Moreover, the solution can be achieved with very high
accuracy and in a finite number of iterations, even in the case
of ill-conditioned problems, using single-precision arithmetics,
and without the need of preconditioning the matrices of the
problem [21].

The question is how large such a finite number of iterations
can be. In embedded MPC, it is of paramount importance to
certify that the QP solver always provides the solution within
a certain execution time, which must be lower than the sam-
pling interval [22]. Unfortunately, in spite of the empirical
evidence of their efficiency, a theoretical computational com-
plexity of active-set methods that is useful in practice is not
available [23]–[25]. Practical experience suggests that they are
polynomial algorithms on average [24], [25], but as shown in
the famous Klee–Minty problem they can even display expo-
nential worst-case number of iterations on contrived problems
[26]. This aspect could prevent their use in embedded applica-
tions, in favor of interior-point methods, for which a theoretical
polynomial iteration bound is available [11], [27], or gradient
projection methods, for which tight worst-case bounds can be
often proved [13].

This paper proposes an approach to certify the worst-case
execution time of a dual active-set QP solver exactly. We fo-
cus on dual active-set methods as, despite the drawback of
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infeasible subiterates, they usually require less iterations than
primal methods and do not need the so-called Phase I computa-
tion to get a starting primal-feasible solution [16], [17]. We first
demonstrate that the number of iterations of a dual active-set
method depends, in a PWA fashion, on the vector of parameters
perturbing the linear term of the quadratic cost function and the
right-hand side of the constraints. Therefore, any given bounded
operating range of parameters can be split into polyhedral re-
gions that share the same finite number of iterations needed to
solve the corresponding QP problem.

The technique proposed in the paper builds upon the ma-
chinery employed in multiparametric quadratic programming
(mpQP) to get explicit MPC solutions, where the parameter
space is divided into polyhedral regions that share the same
optimal active set. The idea is close in spirit with the multi-
parametric analysis developed in [28] of the simplex method
for linear programming (LP) problems. A similar approach was
used in [29] to prove that the step-length and the current iter-
ate of an active-set method for LPs are PWA functions of the
parameters. Here, we consider how “parametric” steps of the
dual active-set method for solving strictly convex QP’s by GI
[16], referred to as GI algorithm in the paper, propagate in the
parameter space during iterations. The proposed algorithm is
able to quantify the worst-case number of iterations and the
corresponding flops.

The certification algorithm can be also used to improve the
speed of execution of embedded MPC in several ways, described
in the paper. First, the algorithm can be extended immediately to
other dual active-set methods for QP’s, including range-space or
null-space-based methods [18], [30], so that one can choose the
best solver for a given MPC controller based on the one that has
the least worst-case execution time. Second, as dual active-set
solvers have the degree of freedom of selecting which constraint
enters in the current active set at each iteration [31], different
selection rules for choosing the violated constraint can reduce
the number of iterations and flops [32]. The best selection rule
depends on the particular problem at hand and can be singled
out by the certification algorithm.

Finally, we propose a novel technique that combines “im-
plicit” (online QP) and explicit MPC, and that we refer to as
worst-case partial enumeration (WCPE)-MPC. Several tech-
niques that combine explicit and implicit MPC are avail-
able in the literature [7], [29], [33]–[36], however they focus
on the average behavior of the solver, or do not guarantee
optimality/feasibility of the solution. Based on the certifica-
tion algorithm developed in the paper, the proposed WCPE-
MPC approach certifies the worst-case improvement exactly,
therefore allowing one to select the best tradeoff between
memory occupancy and speed enhancement. Furthermore, de-
spite some accelerating techniques proposed in the literature,
WCPE-MPC always provides the optimal solution of the QP
problem.

It is worth noticing that the type of dual QP solver, the vio-
lated constraint selection rule, and whether implicit or explicit
MPC should be used are issues that are commonly tackled em-
pirically, based on experience or on the dimension of the QP
problem. Instead, given a QP problem, the use of the certifica-

tion algorithm guarantees the optimality of the choice in terms
of worst-case number of flops and memory occupancy. As the
methods proposed in this paper rely on recursively partitioning
the parameter space into polyhedral cells, their applicability are
limited to MPC problems of moderate size, in general to those
for which the explicit solution is computable offline, although
not necessarily applicable online because of its excessive mem-
ory/CPU requirements.

The paper is organized as follows. Section II recalls the stan-
dard MPC formulation and the resulting multiparametric QP.
Section III details the dual active-set algorithm GI, and demon-
strates the linearity of the steps with respect to the parameters
[16]. Section IV describes the proposed algorithm for comput-
ing the worst-case complexity certification. Section V presents
the methods to choose the best dual active-set solver, the best
violated constraint selection rule, and the WCPE-MPC strat-
egy. Numerical results on four MPC problems are presented in
Section VI, and Section VII concludes the paper.

II. MPC AND QP PROBLEM

In this paper, we consider the following linear MPC formu-
lation:

min
Δu

Np∑

i=1

‖Wy (yk+i|k − r(k))‖22+

Nu −1∑

h=0

‖Wu (uk+h |k − ur (k))‖22 + ‖WΔuΔuk+h |k‖22 (1a)

s.t. xk+i+1|k = Axk+i|k + Buk+i|k , xk |k = x(k) (1b)

yk+i+1|k = Cxk+i+1|k (1c)

Δuk+i|k = uk+i|k − uk+i−1|k (1d)

Δuk+Nu +j |k = 0, j = 0, 1, . . . , Np −Nu − 1 (1e)

uk+h |k ∈ U ,Δuk+h |k ∈ D, yk+i|k ∈ Y (1f)

i = 0, . . . , Np − 1, h = 0, . . . , Nu − 1

where Rn denotes the set of real vectors of dimension n, x ∈
Rnx , u ∈ Rnu , and y ∈ Rny , Np is the prediction horizon, Nu

is the control horizon, Wy , Wu , and WΔu are square weight
matrices, with WΔu nonsingular, the subscript k+i|k denotes
the prediction at time k + i based on the information available
at time k, x(k) is the current state, Δuk+i|k is the vector of
the input increments, with uk−1|k = u(k − 1), and U , D, and
Y are polyhedral sets defining the constraints on inputs, input
increments, and outputs, respectively.

Problem (1) can be cast into the QP

min
z

f(z) � 1
2
z′Hz + θ′F ′z

s.t. g(z) � Gz −Wθ − w ≤ 0
(2)

where θ ∈ Θ is the vector of parameters of dimension nθ =
ny + nx + nu and Θ ⊂ Rnθ is a bounded set of interest, z ∈ Rn

is the vector of optimization variables, H ∈ Rn×n is a sym-
metric and positive definite matrix, F ∈ Rn×nθ , G ∈ Rm×n ,
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W ∈ Rm×nθ , w ∈ Rm , and given a matrix A ∈ Rn×m , A′ de-
notes its transpose.

Solving problem (2) online to compute the optimal control
move u(k) = uk |k for a given θ is often the main obstacle in
embedded MPC applications, as the associated computational
requirements may be excessive for a given embedded board
[4]. Explicit MPC presolves problem (2) offline via mpQP [9],
[10], however the required memory occupancy of the solution
typically grows exponentially with the number of imposed linear
constraints, limiting the approach to small MPC problems (few
inputs and short control horizon, few constraints). Embedding
a QP solver is therefore the only solution when explicit MPC is
too complex. Next section recalls the generalities of active-set
methods and focuses on the dual active-set method of Goldfarb
and Idnani (GI) [16] for solving strictly convex QP’s of the
form (2).

III. ACTIVE-SET SOLVERS

A. Preliminaries

For a given finite subset I ⊂ N of positive integers, let # I
denote its cardinality. For a vector a ∈ Rn , ai denotes the ith
entry of a, aI the subvector obtained by collecting the entries ai

for all i ∈ I. For a matrix A ∈ Rn×m , Ai denotes the ith row
of A, AI the submatrix of A obtained by collecting the rows Ai

for all i ∈ I.
Definition 1: Given the QP problem (2) and z̄ ∈ Rn , the

constraint Giz ≤Wiθ + wi is active at z̄ if the equality Giz̄ =
Wiθ + wi holds, otherwise it is inactive.

Definition 2: Given the QP problem (2) and z̄ ∈ Rn , the
active set A(z̄) is

A(z̄) = {i ∈ K |Giz̄ = Wiθ + wi} (3)

where K = {1, . . . , m} is the set of constraint indices.
We will denote by I(z̄) = {i ∈ K |Giz̄ < Wiθ + wi} the set

of inactive constraints at z̄, where clearly I = K \ A. The idea
behind active-set methods is to iteratively make steps toward the
solution by solving a reduced problem with only the equality
constraints in the current active set, which we indicate asAq for
the qth iteration of the solver. The algorithm terminates when
the current active set equals the optimal one, namely Aq ≡ A∗.
At every iteration q a violated constraint p is added to the active
set, and all the constraints in Aq−1 that prevent p to be active
are dropped from it. These constraints are said to be blocking.

Let Vq be the set of violated constraints at iteration q. After
selecting a new violated constraint pq ∈ Vq ⊆ Iq , the step size
and direction are derived by solving the equality constrained QP
problem

min
z

1
2
zq ′Hzq + θ′F ′zq

s.t. GAq zq = WAq θ + wAq

(4)

where the updated working set isAq = {Aq−1 \ Bq} ∪ pq , with
Bq the set of blocking constraints removed at iteration q from
Aq−1 . The primal–dual pair (zq , πq ) is the solution of problem

(4) if it solves the Karush–Kuhn–Tucker (KKT) system
[

H G′Aq

GAq 0

]

︸ ︷︷ ︸
KKT(Aq )

[
zq

πq

]
=

[
−Fθ

WAq θ + wAq

]
(5)

with KKT(Aq ) the so-called KKT matrix and π the vector of
dual variables. Primal feasible active-set methods iteratively
solve the KKT system (5) starting from a primal feasible z0 ,
until dual feasibility is reached [18], [31], and maintain primal
feasibility in the subiterates. Phase I is needed to find a primal
feasible z0 . On the contrary, dual feasible active-set solvers
start from a dual feasible point, which is readily available (e.g.,
π0 = 0, z0 = −H−1Fθ, where for a square matrix A ∈ Rn×n ,
A−1 denotes the inverse of A if it exists) and iterate (5) to reach
primal feasibility, maintaining dual feasibility in the subiterates
[16], [17]. Despite the drawback of infeasible subiterates, dual
active-set methods usually require less iterations and do not
need a Phase I computation [16], [17]. Active-set methods are
further categorized depending on how they solve (5). As far as
the direct solution of KKT matrix is concerned, range-space or
null-space methods are the most common strategies [16], [18],
[37], where the name refers to the subspaces they are working
with.

B. Goldfarb–Idnani Algorithm

In this section, we briefly recall the GI algorithm [16], so as to
analyze in Section IV how its iterations for solving (2) depend
on θ. Being a dual, range-space solver, it is particularly suited
for QPs that arise from MPC problems, where typically m > n.
Range-space approaches solve (5) by the explicit inversion of
KKT(A). Equation (5) is iteratively solved starting from Aq−1

and dropping the blocking constraints one-by-one, until con-
straint p can be added to the active set without violating dual
feasibility. Note that here we denote by q the number of QP iter-
ations, which is increased each time a constraint is added to the
active set. In the sequel, we denote instead by j the index that
is increased each time a constraint is either added or dropped
from the active set, therefore accounting also for subiterations
of the algorithm, where clearly j ≥ q.

The explicit inversion KKT(Aj )−1 is

KKT(Aj )−1 =

[
I −H−1G′Aj

0 I

][
H−1 0

0 S−1
H

][
I 0

−GAj H−1 I

]

(6)

where SH = −GAj H−1G′Aj is the Schur complement of H .
From (6) we define the two operators

G∗Aj =
(
GAj H−1G′Aj

)−1
GAj H−1 (7a)

Hj = H−1 (I −G′Aj G∗Aj ) (7b)

where G∗Aj is the Moore–Penrose pseudoinverse of GAj under
the transformation y = H1/2x and H is the inverse Hessian
operator in the active-set space.

The core of the GI algorithm, summarized in Algorithm 1,
is the method to find a new vector zj and the set of active
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Algorithm 1: Goldfarb-Idnani (GI) QP Solver, [16].
Input: Matrices H,F,G,W,w, θ defining problem (2).

1: Compute the Cholesky factorization LL′ = H;
2: J0

2 ← L−T ; z0 ← −J0
2 J0

2
′Fθ; A0 ← ∅; q, j ← 0;

3: choose

p←
{

0 if gi(zj ) ≤ 0, ∀i ∈ I
h ∈ I | gh(zj ) > 0 otherwise;

(A.1)

4: if p = 0 then return A∗ ← Aj ; end if;
5: q ← q + 1, πj

p ← 0;

6: j ← j + 1, Δzj ← −Jj
2 (Jj

2 )′G′p ;

7: if #Aj > 0 then Δπj ← −R−1,j (Jj
1 )′G′p ; end if;

8: if Δπj ≥ 0 or #Aj = 0 then αj
1 ←∞;

9: else

k ← min arg min
l=1,...,# Aj −1

(
−πj−1

l

Δπj
l

∣∣∣Δπj
l < 0

)
,

αj
1 ← −

πj−1
k

Δπj
k

; (A.2)

10: end if;
11: if Δzj = 0 then αj

2 ←∞;

12: else αj
2 ←

Wpθ + wp −Gpz
j−1

GpΔzj
;

13: end if;
14: αj ← min(αj

1 , α
j
2);

15: if αj =∞ then return infeasible; end if;
16: if (αj

2 =∞) then
17: πj ← πj−1 + αjΔπj ;
18: Aj ← Aj−1 \ {k}, update Jj

1 , Jj
2 , Rj , go to Step 6;

19: end if;
20: Set

zj ← zj−1 + αjΔzj ; (A.3a)

πj ←
[
πj−1pj−1

]
+ αj

[
Δπj

1

]
; (A.3b)

21: if αj = αj
2 then

22: Aj ← Aj−1 ∪ {p}, update Jj
1 , Jj

2 , Rj , go to Step 3;
23: else if αj = αj

1 then
24: Aj ← Aj−1 \ {k}, Update Jj

1 , Jj
2 , Rj , go to Step 6;

25: end if.
Output: Vectors z∗ ← zj (primal solution), π∗ ← πj (dual
solution), and A∗ ← Aj (optimal active set), or
infeasibility status; N ← q (number of iterations).

constraints Aj starting from (zj−1 ,Aj−1) and a violated con-
straint pq . This is done by setting zj and πj as in (A.3), where
αj ∈ R+ is the step size, and Δzj , Δπj are the update direc-
tions in the primal and dual space, respectively. The primal and
dual directions are chosen as

Δzj = −Hj−1G′p (8a)

Δπj = −G∗Aj −1 G′p (8b)

and the step size αj = min{αj
1 , α

j
2} with

αj
1 = min

{
min

l∈{1,...,# Aj −1 }

{
−πj−1

l

Δπj
l

∣∣∣∣∣Δπj
l < 0

}
,∞

}
(9a)

αj
2 =

Wpθ + wp −Gpz
j−1

GpΔzj
(9b)

is chosen such that πj ≥ 0 and, if possible, the pth constraint
becomes active, that is, gp(zj ) = 0. In [16], Goldfarb and Idnani
prove that, being gp(zj ) a violated constraint, the following
relations hold:

gp(zj ) ≥ gp(zj+1) ≥ gp(zj+h) = 0 (10a)

f(zj ) ≤ f(zj+1) ≤ f(zj+h) (10b)

between two iterations j and j + h of Algorithm 1 in which con-
straints are dropped for h subiterations, that is, αj+i = αj+i

1 <
∞, ∀i = 0, . . . , h− 1, and constraint gp(zj ) is added at subit-
eration j + h, that is, αj+h = αj+h

2 <∞. Goldfarb and Idnani
[16] also show that strict inequalities hold in (10) every time the
step size αj is positive.

The following three situations can occur during the jth subit-
eration.

1) If αj ≡ αj
1 only a partial step can be taken, the kth con-

straint is blocking and it must be dropped.
2) If αj ≡ αj

2 a full step is taken and Aj = Aj−1 ∪ {pj}
3) If αj ≡ ∞ the problem is infeasible.

To avoid computing H and G∗A explicitly, the Cholesky fac-
torization of H and the QR factorization of G∗A are iteratively
updated by Algorithm 1. Let H = LL′ be the Cholesky factor-
ization of the primal Hessian and define

L−1GAj =
[
Qj

1 Qj
2

][Rj

0

]
(11a)

Jj =
[
Jj

1 Jj
2

]
=
[
L−T Qj

1 L−T Qj
2

]
. (11b)

Then the two operatorsHj , GAj can be written as

Hj = Jj
2 Jj

2
′ (12a)

G∗Aj = R−1,j Jj
1
′ (12b)

where Jj
1 ∈ Rn×# Aj

, J2 ∈ Rn×# Ij
, J0 = L−T , R0 = [ ], and

[ ] is the empty matrix (n = 0 or m = 0). Thus, the GI algorithm
only needs to iteratively update Jj and Rj , so to compute the
primal and dual directions as (cf. Steps 6 and 7 of Algorithm 1)

Δzj = −Jj
2 Jj

2
′G′p (13a)

Δπj = −R−1,j Jj
1
′G′p (13b)

and without requiring the explicit computation ofHj , GAj .
Dual active-set methods have the degree of freedom to select

which constraint becomes active at each iteration, see Step 3 of
Algorithm 1. The order the constraints are added to the active
set changes the number of iterations, although it does not affect
convergence [38], as condition (11) guarantees convergence no
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matter how the next violated constraint gp(zj ) > 0 is selected.
Although the selection can be arbitrary, in the literature two
techniques are commonly used: the most-violated constraint
selection rule

p←
{

0 if gi(zj ) ≤ 0, ∀i ∈ I
min arg maxi: gi (z j )>0{gi(zj )} otherwise

(14a)

and the first-violated constraint selection rule

p←
{

0 if gi(zj ) ≤ 0, ∀i ∈ I
mini∈K{i| gi(zj ) > 0} otherwise.

(14b)

In (15a), the “min” before the “arg max” imposes to select
the smallest index in case of multiple maximizers (the same rule
is adopted in (A.2) for choosing the index k in case of multiple
minima).

IV. COMPLEXITY CERTIFICATION ANALYSIS

We now derive results that allow the exact characterization of
the worst-case number of iterations performed by Algorithm 1
parametrically with respect to θ, for a given set Θ of parameters
that perturbs problem (2), in case the violated constraints are
selected according to the most common rules (15a) or (15b).

Lemma IV.1. Let Θ ⊆ Rnθ be a polyhedron. Then, a finite
number Nmax exists, such that

Nmax = max
θ∈Θ

N(θ) (15)

that is Algorithm 1 terminates in at most Nmax steps for all
θ ∈ Θ.

Proof: Convergence of Algorithm 1 for each given θ ∈ Θ is
proved in [16, Theorem 3], showing that because of (10) the
same combination Aj−1 of active constraints cannot be gener-
ated during the iterations of the algorithm. Since q ≤ j and the
number NA of combinations is finite, the algorithm stops in at
most Nmax = maxθ∈Θ{N(θ)} ≤ NA iterations for all θ ∈ Θ.

�
Lemma IV.1 proves only an existence result for Nmax . The

value Nmax depends on the selection rule (3) for violated con-
straints, as this determines the sequence of active-set guesses
Aj . In most cases Nmax is much smaller than the number NA of
all possible combinations of active constraints. In the remaining
part of this section, we quantify the exact value of Nmax .

Definition 3: Given a polyhedron Θ ⊆ Rnθ , and denoting
by Θ̊ its interior, the collection of sets {Θ1 , . . . ,Θs} is said a
polyhedral partition of Θ if Θi is a polyhedron, Θi ⊆ Rnθ , ∀i =
1, . . . , s, ∪s

i=1Θi = Θ, and Θ̊i ∩ Θ̊j = ∅, ∀i, j = 1, . . . , s, i �=
j.

Definition 4: A function n : Θ→ N, Θ ⊆ Rnθ , is said inte-
ger piecewise constant (IPWC) if there exist a polyhedral parti-
tion Θ1 , . . . ,Θs of Θ and a set of integers {n1 , . . . , ns} ⊂ N,
such that

n(θ) = min
i∈{1,...,s}: θ∈Θ i

{ni} (16)

for all θ ∈ Θ.
Note that the “min” in (17) avoids possible multiple defini-

tions of n(θ) on overalapping boundaries Θi ∩Θj �= ∅.

Definition 5: A function h : Θ→ Rn , Θ ⊆ Rnθ , is said
PWA if there exist an IPWC function n : Θ→ {n1 , . . . , ns}
defined over a polyhedral partition Θ1 , . . . ,Θs of Θ and s pairs
(Fi, fi), Fi ∈ Rn×nθ , fi ∈ Rn , i ∈ {n1 , . . . , ns}, such that

h(θ) = Fn(θ)θ + fn(θ) (17a)

for all θ ∈ Θ. It is said piecewise constant if Fi = 0, ∀i ∈
{n1 , . . . , ns}.

Lemma IV.2. Let f, g : Θ→ R be PWA functions over a
polyhedron Θ ⊆ Rn . Then, h = min{f, g} is also PWA.

Proof: Let {Θ1 , . . . ,Θs} and {Φ1 , . . . ,Φt} be the poly-
hedral partitions associated with f and g, respectively, and
{p1 , . . . , ps}, {k1 , . . . , kt} define the corresponding IPWC
functions n and m. Let Fi, fi , i = 1, . . . , s and Gj , gj , j =
1, . . . , t, define f and g, respectively. Consider the polyhedra

Ψf
ij = {θ ∈ Θ : θ ∈ Θi ∩ Φj , (Fi −Gj )θ ≤ gj − fi} (18a)

Ψg
ij = {θ ∈ Θ : θ ∈ Θi ∩ Φj , (Gi − Fj )θ ≤ fj − gi} (18b)

and let {Ψ1 , . . . ,Ψv} be the set of all polyhedra Ψf
ij , Ψg

ij having
a nonempty interior. It is easy to show that {Ψ1 , . . . ,Ψv} defines
a polyhedral partition of Θ. By letting �i = i, i = 1, . . . , v, and
defining the IPWC function � : Θ→ {1, . . . , v}

�(θ) = min
i∈{1,...,v}: θ∈Ψ i

{�i}

we have that

h(θ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Fiθ + fi if θ ∈ Ψ�(θ) = Ψf
ij for some j

j ∈ {1, . . . , t}
Gjθ + gj if θ ∈ Ψ�(θ) = Ψg

ij for some i

i ∈ {1, . . . , s}
and therefore that h is PWA. �

The following Lemma IV.3 characterizes the behavior of
one iteration j of Algorithm 1 as a function of the parameter
vector θ.

Lemma IV.3. Let zj−1 : Θj → Rn and πj−1 : Θj → Rm be
affine functions on a polyhedron Θj ⊆ Rnθ , and letAj−1 ⊆ K,
Vj−1 ⊆ K \ Aj−1 . The following properties hold.

1) By letting p(θ) = 0 if no constraint is violated (Vq−1 =
∅), the index p : Θj → N ∪ {0} selected according
to (14a) or (14b) is IPWC.

2) The step directions Δzj , Δπj obtained from (8) are PWC.
3) The index k : Θj → N selected according to (1) is IPWC.
4) The step size αj : Θj → R ∪ {+∞} defined in (9) is

PWA.
5) The functions zj : Θj → Nn , πj : Θj → Rm defined

by (A.3) are PWA.
Proof: 1) Let zj (θ) = Azθ + bz define the affine function

zj over Θj . Then, g�(zj ) = G�z
j −W�θ − w� = (G�Az −

W�)θ + G�bz − w� is also affine, ∀� ∈ I. Let Ḡ� = G�Az −
W� , w̄� = w� −G�bz and

Θ1
� = {θ ∈ Θj : (Ḡ� − Ḡh)θ ≥ w̄h − w̄� ,

Ḡ�θ ≥ w̄� , ∀h ∈ I, h �= �} (19a)

Θ2
� = {θ ∈ Θj : Ḡhθ ≤ w̄h , Ḡ�θ ≥ w̄�

∀h ∈ I ∩ {1, . . . , �− 1}}. (19b)
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Consider the polyhedra

Θ0 = {θ ∈ Θj : Ḡ�θ ≤ w̄� , ∀� ∈ I}

Θ� =

⎧
⎨

⎩
Θ1

j if p = arg max{Ḡ�θ − w̄�}
Θ2

j if p = mini∈K{i| gi(zj ) > 0}.
(20)

The polyhedra {Θ�}m�=0 define a polyhedral partition of Θj as
a) they are included in Θj by construction, b) each θ ∈ Θp(θ) ,
where p(θ) = 0 if Ḡ�θ ≥ w̄� , ∀� ∈ I, or p = arg max{Ḡ�θ −
w̄�} if rule (14a) is used, or p = mini∈K{i| gi(zj ) > 0} in
case (15b) is adopted, 3) the interiors Θ̊� are obtained by chang-
ing “≥” to “>” in (21), so no θ can belong simultaneously to
two different interiors of polyhedra. Since both rules in (15) are
equivalent to setting

p(θ) = min
�∈{0,...,m}: θ∈Θ �

{�} (21)

function p is IPWC.
2) From (8) we have that Hj−1 and G∗Aj −1 are independent

from θ, so the same holds for Jj
1 , Jj

2 and R−1,j . Since Gp

depends on p that by (21) is IPWC, the step directions obtained
from (8) are PWC functions.

3) Since πj−1 is an affine function of θ, say πj−1(θ) =
Aπ θ + bπ , and Δπj is PWC, their negative ratio − π j −1 (θ)

Δπ j
l

is

PWC over the partition of Θj defined by (20), for all l ∈ Pj−1 =
{k1 , . . . , kt} = {l ∈ Aj−1 : Δπj

l < 0}, where t = #Pj−1 .
Let (Cl,1 , dl,1), . . ., (Cl,s , dl,s) define the corresponding affine
terms of the PWC ratios and consider the polyhedra

Φi,� = {θ ∈ Θ� : (Cki ,� − Ckh ,�)θ ≤ dkh ,� − dki ,� ,
∀h = 1, . . . , t, h �= i, � = 1, . . . , s}. (22)

Each set of polyhedra {Φi,�}ti=1 also defines a polyhedral par-
tition of Θ� , for all � = 1, . . . , s. Since (A.2) is equivalent to
setting

k(θ) = min
i∈{1,...,t}: θ∈∪�∈Pj −1 Φ i , �

{ki} (23)

k is also an IPWC function on Θj .
4) If #Aj−1 = 0 or Δπj ≥ 0, then αj

1(θ) = +∞ for all
θ ∈ Θj , cf. Step 1 of Algorithm 1. Otherwise

αj
1(θ) = Ck(θ)θ + dk(θ) (24)

and therefore αj
1 is PWA. Similarly, since zj−1 is affine, we have

that

αj
2(θ) = Ch(θ)θ + dh(θ) (25)

with

Ch(θ) =
Wp(θ) −Gp(θ)Az

Gp(θ)Δzj
, dh(θ) =

wp(θ) −Gp(θ)bz

Gp(θ)Δzj

(26)

is also PWA. If αj
1(θ) = +∞, then αj (θ) = αj

2(θ) for all θ ∈
Θj and so αj is PWA. Otherwise, Lemma IV.2 proves that
αj = min{αj

1 , α
j
2} is PWA. As a result, we consider the set of

polyhedra

Φ̃0,� = {θ ∈ Θ� : Ckj ,� − Ch,� ≤ dh,� − dkj ,� ,
∀j = 1, . . . , t}

Φ̃i,� = Φi,� \ Φ̃0,� , ∀i = 1, . . . , t

(27)

such that {Φ̃i,l}ti=0 defines a polyhedral partition of Θ� .
5) The functions zj and πj defined in (A.3) are the sum of an

affine and PWA function, and are therefore PWA.
Theorem IV.4. Let Θ ⊆ Rnθ be a polyhedron and z0 , π0 be

affine functions of θ on Θ. Then each iterate zj , πj defined
in (A.3) is PWA for all j ∈ N, such that Algorithm 1 is executed.
Moreover, N : Θ→ {0, . . . , Nmax} is IPWC.

Proof: We prove the theorem by induction. Since z0 , π0

are affine, they are also PWA. Assume zj−1 , πj−1 are PWA
functions defined over a polyhedral partition {Θj−1

i }sj −1

i=1 of Θ.
Therefore, zj−1 and πj−1 are affine on each polyhedron Θj−1

i ,
and by property 5) of Lemma IV.3 we have that zj , πj are

PWA functions defined over a polyhedral partition {Θj−1
ih }

tj −1
i

h=1
of Θj−1

i . As the collection of sets

{
Ψj

i

}Lj

i=1
=
{

Θj−1
1h

}tj −1
1

h=1
∪ . . . ∪

{
Θj−1

sj −1 h

}tj −1
s j −1

h=1

where Lj =
∑sj −1

i=1 tj−1
i , is a polyhedral partition of Θj−1 , it

follows that zj , πj are PWA over Θj−1 .
Since by Lemma IV.1 the number of recursive partitioning is

finite, Θ gets partitioned in a finite number of polyhedral sets
Ψ1 , . . . ,ΨM . Each polyhedron Ψi is characterized by either
Vj = ∅ (optimal solution found) or αj = αj

1 =∞ (infeasibil-
ity) and by the number Ni ≤ Nmax of recursive splitting it took
to get defining Ψj . Then, the function N such that N(θ) = Ni

if θ ∈ Ψi , i = 1, . . . , M is IPWC. �
The following corollary confirms a well-known property of

the optimizer z∗ proved in [9, Theorem 4].
Corollary IV.5. The multiparametric QP solution vector z∗

of (2) is PWA with respect to θ over a subset of Θ.
Proof: Easily follows since, for each i = 1, . . . ,M , either

z∗(θ) = zNi (θ) or the problem is infeasible, for all θ ∈ Ψi . �

A. Complexity Certification Algorithm

We derive next an algorithm that iteratively constructs two
lists of tuples T and T̄ , corresponding to parameters θ ∈ Θ
for which the QP (2) has an optimal solution or is infeasible,
respectively. Each tuple is defined as

Th = (Θh ,Ah , Ah
z , bh

z , Ah
π , bh

π , Jh
1 , Jh

2 , Rh , qh) (28)

where Θh are polyhedra that we will show provide a partition
of Θ.

The lists are constructed by partitioning the given set Θ of
parameters depending on the behavior of each consecutive it-
eration q made by Algorithm 1. The core of the certification
algorithm is the way to split a given polyhedron Θ� , obtained
as in (20) for the iteration q, in all the possible polyhedra that
are either feasible, with constraint p(θ) active at q + 1, or in-
feasible. For a given Θ� , let Γi

� and Γ̄j
� define the ith feasi-

ble and the jth infeasible polyhedra. From Theorem IV.4, it
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Algorithm 2: Parametric GI’s dual QP Iteration.

Input: Tuple T q = (Θq ,Aq , Aq
z , b

q
z , A

q
π , bq

π , Jq
1 , Jq

2 , Rq , q)
Matrices G,W,w
1: Define {Θ�}m�=0 as in (20) and p as in (21);
2: if Θ̊0 �= ∅ then
3: To = (Θ0 ,Aq , Aq

z , b
q
z , A

q
π , bq

π , Jq
1 , Jq

2 , Rq , q);
4: end if
5: for � = 1, . . . , m such that Θ̊� �= ∅ do
6: T� ← {T q}, TΓ,� ← ∅, TΓ̄,� ← ∅;
7: while T� �= ∅ do
8: extract from T� a tuple

T j
� ← (Θj

� ,A
j
� , A

j
z ,� , b

j
z ,� , A

j
π ,� , b

j
π ,� ,

Jj
1,� , J

j
2,� , R

j
� , q);

9: Δzj
� ← −Jj

2,�(J
j
2,�)

′Gp , Δπj
� ← −R−1,j

� (Jj
1,�)

′G′p ;

10: if (Δπj
� ≥ 0 or #Aj = 0) then αj

1,� ←∞;

11: if Δzj
� = 0 then TΓ̄,� ← TΓ̄,� ∪ {T j

� }; else

12: Update A
j ;+;1
z ,� , b

j ;+;1
z ,� , A

j ;+;1
π ,� , b

j ;+;1
π ,� as in (30)–(31);

13: Update J
j ;+;1
1,� , J

j ;+;1
2,� , R

j ;+;1
� ,Aj ;+;1

� adding
constraint p;

14: Set the tuple

T
j ;+;1
1,� ← (Θj

� ,A
j ;+;1
� , A

j ;+;1
z ,� , b

j ;+;1
z ,� , A

j ;+;1
π ,� , b

j ;+;1
π ,� ,

J
j ;+;1
1,� , J

j ;+;1
2,� , R

j ;+;1
� , q;+;1);

15: TΓ,� ← TΓ,� ∪ {T
j ;+;1
1,� };

16: end if;
17: else
18: partition Θ� as in (27), with k as in (23);
19: if Δzj

� > 0 then

20: Update A
j ;+;1
z ,� , b

j ;+;1
z ,� , A

j ;+;1
π ,� , b

j ;+;1
π ,� as in (30)–(31);

21: Update J
j ;+;1
1,� , J

j ;+;1
2,� , R

j ;+;1
� ,Aj ;+;1

� adding
constraint p;

22: Set the tuple

T
j ;+;1
1,� ← (Φ̃j

0,� ,A
j ;+;1
� , A

j ;+;1
z ,� , b

j ;+;1
z ,� , A

j ;+;1
π ,� , b

j ;+;1
π ,� ,

J
j ;+;1
1,� , J

j ;+;1
2,� , R

j ;+;1
� , q;+;1);

23: TΓ,� ← TΓ,� ∪ {T
j ;+;1
1,� };

24: end if;
25: for i = 1, . . . , t with Φ̊i,� �= ∅ do

26: Update A
j ;+;1
π ,� , b

j ;+;1
π ,� as in (32);

27: Update J
j ;+;1
1,� , J

j ;+;1
2,� , R

j ;+;1
� ,Aj ;+;1

� removing
constraint k;

28: if Δzj
� = 0 then

29: Set the tuple

T
j ;+;1
2,� ← (Φ̃j

i,� ,A
j ;+;1
� , Aj

z ,� , b
j
z ,� , A

j ;+;1
π ,� , b

j ;+;1
π ,� ,

J
j ;+;1
1,� , J

j ;+;1
2,� , R

j ;+;1
� , q);

30: else

31: Update A
j ;+;1
z ,� , b

j ;+;1
z ,� as in (30);

Algorithm 2: (Continued.)
32: Set the tuple

T
j ;+;1
2,� ← (Φ̃j

i,� ,A
j ;+;1
� , A

j ;+;1
z ,� , b

j ;+;1
z ,� , A

j ;+;1
π ,� , b

j ;+;1
π ,� ,

J
j ;+;1
1,� , J

j ;+;1
2,� , R

j ;+;1
� , q);

33: end if;

34: T� = T� ∪ {T
j ;+;1
2,� };

35: end for;
36: end if;
37: end while
38: end for.
Output: Tuple To ; sets of tuples {T i

Γ,�}
m, nγ , �

�=1,i=1 ,

{T j

Γ̄,�
}m, nγ̄ , �

�=1,j=1 .

follows that {Γi
�}

nγ

i=1 ∪ {Γ̄
j
�}

nγ̄

j=1 define a polyhedral partition
of Θ� , where the polyhedra will differ from each other for the
sequence of constraints dropped before adding the constraint
p(θ) to the current active set, or before verifying an infeasibility
status. Therefore, each tuple at iteration q is iteratively split into
two sets of tuples {T i

Γ,�}
m, nγ , �

�=1,i=1 and {T j

Γ̄,�
}m, nγ̄ , �

�=1,j=1 , associated

with the sets of polyhedra {Γi
�}

m, nγ , �

�=1,i=1 and {Γ̄j
�}

m, nγ̄ , �

�=1,j=1 . For
each new tuple created from T j−1 , a parametric primal–dual
update is performed, such that by considering the relation

(C̃, d̃) =

{
(Ck , dk ) if αj ≡ αj

1

(Ch, dh) if αj ≡ αj
2

(29)

the parametric primal update becomes

Aj
z = Aj−1

z + C̃Δzj

bj
z = bj−1

z + d̃Δzj
(30)

where the parametric dual update in the case of an added con-
straint is defined by

Aj
π =

[
Aj−1

π

0

]
+ C̃

[
Δπj

1

]

bj
π =

[
bj−1
π

0

]
+ d̃

[
Δπj

1

] (31)

and the parametric dual update in the case of a blocking con-
straint removal is computed as

Aj
π = Aj−1

π + C̃Δπj

bj
π = bj−1

π + d̃Δπj .
(32)

Algorithm 2 characterizes the way a given polyhedron Θq is split
at a generic iteration q. Next, Algorithm 3 executes Algorithm 2
iteratively to characterize the entire parameter set Θ.

Algorithm 3 provides the list of optimal and infeasible tuples
that partition the set Θ into polyhedra characterized by different
steps of a dual active-set algorithm to reach the optimal solution,
or to detect infeasibility. Note that parallel computations can be
easily used to speed up the execution of Algorithm 3, by creating
an independent task for each T q extracted from C.
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Algorithm 3: GI’s QP Solver Certification.
Input: Matrices H,F,G,W,w defining problem (2) and

polyhedral set Θ of parameters.
1: Compute Cholesky factorization LL′ = H , J0

2 ← L−T ;
2: T ← ∅, T̄ ← ∅
3: C ← {(Θ, ∅,−H−1F, 0, [ ], [ ], [ ], J0

2 , [ ], 0)};
4: while C �= ∅ do
5: T q ← extract tuple from C;
6: Execute Algorithm 2 with input data from T q ;
7: T ← T ∪ {To};
8: T̄ ← T̄ ∪ {T i

Γ̄,�
}m, nγ̄ , �

�=1,i=1 ;

9: C ← {T i
Γ,�}

m, nγ , �

�=1,i=1 ;
10: end while
Output: List of optimal tuples T , list of infeasible tuples T̄ .

The following key result of the paper is therefore proved.
Proposition IV.6. Consider the QP problem (2) for θ ∈ Θ

and let T , T̄ be the lists of tuples generated by Algorithm 3.
Then, for any θ ∈ Θ, the dual active-set method of Algorithm 1
takes no more than

Nmax = max
T ∈T∪T̄

{q(T )} (33)

iterations to solve (2) or to detect infeasibility, and exactly Nmax
iterations for all θ ∈ Θ(T ) such that q(T ) = Nmax , where q(T )
and Θ(T ) denote the value q and set Θ associated with tuple T ,
respectively. �

Remark 1: The bound Nmax also applies to other dual active-
set methods that select the violated constraint p with the same
rule used for generating {Θ�}m�=0 in (21), thanks to the fact that
different dual active-set QP solvers share the same path to reach
the solution. See Section V-A.

In embedded applications what counts is the CPU runtime
rather than the number of QP iterations, which may differ from
one iteration to another. Indeed, given a polyhedron Θ� at itera-
tion q, the execution of Algorithm 2 computes the list of tuples
{T i

Γ,�}
m, nγ , �

�=1,i=1 that, despite their equivalence in terms of iter-
ation complexity (q + 1), have a different execution time, due
to the different sequence of dropped constraints. This issue is
addressed by counting the exact number of flops nimp required
to reach the optimal solution in each tuple Th

Th = (Θh ,Ah , Ah
z , bh

z , Ah
π , bh

π , Jh
1 , Jh

2 , Rh , qh , nh
imp) (34)

that is incrementally updated at every subiteration j. Note that
nh

imp may be even further differentiated into the number of
atomic and nonatomic operations, like square-roots. This allows
the exact certification of the worst-case computational complex-
ity in terms of CPU flops

nmax
imp = max

T ∈T∪T̄
{nimp(T )} (35)

where nimp(T ) associates the value nimp with tuple T , from
which the maximum execution time can be computed for a given
hardware architecture. Note that not necessarily q(T ) = Nmax
implies nimp(T ) = nmax

imp .

In case of degeneracy, active-set methods can suffer from the
cycling problem. Due to the possibility of choosing the con-
straint to add to the active set at each iteration, dual methods are
much less affected by this problem [39] with respect to primal
methods. However, even if in [16], Goldfarb and Idnani have
not encountered any example of cycling of the GI algorithm,
the impossibility of degeneracy has not been proved yet. The
certification algorithm is able to exactly verify the possible in-
come of degeneracy. Indeed, by iteratively storing the active
sets at all the previous iterations for each region of parameters,
it is straightforward to verify if the same active set is visited
more than once during the execution of the solver. Moreover,
the certification algorithm not only verifies the possibility of
cycling, but also the regions where this can happen. There-
fore, appropriate procedures, such as small perturbations of the
constraints, can be applied only for the regions where cycling
happens.

B. Simple Numerical Example

We illustrate the iterative steps performed by Algorithm 3
to certify the computational complexity of the toy QP problem
defined by the following matrices:

H =

⎡

⎢⎢⎣

0.9916 −0.0033 0.0191

−0.0033 1.0539 0.0003

0.0191 0.0003 0.9572

⎤

⎥⎥⎦ ,

F =

⎡

⎢⎢⎣

38.4790 27.6810

28.9098 35.3639

−142.6567 −176.6410

⎤

⎥⎥⎦

G =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1.1512 1.2484 −0.6112

1.4613 0.4288 −1.9000

−0.5442 −2.2504 0.6687

−1.1315 −0.5512 1.0281

−0.3603 −1.5912 0.8453

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

W =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.1304 41.8883

0.6998 59.3813

16.7784 27.6981

15.0436 59.2827

51.5494 58.5140

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

w =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

82.2717

76.4544

12.0567

38.4332

2.7923

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Eθ =

⎡

⎢⎢⎢⎢⎢⎣

1 0

0 1

−1 0

0 −1

⎤

⎥⎥⎥⎥⎥⎦
, eθ =

⎡

⎢⎢⎢⎢⎢⎣

0.9

−0.6

−0.6

1

⎤

⎥⎥⎥⎥⎥⎦
(36)

where Eθ and eθ define the set of parameters Θ = {θ ∈
Rnθ |Eθθ ≤ eθ}. Algorithm 3 iteratively partitions Θ into poly-
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Fig. 1. Iterations of Algorithm 3, with most-violated selection rule, to
certify the QP problem (36). Different colors mean different number of
iterations, namely blue=unconstrained, red = 1, green = 2, gray = 3,
and pink = 4 QP iterations. (a) Iterate tuples with q(T h ) = 0. (b) Iterate
tuples with q(T h ) = 1. (c) Iterate tuples with q(T h ) = 2. (d) Iterate tuples
with q(T h ) = 3.

hedral regions as depicted in Fig. 1. Specifically, each subfigure
represents consecutively the results of the execution of sub-
routine 2 for all the nonoptimal tuples at the previous step.
The regions corresponding to the optimal tuples are labeled as
Θ(To), with optimal active setA∗. Those regions corresponding
to nonoptimal tuples are labeled as Θ(T ), with current active
set A. Fig. 1(d) shows the partitioning of Θ after the complete
execution of the algorithm, and Table I collects the list T of the
seven optimal tuples characterizing the problem, together with
the number of iterations and the associated flops. By using the
proposed certification algorithm, we can exactly calculate that
the GI solver applied to the QP problem (37) will perform four
iterations and 528 flops in the worst case, with three nonatomic
operations (square-roots in this case).

The complete map of the GI solver execution in the param-
eter space provides additional useful information. The average
computation time can be also certified, which is useful for those
applications where the time spent by the CPU in the wake-up
mode is more important than the hard real time. Furthermore,
the list of constraints never added to the active set can be eas-
ily retrieved, and those can be removed from the QP problem to
improve memory occupancy and computational complexity. For
instance, Table I shows that the third constraint can be safely
removed from problem (37). Note that a simple redundancy

check of {
[

z

θ

]
: Gz −Wθ ≤ w} would have labeled the same

constraint as nonredundant.

V. CERTIFIED FAST EMBEDDED MPC

The approach developed in the previous section is also useful
to significantly improve the performance of the embedded dual
active-set solver, as described in the following sections.

A. Certification of Different Dual Active-Set Algorithms

Dual active-set algorithms that add the violated constraints
one-by-one into the active set perform the same number of it-
erations, as long as the selection rule for adding the violated
constraint is the same [40]. The difference is how they solve (5),
that translates into a different complexity per iteration [16]–
[18], [20]. Usually, the appropriate QP solver is selected heuris-
tically based on the dimensions of the QP problem (2). Indeed,
it is recognized that range-space methods work better with few
constraints into the active set [16], null-space methods are the
favorite when the number of constraints in the active set is
larger [37], and methods based on Schur decomposition are
preferable with large-scale QP problems [17]. However, select-
ing the best solver on the basis of such general rules of thumb
is not always easy, and it is especially difficult to predict the
worst-case complexity precisely.

The certification algorithm can be easily extended to deal
with such a solver selection problem. Indeed, the tuples created
by the algorithm would be exactly the same for each solver
and it is sufficient to run the algorithm only once, associating
at each tuple one flops counter ni

imp for each ith solver to be
tested. Despite their equivalent number of iterations Nmax , the
computational load ni,max

imp of the active-set solvers will be in
general different, allowing one to select the best one for the
given QP problem.

B. Certification of Different Violated Constraints
Selection Rules

Lemma IV.1 guarantees the convergence of a dual active-
set QP solver if a violated constraint is added at each itera-
tion to the current active set, no matter how the violated con-
straint is selected. Lemma IV.3 proves that the index p : Θj →
N ∪ {0} selected according to either the most-violated (15a)
or the first-violated (15b) rule is IPWC, and therefore, for
each iteration q of the algorithm, it defines the polyhedral
partition {Θ�}m�=0 .

The criterion (15a) is commonly preferred, as it usually turns
into fewer iterations with respect to other selection rules, and it
reduces the possibility to pass through nearly linearly dependent
intermediate active sets [16]. However, checking all constraints
is a costly operation, as Giz − bi must be computed for all
rows i ∈ I. In MPC, where the number of constraints m is
usually larger with respect to the maximum active set size n,
this operation plays an important role.

The first violated rule (15b) avoids this costly operation, at
the price of possibly increasing the number of iterations. De-
pending on the particular QP problem, the worst case can be
arbitrarily affected by different selection rules, thus the certifi-
cation algorithm can be used to select the best one. Similarly,
other selection rules can be certified, provided that p remains
IPWC. A run of the certification algorithm is necessary for
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every selection rule, using each time a different rule to build
{Θ�}m�=0 , and the one with the lowest nmax

imp can then be selected
for minimum worst-case execution time.

C. Worst-Case Analysis of Explicit MPC

As a by-product, Algorithm 3 also provides the multipara-
metric solution of (2), as the convex polyhedra associated with
each optimal active set A, corresponding to the union of the
regions θ(T ), T ∈ T , such thatA(T ) = A, can be immediately
computed as in [9], by imposing the primal and dual feasibility
conditions

(GAz (T )−W )θ ≤ w −Gbz (T ) (37a)

−Aπ (T )θ ≤ bπ (T ) (37b)

for some T such that A(T ) = A.
Let the explicit optimal control law be the PWA function

u∗exp(θ) = {Kiθ + ci, ∀θ ∈ Pi , i = 1, . . . , nr} (38)

with Ki ∈ Rnu ×nθ , ci ∈ Rnu , {Pi}nr
i=1 a polyhedral partition of

Θ such that Pi = {θ ∈ Rnθ |Eiθ ≤ ei,∀i = 1, . . . , nr}, where
Ei ∈ Rni

e×θ , ei ∈ Rni
e are a minimal polyhedral representation

of (37). For each polyhedronPi defining the PWA function (38),
let

Ci = {h | Ph is a neighbor ofPi , h = 1, . . . , nr} (39)

be the list of “neighboring” polyhedra ofPi (Ph is a neighbor of
Pi if they share a facet), with Ci ∈ N

nc i
+ . The worst-case num-

ber of flops nmax
exp , needed to find and apply the optimal solution

through explicit MPC, and the memory occupancy mexp in kilo-
bytes to store the PWA control law and the needed information
for point location, can be calculated as

nmax
exp = 2nθ (nu + nr )− nr +

nr∑

i=1

ni
c (40a)

mexp =
((nθ + 1)nu + nθ + 1)nr

pf
+ 2

∑nr

i=1 ni
c

pc
(40b)

with pc = 512, and pf = 128 for double precision or pf = 256
for single precision, under the assumption of using the explicit
algorithm presented in [41].

Having both the exact bound on the worst-case number of
flops of a dual active-set solver and of the multiparametric
solution, for a given linear MPC problem one can evaluate
whether to adopt the online solver or the explicit solution, as
the required memory occupancy and flops that need to be allo-
cated in both cases can be computed exactly (see Section VI for
examples).

D. Worst-Case Partial Enumeration

Based on the partial enumeration idea proposed in [33], where
the explicit solution is partially stored as a table of fixed dimen-
sions and updated online, we derive next a novel online tech-
nique for embedded MPC that combines implicit and explicit
MPC. In [33], the table contains the optimal active sets at the
most recent decision time-points, and, besides the suboptimal
solution obtained when the table needs to be updated, its main

drawback is that even if the average behavior is improved, there
is no guarantee regarding the worst case. Another approach is
presented in [29], where the partial explicit solution is used
to warm start a primal active-set LP solver. This iterates for a
fixed number of iterations, and therefore provides a possibly
suboptimal solution.

The method proposed next, referred to as WCPE-MPC,
builds instead upon the complexity certification algorithm of
Section IV to identify those regions that, if stored as an ex-
plicit solution, will help improving the worst-case number of
flops of an implicit approach. Being interested in the worst-
case improvement, the partial solution that must be stored is
of fixed dimensions, and not updated online. The basic idea
of the proposed WCPE-MPC approach is to first search the
optimal solution in the partial explicit PWA law, and, if the
search fails, the online active-set solver is executed, as described
below.

Define P̄ = P ({1, . . . , nr}) \ (∅, {1, . . . , nr}), with P (X)
the power-set of X , and consider the partial explicit control law
derived from (39)

u∗exp,N (θ) = {Kjθ + cj , ∀θ ∈ Pj , ∀j ∈ N} (41)

where N ∈ P̄ is the set of indices corresponding to the affine
functions from (39) to be included in the explicit solution, and
#N < nr and ∪j∈N{Pj} ⊂ Θ.

Consider the set of indices

M = {h | h ∈ Cj , ∀j ∈ N} (42)

and define the scalar PWA descriptor function r(θ) : Rnθ → R

r(θ) = {ri(θ) = K̄iθ + c̄i | θ ∈ Pi , i ∈M} (43)

where K̄i ∈ Rnθ , c̄i ∈ R, and K̄j �= K̄h , ∀h ∈ Cj , j ∈ N .
The PWA descriptor function r(θ) is derived from the PWA
optimal control law (38), cf. [42]. For each Pj , let Oj (θ) =
{oj

i (θ) | i ∈ Cj} be an ordering function, such that

oj
i (θ) =

⎧
⎪⎨

⎪⎩

+1 if rj (θ) ≥ ri(θ)

−1 if rj (θ) < ri(θ)
(44)

with j ∈ N and i ∈M, and assume that a set of precalculated
Sj = Cj (θ̄), with θ̄ ∈ P̊j , ∀j ∈ N . Given the partial explicit
PWA control law (42), the scalar PWA descriptor function (44)
and the set of precomputed Sj , ∀j ∈ N , Algorithm 4 presents
the steps of WCPE-MPC, executed online at each time step in
order to obtain the command input u∗.

The challenge in designing Algorithm 4 is the selection of
u∗exp,N (θ), such that the total worst-case number of flops is
improved with respect to the implicit worst-case nmax

imp . The
number of possible partial explicit solutions that can be derived
from (38) is 2nr − 2. We discuss next how to select only those
that can improve the implicit worst-case nmax

imp .
Definition 6: Given a set of indices N ∈ P̄ , let nmax

N be the
worst-case number of flops of WCPE-MPC Algorithm 4 with
input argument the partial explicit solution u∗exp,N , such that

nmax
N = nmax

exp,N + nmax
imp,N (45)
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Algorithm 4: WCPE-MPC Algorithm.
Input: Matrices H,F,G,W,w, θ defining problem (2).
u∗exp,N (θ) = {Kjθ + cj , ∀θ ∈ Pj , ∀j ∈ N},
r(θ) = {ri(θ) = K̄iθ + c̄i | θ ∈ Pi , i ∈M}, and
{Sj}j∈N
1: j ← 1, f ← TRUE;
2: while f or j ≤ #N do
3: compute Oj (θ) as in (44);
4: if Oj (θ) = Sj then
5: f ← FALSE;
6: else
7: j ← j + 1;
8: end if
9: end while

10: if f =FALSE then
11: return u∗ ← Kjθ + cj ;
12: else
13: z∗ ← execute Algorithm 1 with inputs

H,F,G,W,w, θ;
14: return u∗ ← first nu rows of z∗;
15: end if
Output: Optimal control input sequence u∗.

where nmax
exp,N is the required number of flops, in the worst case,

for locating a point in the partially explicit solution, and nmax
imp,N

is the worst-case number of flops for the online solver.
Let P̄ be the collection of all the possible sets of indices to

build the partial explicit solution (42), and let {Ni}nr −1
i=1 , with

Ni ∈ P̄ ,∀ i ∈ {1, . . . , nr − 1}, be the reduced collection of sets
of indices defined such that

Nj = Ni ∪ h, ∀j > i, h ∈ {1, . . . , nr} \ Ni (46a)

nmax
imp,Nj

≤ nmax
imp,Ni

, ∀j > i (46b)

with i ∈ {1, . . . , nr − 2} and j ∈ {2, . . . , nr − 1}. Consider
the vth set of indices Nv that defines the partial explicit solu-
tion u∗exp,Nv

(θ). Let nmax
Nv

= nmax
exp,Nv

+ nmax
imp,Nv

be the worst-case
number of flops of Algorithm 4 with u∗exp,Nv

(θ) as the input argu-

ment, and define the list of tuples TNv
= {T i

Nv
}# TNv

i=1 , such that

TNv
= {T i ∈ T |Θ(T i) ∩ {Pj}j∈Nv

= ∅, ∀i = 1, . . . ,# T}
(47)

with T the list of optimal tuples obtained from Algorithm 3. The
flops contribution of the implicit solver to the worst-case nmax

Nv
is

nmax
imp,Nv

= max{nimp(T i
Nv

)| i = 1, . . . ,# TNv
} (48)

with nmax
imp,Nv

= nimp(T s
Nv

). Consider then Nh = Nv ∪ {h},
with h an index to be chosen, and the corresponding partial
explicit law u∗exp,Nh

(θ). The relation nmax
exp,Nh

> nmax
exp,Nv

holds by
construction for every h. Therefore, the necessary condition to
meet the requirement nmax

Nh
< nmax

Nv
is that nmax

imp,Nh
< nmax

imp,Nv

and h is selected such that T s
Nv
⊂ Ph . In conclusion, {Ni}nr −1

i=1
are the only set of indices for which the corresponding set
of partial explicit solutions u∗exp,Ni

(θ) can guarantee that
nmax
Ni
≤ nmax

imp holds true.

Algorithm 5: WCPE Reduction Algorithm.

Input: List of optimal tuples T = {T i}# T
i=1 from

Algorithm 3,
u∗exp(θ) = {Kiθ + ci, ∀θ ∈ Pi , i = 1, . . . , nr} from (38),
r(θ) = {ri(θ) = K̄iθ + c̄i | θ ∈ Pi , i ∈M}, and the
memory occupancy of implicit MPC mimp

1: N ← ∅, u∗exp,N ← ∅, nmax
N ← ∅, mN ← ∅, i← 0,

t← ∅;
2: while i < nr do
3: s = arg maxh={1,...,# T}{nimp(Th)}
4: Extract from T the tuple

T s = (Θs ,As , As
z , b

s
z , A

s
π , bs

π , Js
1 , Js

2 , Rs, qs , ns
imp);

5: Remove tuple T s from T ;
6: for v = 1, . . . ,# P do
7: if Θs ∩ Pv �= ∅ then
8: i← i + 1, t← ∅;
9: Ni ← Ni−1 ∪ {v};

10: for j = 1, . . . ,# T do
11: Extract fromT the tuple

T j = (Θj ,Aj , Aj
z , b

j
z ,

Aj
π , bj

π , Jj
1 , Jj

2 , Rj , qj , nj
imp);

12: if Aj = As then
13: t← t ∪ j;
14: end if
15: end for
16: Remove from T all the tuples indexed by t;
17: u∗exp,Ni

(θ) = {Kjθ + cj , ∀θ ∈ Pj , ∀j ∈ Ni};
18: Compute nmax

exp,Ni
, mexp,Ni

as in (49);
19: l = arg maxh={1,...,# T}{nimp(Th)}
20: Extract from T the tuple

T l = (Θl ,Al , Al
z , b

l
z , A

l
π , bl

π , Jl
1 , J

l
2 , R

l , ql , nl
imp);

21: nmax
Ni
← nmax

exp,Ni
+ nl

imp;
22: mNh

← mimp + mexp,Ni
;

23: go to Step 2
24: end if
25: end for
26: end while
Output: List of partial explicit optimal solutions
{u∗exp,Ni

(θ)}nr −1
i=1 and corresponding {nmax

Ni
}nr −1

i=1 and

memory allocation {mNi
} ¯nr −1

i=1

Note that we only provided the necessary condition for a
partial explicit solution u∗exp,Nj

(θ) to improve the worst-case

number of flops of implicit MPC, that is, Nj ∈ {Ni}nr −1
i=1 , re-

ducing the set of interest from 2nr − 2 to nr − 1 possibilities.
However, the best partial PWA law, among the possible nr − 1,
depends on the particular problem, and the given computational
and memory limits. To this purpose Algorithm 5 provides a way
to compute all the partial explicit solutions {u∗exp,Ni

(θ)}nr −1
i=1 ,

together with the lists of corresponding worst-case number of
flops {nmax

Ni
}nr −1

i=1 and memory allocation {mNi
}nr −1

i=1 . The de-
signer can then select the best choice, considering the tradeoff
memory/worst-case computations.
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TABLE I
LIST T OF OPTIMAL TUPLES GENERATED BY ALGORITHM 3 FOR

PROBLEM (36)

A(T h ) q(T h ) n imp(T h )(±, ∗,÷)|sqrt

T 1
o ∅ unconstrained 35|0

T 2
o {4} 1 178|2

T 3
o {2} 1 174|2

T 4
o {2, 1} 2 295|3

T 5
o {2, 1, 4} 3 388|3

T 6
o {2, 1, 5} 3 372|3

T 7
o {2, 1, 4} 4 528|3

TABLE II
DIMENSIONS OF MPC PROBLEMS

Inverted pendulum DC motor Nonlinear demo AFTI-16

nx 5 4 5 6
nu 1 1 3 2
ny 2 2 2 2
Np 50 10 5 10
Nu 5 2 2 2
n 5 3 6 5
m 10 10 18 12
nθ 9 6 10 10

Given an index set of affine functions for the partial explicit
solution, the following equations characterize the maximum
number of flops and the memory occupancy of the explicit con-
trol law in WCPE-MPC

nmax
exp,N = 2nθnu + 2nθ #N +

∑

i∈N
ni

e (49a)

mexp =
(nθ + 1)#M+ (nunθ + nu )#N

pf
+ 2

∑
i∈N ni

c

pc
.

(49b)

Result 1: Let mNi
be the memory requirements for WCPE-

MPC, when implemented with the ith partial PWA function of
{Ni}nr −1

i=1 . Then, mNi
> mNj

, ∀i > j. Let m̄ be the memory
allocation to store the WCPE-MPC code (including GI solver
code), and the matrices required by the GI algorithm. Then, m̄
is independent from the particular selection ofNi , and therefore
mNi

= m̄ + mexp,Ni
.

VI. EXAMPLES

We test the algorithms developed in the previous sections on
four benchmark MPC problems taken from the demos library of
the MPC Toolbox for MATLAB: An inverted pendulum control
problem, consisting of controlling a single-input-multioutput
inverted pendulum on a cart, with a measured disturbance and
input constraints; the dc motor control problem, concerning the
control of a dc servomechanism under voltage and shaft torque
constraints [43]; the nonlinear demo control problem, consisting
of controlling a multi-input multioutput nonlinear plant with a
linear MPC formulation; and the multivariable AFTI-16 aircraft
control problem, characterized by an open-loop unstable pole
and constraints on both inputs and outputs [44]. We use here
exactly the same settings used in the toolbox, and the dimen-
sions of all the problems are listed in Table II. The dc motor

and the AFTI-16 problems are detailed in [43] and [44], re-
spectively. The problem of the inverted pendulum on a cart is
described by

xk+1 =

⎡

⎢⎢⎢⎣

1 0.0095 0.0005 0
0 0.9048 0.0934 0.0005
0 −0.0010 1.0019 0.0100
0 −0.1905 0.3832 1.0019

⎤

⎥⎥⎥⎦xk +

⎡

⎢⎢⎢⎣

0 0
0 0.0095

0.0001 0.0001
0.0200 0.0190

⎤

⎥⎥⎥⎦uk

yk =

[
1 0 0 0
0 0 1 0

]
xk , WΔu = I, Wy = I

[
1.2 0
0 1

]

− 200 ≤ uk ≤ 200
(50)

while the nonlinear demo by the linear MPC setting

xk+1 =

⎡

⎢⎢⎢⎢⎢⎢⎣

0.8187 0 0 0 0
0.1474 0.6550 −0.1637 0.0490 0.4878
0.0164 0.1637 0.9825 0.0034 0.0524

0 0 0 0.8013 −0.1801
0 0 0 0.1801 0.9813

⎤

⎥⎥⎥⎥⎥⎥⎦
xk+

+

⎡

⎢⎢⎢⎢⎢⎢⎣

0.1813 0 0
0.0164 0.1637 0.0034
0.0011 0.0175 0.0002

0 0 0.1801
0 0 0.0187

⎤

⎥⎥⎥⎥⎥⎥⎦
uk , yk =

[
1 0 0 0 0
0 1 2 0 0

]
xk ,

WΔu = 0.1I, Wy = I,

[
−3 −2 −2

]′ ≤ uk ≤
[
3 2 2

]′
.

(51)

In Sections VI-A and VI-B, we present the results of worst-
case certification of implicit and explicit MPC, and the certified
improvements in the worst case when applying WCPE-MPC
to the same problems. In both sections, we use the most vio-
lated rule for the constraint selection. Then, Section VI-C shows
how to select the best constraint selection rule, with the lowest
certified worst-case number of flops.

A. Worst-Case Certification Algorithm

To better clarify the operation of Algorithm 3, Fig. 2 shows
a sample two-dimensional, section of the polyhedra associated
with optimal tuples {T i}# T

i=1 for the inverted pendulum control
problem, where regions corresponding to nodes that share the
same number of iterations have the same color. As all output
constraints are treated as soft constraints, the QP problem is
feasible over the entire set of interest. Table III shows the re-
sults of the certification algorithm for the GI solver described
by Algorithm 1, in which the standard most violated rule (15a)
is used for constraint selection, in terms of the worst-case num-
ber of iterations Nmax, the memory allocation mimp in single
and double precision, and the worst-case number nmax

imp of flops.
The table also collects information on explicit MPC, namely
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Fig. 2. Results of the explicit certification algorithm applied to the in-
verted pendulum problem: Partition of the parameter set Θ based on the
number of iterations required by the GI QP solver (same color = same
number of QP iterations).

TABLE III
RESULTS FROM THE COMPLEXITY CERTIFICATION ALGORITHM OF GI

SOLVER (MAX VIOLATED SELECTION RULE (14A))

Inv. pend. DC motor Nonlin. demo AFTI-16

Explicit MPC
nr 87 67 214 417
nm a x

exp (±, ∗) 3295 1622 8938 16531
m exp 16| 32 bit (kb) 14.8| 21.6 8.0| 11.7 56.6| 93.4 88.2| 142.0

Implicit MPC
Nmax 10 9 9 16
nm a x

imp (±, ∗,÷)|sqrt 3809| 22 2082| 9.0 6109| 25 7807| 33
m imp 16| 32 bit (kb) 8.5| 9.2 8.2| 8.6 9.0| 10.3 8.6| 9.4
tca [s] 198 173 287 9366

the number of regions of the multiparametric solution nr , its
memory occupancy mexp in single and double precision, and
the worst-case number nmax

exp of flops, computed as in (41).
Memory allocation also comprises the solver code, that, in the
case of explicit MPC, is about 1 kB, while Algorithm 1 takes
approximately 7.7 kB. We count square roots separately from
other arithmetic operations, as the associated flops depend on
the computer architecture. Table III allows the designer to as-
sess for each problem whether explicit is preferable than implicit
MPC in terms of speed and memory occupancy. By referring
to Table III, it turns out that for the inverted pendulum and dc
motor problems explicit MPC would be the preferred choice
if the worst-case speed is the sole concern. For the inverted
pendulum problem, for example, if memory occupancy is also
taken into account one may trade off a 15.6% increase of worst-
case flops for a memory reduction of 57.4% by adopting im-
plicit MPC. For the nonlinear and AFTI-16 problems, implicit
MPC outperforms the explicit solution in terms of both mem-
ory and speed, for instance, a memory reduction of 93.4% and
a worst-case flops reduction of 52.8% in the AFTI-16 prob-
lem. Table III collects also the offline time tca taken by the
certification algorithm to execute on a 2.50 GHz Intel Core
i7-4710MQ CPU.

TABLE IV
CHARACTERIZATION OF EXPLICIT, IMPLICIT AND WCPE-MPC WITH AN

INCREASING CONTROL HORIZON FOR THE INVERTED PENDULUM PROBLEM
(DOUBLE PRECISION)

Explicit MPC Implicit MPC WCPE-MPC tca [s]

Nu nr nm a x
exp mm a x

exp Nr nm a x
imp m imp nm a x

N∗ mN∗

5 87 3295 21.6 10 3809| 22 9.2 3621 12.2 198
6 149 5645 36.4 12 6441| 33 9.8 5974 13.2 589
7 245 9311 59.3 14 10 054| 48 10.4 9267 13.9 3226
8 373 14 213 90.0 16 14 783| 64 11.1 13 650 14.1 6475
9 551 21 023 132.6 18 20 749| 80 11.9 19 180 15.5 14 252
10 763 29 188 183.5 20 28 095| 99 12.7 26 101 16.3 26 262

B. Results for WCPE-MPC

Table IV presents the results obtained with WCPE-MPC
applied to the inverted pendulum problem, together with the
performance of explicit and implicit MPC. To better understand
how the certification algorithm and the three different MPC
implementations scale up with the problem dimension, several
tests are reported by increasing the control horizon Nu . For what
concerns WCPE-MPC, the reported worst-case flops nmax

N∗ and
memory occupancy mN∗ refer to the partial explicit solution
selected according to the best tradeoff memory/speed. This is
highlighted in Fig. 3, which shows three out of the six exper-
iments collected by Table IV. The partial explicit PWA solu-
tions u∗exp,Nj

(θ), withNj ∈ {Ni}nr −1
i=1 , are obtained by running

Algorithm 5. From Result 1, the worst-case number of flops is
represented as a function of the increasing memory occupancy
mNi

(yellow line). The results are compared to the worst-case
computational cost of both explicit (dashed red line) and implicit
(dashed blue line) MPC, the latter derived from Algorithm 3.
The points of best tradeoff between memory worst-case number
of flops of WCPE-MPC are highlighted in the figure.

For Nu = 5 (top figure), implicit MPC and all the possi-
ble implementations of WCPE-MPC are computationally more
intensive than explicit MPC, which is therefore the preferred
solution if the available memory is enough (21.6 kB in the
case of double precision). However, when memory is taken
into account, WCPE-MPC implemented with the partial PWA
law corresponding to the point p1 guarantees a memory re-
duction of 56.3%, while worsening the worst-case number of
flops only by 9.9%; implicit MPC would instead increase flops
by 15.6%.

By increasing the control horizon to Nu = 8 (middle
figure), the computational cost of implicit MPC is still higher
than explicit MPC, even though the difference is smaller and im-
plicit MPC could be selected for reduced memory occupancy.
In this case, however, WCPE-MPC outperforms even explicit
MPC, providing 4.0% worst-case flops reduction and 84.3%
less memory usage.

Finally, when Nu = 10 (bottom figure), the results are re-
versed: implicit MPC is certified to be faster than explicit MPC
and therefore it is the preferred solution both in terms of memory
and speed. The use of WCPE-MPC further enhances the perfor-
mance of implicit MPC, by reducing its worst-case number of
flops by 7% and allocating 3.6 kB more.
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Fig. 3. Results of WCPE-MPC for the inverted pendulum problem with
Nu = 5 (top), Nu = 8 (middle) and Nu = 10 (bottom). Computational
complexity (yellow line) of WCPE-MPC is plotted as a function of the
memory occupancy required to store an increasing number of regions,
the complexity of implicit (blue line) and explicit (red line) MPC, and the
corresponding memory requirements stored (in brackets). The circled
points correspond to the best tradeoff between memory and worst-case
execution time.

The above examples clarify the versatility of WCPE-MPC,
adding extra flexibility than pure explicit or implicit to enhance
speed and/or reduce memory requirements.

C. Results for Different Selection Strategies

Fig. 4 shows the results relative to different selection strate-
gies for the violated constraint p, namely the most-violated (15a)
and the first-violated (15b) rules. The figure also shows that it
is possible to combine both the certification of WCPE-MPC
and the certification of the constraint selection strategy to best
choose among all the degrees of freedom available for evaluating
the MPC control law.

Fig. 4. Results for the certification of the most-violated and first-violated
constraint selection rules. From top to bottom: the inverted pendulum on
a cart and the nonlinear demo problems. The results are combined with
WCPE-MPC to allow selecting the best implementation among all the
design degrees of freedom available.

For the inverted pendulum example (top figure), implemented
with Nu = 5 as in Table III, the first-violated rule outperforms
not only the most-violated one, but allows WCPE-MPC to even
improve the results of explicit MPC, that would have been
the best choice from what observed in Section VI-B. Indeed,
WCPE-MPC implemented according to the partial explicit law
corresponding to “p4” in Fig. 4, guarantees a certified 8.2% re-
duction of worst-case flops and a certified 30.7% reduction of
memory with respect to explicit MPC.

On the other hand, for the nonlinear demo problem (bottom
plot in Fig. 4), the use of the first-violated rule brings extra
cost with respect to the most violated rule, and therefore the
best configuration would be the implementation of WCPE-MPC
with the partial explicit law selected according to “p5” in Fig. 3.
By considering the results in Table III, WCPE-MPC designed
in this way enhances implicit MPC speed by 15.6%, requiring
only 5.2 kB more memory.

VII. CONCLUSION

By analyzing a dual active-set solver for QP in a parametric
way, this paper has provided methods to exactly quantify the
worst-case number of flops and memory requirements of linear
MPC based on online QP of moderate size. Such a characteriza-
tion is a crucial requirement to certify that the MPC controller is
safely implementable in a real-time system. Partial enumeration
MPC schemes that combine explicit and implicit MPC can be
also certified for worst-case behavior, allowing one to select the
best tradeoff between memory occupancy and complexity.
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The key property exploited in the certification algorithm is the
PWA nature of the intermediate solution steps of the solver with
respect to the vector of parameters perturbing the QP prob-
lem, that allows splitting the operating range of parameters
recursively into convex polyhedral cells, each one labeled with
the number of iterations and flops needed to obtain the opti-
mizer. Current research is devoted to extending the ideas of
the paper to other QP solvers for embedded MPC that enjoy a
similar property.
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[41] M. Baotić, F. Borrelli, A. Bemporad, and M. Morari, “Efficient on-line
computation of constrained optimal control,” SIAM J. Control Optim.,
vol. 47, no. 5, pp. 2470–2489, 2008.

[42] M. Baotic, “Optimal control of piecewise affine systems—a multi-
parametric approach,” Ph.D. dissertation, ETH Zürich, Zurich, Switzer-
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litecnica delle Marche, Ancona, Italy, in 2012 and
2017, respectively.

In 2014–2015, he was a Guest Ph.D. Scholar
at IMT Lucca, Italy, and in 2016, he was a Visiting
Ph.D. Scholar at the University of Michigan, Ann
Arbor, MI, USA. In 2013, he held a Research As-
sistant Position at the Information Department,

Universit a Politecnica delle Marche, and in 2016 he was a Research
Assistant at the Automotive Research Center, University of Michigan.
Since 2016, he has been an Advanced Control Specialist at ODYS Srl,
Milan, Italy. He has publihed more than 30 papers in international jour-
nals, books, and refereed conference proceedings. His research inter-
ests include model predictive control, embedded optimization, nonlinear
control, system identification and their application to problems in the au-
tomotive, and power electronics domains.

Alberto Bemporad (F’10) received the Master’s
degree in electrical engineering and the Ph.D.
degree in control engineering from the University
of Florence, Florence, Italy, in 1993 and 1997,
respectively.

In 1996/1997, he was with the Center for
Robotics and Automation, Department of Sys-
tems Science & Mathematics, Washington Uni-
versity, St. Louis, MO, USA. In 1997–1999, he
held a Postdoctoral Position at the Automatic
Control Laboratory, ETH Zurich, Zurich, Switzer-

land, where he collaborated as a Senior Researcher until 2002. In 1999–
2009, he was with the Department of Information Engineering, University
of Siena, Siena, Italy, where he became an Associate Professor in 2005.
In 2010–2011, he was with the Department of Mechanical and Structural
Engineering, University of Trento, Trento, Italy. Since 2011, he has been
a Full Professor at the IMT School for Advanced Studies Lucca, Lucca,
Italy, where he served as the Director of the institute in 2012–2015. He
spent visiting periods at the University of Michigan and Zhejiang Uni-
versity. In 2011, he cofounded ODYS S.r.l., a consulting and software
development company specialized in advanced controls and embedded
optimization algorithms. He has published more than 300 papers in the
areas of model predictive control, automotive control, hybrid systems,
multiparametric optimization, computational geometry, robotics, and fi-
nance, and co-inventor of eight patents. He is author or coauthor of
various MATLAB toolboxes for model predictive control design, including
the model predictive control toolbox and the hybrid toolbox.

Dr. Bemporad was an Associate Editor of the IEEE TRANSACTIONS
ON AUTOMATIC CONTROL during 2001–2004 and the Chair of the Techni-
cal Committee on Hybrid Systems of the IEEE Control Systems Society
in 2002–2010. He received the IFAC High-Impact Paper Award for the
2011–2014 triennial.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


