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Nilay Saraf and Alberto Bemporad, Fellow, IEEE

Abstract— In this paper, a numerically robust solver for least-
squares problems with bounded variables (BVLS) is presented
for applications including, but not limited to, model predictive
control (MPC). The proposed BVLS algorithm solves the prob-
lem efficiently by employing a recursive QR factorization method
based on Gram-Schmidt orthogonalization. A reorthogonalization
procedure that iteratively refines the QR factors provides numeri-
cal robustness for the described primal active-set method, which
solves a system of linear equations in each of its iteration via
recursive updates. The performance of the proposed BVLS solver,
that is implemented in C without external software libraries, is
compared in terms of computational efficiency against state-of-
the-art quadratic programming solvers for small to medium-sized
random BVLS problems and a typical example of embedded linear
MPC application. The numerical tests demonstrate that the solver
performs very well even when solving ill-conditioned problems in
single precision floating-point arithmetic.

Index Terms— Active-set methods, bounded-variable
least squares, model predictive control, quadratic program-
ming, recursive QR factorization.

I. INTRODUCTION

Linear least-squares (LS) problems with simple bounds on vari-
ables arise in several applications of considerable importance in many
areas of engineering and applied science [1]. Several algorithms
exist that efficiently solve bounded-variable least-squares (BVLS) or
quadratic programming (QP) problems including the ones encoun-
tered in model predictive control (MPC) and are based on first-
order methods such as Nesterov’s fast gradient-projection method [2],
the accelerated dual gradient-projection method (GPAD) [3], the
alternating direction method of multipliers (ADMM) [4], [5]. Because
of the penalty functions often used in MPC for practical feasibility
guarantee [6]–[9] through constraint relaxations, however, first-order
methods require suitable preconditioners due to poor scaling of the
problem. This makes active-set methods an attractive alternative
for faster solution of small to medium-sized optimization problems
arising in embedded MPC, due to their scarce sensitivity to problem
scaling. For an overview of state-of-the-art methods in solving QP
problems for MPC the reader is referred to the recent papers [10],
[11].

In primal active-set methods such as BVLS [1] and nonnegative
least-squares (NNLS) [12], at each iteration a change in the working
active set corresponds to adding or removing a column from the
matrix used to solve an unconstrained linear least-squares (LS)
subproblem. By recursively updating the matrix factors computations
are significantly reduced, although round-off error may accumulate
for example, due to imperfect orthogonalization when using QR
factorization. The main contribution of this paper includes methods
which aim at overcoming such limitations without compromising
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numerical robustness through an effective application of stable QR
update routines [13] for BVLS.
This paper is mainly motivated by the application of BVLS in fast
linear and nonlinear MPC [6], [14], in order to solve optimization
problems of the form

min
l≤x≤u

1

2
‖f(x)‖22, s.t. h(x) = 0, (1)

where x is the vector of decision variables with bounds l and u,
and h(x) = 0 represents constraints arising from the prediction
of system dynamics and general inequality constraints transformed
to equalities using non-negative slack variables. The functions f
and h are assumed to be first-order differentiable. Problem (1) can
be efficiently solved using BVLS through a single iteration of the
quadratic penalty method [15], [14, Algorithm 1] by transforming (1)
to the following simple form:

min
l≤x≤u

1

2
‖f(x)‖22 +

ρ

2
‖h(x)‖22,

where the quadratic penalty parameter ρ > 0 is large. The resulting
LS subproblems may have a high condition number and require
QR update routines that are robust against numerical errors due to
potential poor conditioning. The implementation of stable QR update
methods described here for BVLS is straightforwardly applicable to
the special case of NNLS, an algorithm which can also be applied
to solve general QPs for embedded MPC as shown in [16].

The paper is organized as follows. Section II briefly describes
the baseline BVLS algorithm of [1] and its scope for improvement.
The proposed algorithm which employs robust and recursive QR
factorization is described in Section III. In Section IV, a new
approach to recursively update the right hand side (RHS) of the
triangular system of equations obtained when solving BVLS via
the primal active-set method is described while summarizing the
stable QR update procedures. Comparison results with competitive
solution methods and the performance of the proposed solver in single
precision are presented in Section V. The article is concluded in
Section VI.

Notation: We denote the set of real vectors of dimension m
as Rm; a real matrix with m rows and n columns as A ∈ Rm×n,
its transpose as A>, its inverse as A−1 and its jth column as Aj .
For a vector a ∈ Rm, its p-norm is ‖a‖p, its jth element is aj ,
and ‖a‖22 = a>a. A vector or matrix of appropriate dimension(s)
with all its elements zero is represented by 0. An identity matrix of
appropriate dimensions is denoted by I . An empty matrix is denoted
by [ ]. If F denotes a set of indices, then its cardinality is denoted
by |F| and its jth element as Fj . AF is a matrix formed from the
columns of A corresponding to the indices in the index set F and
aF forms a vector (or set) with elements of the vector (or set) a as
indexed in F .

II. BASELINE BVLS ALGORITHM

This section recalls the algorithm based on the primal active-set
method of [15, Algorithm 16.3] for solving the following bounded
variable least-squares (BVLS) problem

J(x) = min
l≤x≤u

1

2
‖Ax− b‖22, (2)
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where A ∈ Rm×n,m ≥ n, b ∈ Rm, and l, u ∈ Rn represent
consistent lower and upper bounds respectively on the vector of
decision variables x ∈ Rn. To keep the algorithm description simple,
we assume that x has finite bounds, although the algorithm can be
easily extended to handle components that have no lower and/or upper
bound.

Assumption 1: A is full column rank and l ≤ u.
For example, Assumption 1 is satisfied when (2) is obtained from an
MPC problem as shown in [6].
Stark and Parker’s version of the BVLS algorithm [1] has two main
loops, as it is typical of primal active-set methods. With reference
to the steps of the algorithm described in [1], the inner loop (Steps
6-11) runs until primal feasibility (assessed in Step 7) is achieved in
finite iterations and the outer loop (Steps 2-5) runs until the remaining
convergence criteria assessed in Step 3 are satisfied. The Lagrange
multipliers are simply derived from the gradient vector w and the
index (t?) corresponding to the most negative one is introduced in
the index set of free variables (F) in order to initialize the inner loop.
In [1], the unconstrained LS problems are solved by computing the
QR factorization with column pivoting from scratch at each iteration
in order to enforce numerical stability, at the price of computational
burden.

III. ROBUST BVLS SOLVER BASED ON QR UPDATES

In this section we propose a variant of [1] that aims at minimizing
computations while maintaining numerical stability. The approach
is summarized in Algorithm 1 and the reader is referred to [1] for
an easy understanding of the main steps. The idea is to employ a
different approach for QR factorization and recursive updates that cost
only a fraction of the computations required to solve an LS problem
from scratch. At initialization, all variables are placed in the free set
(Step 1) unless an initial guess is provided. Next, a thin QR factor-
ization (cf. Theorem 1 in Section IV) is computed in Step 2 (unless
provided) by using the Gram-Schmidt orthogonalization procedure
gs, before subsequent updates in the inner (Steps 14-35) and outer
(Steps 3-13) loops through the stable update procedures qrinsert
(cf. Lemma 1 in Section IV) and qrdelete (cf. Lemma 2 in
Section IV). The unconstrained least-squares problem solved at each
iteration is

min
z

1

2
‖AFz − p‖22, (3)

where p, the RHS of the linear system, can be computed by the
relation in Step 3 of Algorithm 1. Using thin QR factorization, AF =
QR, solving (3) reduces to solving the linear triangular system

Rz = Q>p = d (4)

in Step 14 by the back-substitution procedure solve triu. Un-
like [1], or approaches in which the RHS of the triangular system
(d) to solve the least-squares problem is explicitly computed through
O(mn) operations [17], our approach recursively updates vector d
(cf. Propositions 1 and 2 in Section IV) and avoids computing the
matrix-vector product Q>p in (4), at each iteration of the algorithm.
In order to avoid introducing orthogonalization errors due to the
product with Q> in (4), vector d is initialized (Step 43) instead from
the thin QR factors of the augmented system as described in [18, Ch.
19].

Remark 1: In the case of embedded MPC of linear time-invariant
systems [6], the QR factors of A can be precomputed offline for cold-
start. Moreover, during successive calls to the solver, as the matrix A
does not change, the previously computed solution and its associated
QR factors can be used for warmstarting, in order to significantly
reduce the computational burden. Note that if the bounds vary, the
components of the initial guess must be modified accordingly in order

to have its active sets unchanged from the previous solution. As an
additional precaution against error accumulation due to such reuse of
the QR factors, they can be reset by not providing them to the solver
at every N th call, where N can be tuned depending on the problem
size, desired accuracy, and computing precision.
The convergence proof of Algorithm 1 follows the ones of [15,
Algorithm 16.3] and BVLS in [1]. However, due to rounding errors
in finite-precision computations (especially when working in single-
precision floating-point arithmetic), the inner loop (Steps 14-35) may
not terminate when the computed α (cf. Step 22) results in no
component of F entering an active set of bounds. Numerical error in
the gradient (Step 4) may cause failure in satisfying dual feasibility,
and cycling of the outer loop. Moreover, when the columns of A are
nearly linearly dependent, the algorithm may cycle [1]. As a possible
consequence:

1) a component t? inserted in an active set of bounds is introduced
in the free set in the immediate next step;

2) as a result, after the least-squares step, another component t̂
gets inserted in an active set of bounds;

3) in the next iteration, t̂ immediately gets inserted in the free set
and causes t? to be inserted back in the active set, causing a
cycle.

We summarize below the measures included in the proposed algo-
rithm in order to avoid the above described cycles, extending the ideas
described in [1], [12]. Convergence of the inner loop is guaranteed
by including a feasibility tolerance γ (typically between machine
precision and 10−6) and by moving at least the index κ (Step 23)
in the respective active set at each iteration, such that κ accounts
for the value of α as done in [12]. As suggested in [1], unnecessary
failure in satisfying dual feasiblity conditions is detected by Step 15
which signals if the component most recently introduced in the free
set would immediately enter an active set of bounds. Steps 16-18
set the Lagrange multiplier of the corresponding component to zero
and the algorithm steps back to termination check (Step 5). Cycling
between a pair of free components is detected by storing (Step 11)
and comparing the previous three values of the index t? introduced
in the free set as shown in Step 7 of Algorithm 1. The Lagrange
multipliers corresponding to the cycling components t? and t̂ are set
to zero in Step 9 and the algorithm then steps back to termination
check. If the termination check yet fails and no other change in F
results in termination, we infer that the algorithm will not converge
any further. So, the outer loop terminates having the test in Step 7
satisfied for a second instance (Step 9) due to the cycling of a pair of
components. Hence, the algorithm itself terminates. In any case, in
all the practical applications in which the solver is used on line, such
as in embedded MPC, a bound on the maximum number of iterations
is enforced to guarantee termination, where this bound depends on
problem size and real-time requirements.

IV. RECURSIVE THIN QR FACTORIZATION

In this section, we recall the stable QR update procedures of [13]
which are adopted in Algorithm 1, in the context of active-set
changes. Based on that, we derive the recursive relations which update
the RHS of (4).

Theorem 1 (thin QR factorization): Let A ∈ Rm×n be a full rank
matrix with m > n. Let AF ∈ Rm×|F| be formed from a subset of
the columns of A, indexed by the set of indices F ⊆ {1, 2, · · · , n},
|F| ≤ n. Then there exists a matrix Q ∈ Rm×|F| with orthonormal
columns, and a full rank upper-triangular matrix R ∈ R|F|×|F| such
that AF = QR.

Proof: We prove the theorem by induction on the cardinality
|F| of F . We first prove the theorem for the trivial case of |F| = 1,
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Algorithm 1 Robust BVLS based on recursive QR updates

Inputs: Matrices A, b, l, u; feasibility tolerance γ > 0.

1: x← (l + u)/2; F ← {1, · · · , n}; U ,L ← ∅; ι← 0; t′ ← −1;
t′′ ← −2; t′′′ ← −3; t◦ ← 0; p← b−A(L∪U)x(L∪U);

2: {Q,R, d} ← gs(A, p,F); Go to Step 14;
3: p← b−A(L∪U)x(L∪U);
4: w ← p−AFxF ; w(L∪U) ← A>(L∪U)w;
5: If (L∪ U = ∅) or (max(wL) ≤ γ and min(wU ) ≥ −γ), go to

Step 36;
6: t? ← min(arg maxt∈L∪U stwt), where st = 1 if t ∈ L and
st = −1 if t ∈ U ;

7: if t′′′ = t′ and t′′ = t?, then
8: if t◦ = 1, go to Step 36 end if;
9: wt? , wt′ ← 0; t◦ ← 1; go to Step 5

10: end if
11: t′′′ ← t′′; t′′ ← t′; t′ ← t?; if t? ∈ L, ι← −1 else ι← 1;
12: F ← F ∪ {t?}; if t? ∈ L, L ← L \ {t?} else U ← U \ {t?};
13: {Q,R, d} ← qrinsert(Q,R, d, p,At? , xt? ,F , t?);
14: If F 6= ∅, then z ←solve triu(R, d);
15: if (ι = −1 and zj < lt?) or (ι = 1 and zj > ut?), where
Fj = t?, then

16: {Q,R, d} ← qrdelete(Q,R, d, xt? ,F , t?);
17: if ι = −1, L ← L ∪ {t?}; else U ← U ∪ {t?}; end if
18: F ← F \ {t?}; wt? ← 0; go to Step 5;
19: end if
20: If (lFj − γ) ≤ zj ≤ (uFj + γ) ∀j ∈ {1, · · · , |F|} or F = ∅,

then xF ← z and go to Step 3;
21: ι← 0; I ← {Fj |lFj > zj or zj > uFj , j ∈ {1, ..., |F|}};

22: α← min

{
1, min
j∈{1,··· ,|F|},Fj∈I

(∣∣∣∣ lFj−xFjzj−xFj

∣∣∣∣ , ∣∣∣∣uFj−xFjzj−xFj

∣∣∣∣)
}

;

23: κ← argj α; k ← |F|;
24: for ∀j ∈ {1, · · · , k} do xFj ← xFj + α(zj − xFj );
25: if xFj ≤ lFj + γ or (j = κ and zκ < lFκ ) then
26: {Q,R, d} ← qrdelete(Q,R, d, xFj ,F ,Fj);
27: L ← L ∪ Fj ; F ← F \ Fj ;
28: else
29: if xFj ≥ uFj − γ or (j = κ and zκ > uFκ ) then
30: {Q,R, d} ← qrdelete(Q,R, d, xFj ,F ,Fj);
31: U ← U ∪ Fj ; F ← F \ Fj ;
32: end if
33: end if
34: end for;
35: Go to Step 14;
36: end.

37: procedure gs(A, p,F)
38: Q← [ ]; R← [ ];
39: for ∀j ∈ F do
40: {q, r, ρ} ← orthogonalize(Aj , Q,R); (Algorithm 2)

41: Q←
[
Q q

]
; R←

[
R r
0 ρ

]
;

42: end for
43: {∼, d,∼} ← orthogonalize(p,Q,R);
44: end procedure

Outputs: Primal solution x of (2), Active set of lower and upper
bounds L and U respectively, set F of free variables.

where we can write AF1 = Q(1)R(1), Q(1) = AF1/‖AF1‖2 and
R(1) = ‖AF1‖2. Assume that the theorem holds ∀F of cardinality
|F| = k − 1. For a generic set F of k indices, if F ′ denotes its
first k − 1 indices, we can write AF =

[
AF ′ AFk

]
. Considering

that |F ′| = k − 1, using the induction hypothesis we can state that
∃ Q(k−1) orthonormal and R(k−1) full rank upper triangular, such
that AF ′ = Q(k−1)R(k−1). Since A is full rank (Assumption 1),
via Gram-Schmidt orthogonalization [13] we can find an orthonormal
vector q ∈ Rm (q>Q(k−1) = 0), a vector r ∈ R(k−1), and a scalar
ρ 6= 0 such that AFk = Q(k−1)r+ ρq. Thus, we can rewrite AF =[
AF ′ AFk

]
=
[
Q(k−1)R(k−1) Q(k−1)r + qρ

]
= Q(k)R(k),

where Q(k) =
[
Q(k) q

]
and R(k) =

[
R(k−1) r

0 ρ

]
. Matrix Q(k)

has orthonormal columns and R(k) is full rank upper triangular by
inspection, which proves the theorem for |F| = k.

Remark 2: In [13], in order to enforce precise orthogonality the
Gram-Schmidt procedure on any vector is repeated in situations
when numerical cancellation is detected and is termed as reorthog-
onalization. If the ratio ‖AFk − Q(k−1)r‖2/‖AFk‖2 is small or
if ρ is extremely small, loss of orthogonality is likely and the
same ratio is used to determine whether reorthogonalization must
be performed [13]. This argument yields Algorithm 2 that iteratively
“refines” the computed vectors by reducing orthogonality loss. The
parameter η in Algorithm 2 sets an upper bound on the loss
of orthogonality as shown by the detailed error analysis in [13].
Increasing η increases the chance of reorthogonalization and tightens
the tolerance on orthogonality closer to the machine precision. We
use η = 1/

√
2 and kmax = 4 in Algorithm 2 based on the analysis

in [13]. For double precision computations, reorthogonalizations may
not be performed at all for small to medium sized problems unless
they are ill-conditioned.

Based on Theorem 1, Lemma 1 and 2 respectively delineate the
recursive relations that update the thin QR factorization when an
index is either inserted or deleted arbitrarily from the set F .

Lemma 1: Given AF = QR, if AF̄ = Q̄R̄ denotes the thin
QR factorization of AF̄ for F̄ := F ∪ {t?} and |F̄ | = k + 1
with k < n, then there exists an orthogonal matrix G, two vec-
tors q, r, and a scalar ρ, such that Q̄ =

[
Q q

]
G> and R̄ =

G

[
RF ′ r RF ′′

0 ρ 0

]
, where F ′ :=

{
j|Fj < t?, j ∈ {1, · · · , k}

}
and F ′′ :=

{
j|Fj > t?, j ∈ {1, · · · , k}

}
.

Proof: With AF ′ ∈ Rm×|F
′|, AF ′′ ∈ Rm×(k−|F ′|), and At?

as the inserted column, considering R =
[
RF ′ RF ′′

]
, we have the

following relations

AF̄ =
[
AFF′ At? AFF′′

]
=
[
Q At?

] [RF ′ 0 RF ′′

0 1 0

]
.

By orthogonalizing At? via Algorithm 2, i.e., by the Gram-Schmidt
procedure [13], we obtain

At? = Qr + ρq, and hence (5)

Algorithm 2 Orthogonalization procedure [13]

1: r0 ← 0, v0 ← v, 0 << η < 1;
2: for k = 1, 2, · · · , until ‖vk‖2 > η‖vk−1‖2 or k = kmax do:
3: sk ← Q>vk−1;
4: rk ← rk−1 + sk;
5: vk ← vk−1 −Qsk;
6: end for
7: r ← rk; ρ← ‖vk‖2; q ← vk/ρ;
8: end.
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AF̄ =
[
Q q

]︸ ︷︷ ︸
Q̃

[
RF ′ r RF ′′

0 ρ 0

]
︸ ︷︷ ︸

R̃

, (6)

where q, r and ρ are computed such that Q̃ has orthonormal columns
and R̃ has subdiagonal elements in its (|F ′| + 1)th column. These
subdiagonal elements can be zeroed-out by successive application of
Givens matrices [17], which converts R̃ to the upper triangular matrix

R̄ = GR̃, (7)

where G ∈ R|F̄|×|F̄| denotes the product of the Givens matrices,
which are orthogonal by definition. Hence, G>G = I , and from (6)-
(7), AF̄ = Q̃G>GR̃ = Q̃G>R̄, which implies that Q̄ = Q̃G>.

Lemma 2: Given AF = QR, if AF̂ = Q̂R̂ denotes the thin
QR factorization of AF̂ for F̂ := F \ {t?}, then there exists a
matrix H such that Q̂ = QH> and R̂ = HRF̃ , where F̃ :={
j|Fj 6= t?, j ∈ {1, · · · , |F|}

}
.

Proof: Given AF = QR, with F ′ and F ′′ as defined in
Lemma 1, we have

AF =
[
AFF′ At? AFF′′

]
= Q

[
RF ′ r̃ RF ′′

]
, (8)

and AF̂ =
[
AFF′ AFF′′

]
= Q

[
RF ′ RF ′′

]
= QRF̃ , where

RF̃ is upper Hessenberg [17]. Zeroing the off-diagonal elements of

RF̃ using Givens rotations, we obtain G′RF̃ =

[
R̂
0

]
where G′ ∈

R|F|×|F| denotes the product of the Givens matrices. Hence, R̂ =

EG′RF̃ = HRF̃ , where E =
[
I 0

]> and H = EG′. Since G′

is orthogonal, G′>E>EG′ = I , which implies that H>H = I . As
AF = Q̂R̂ = QRF̃ = QH>HRF̃ , we obtain Q̂ = QH>.

Remark 3: Updating the thin QR factorization when inserting or
deleting a column as above requires 4lm(k+1)+6|F ′′|(m+|F ′′|/2)
and 6|F ′′|(m + |F ′′|/2) flops (floating-point operations excluding
indexing and looping overhead) respectively, where l is the number
of orthogonalizations performed. The update routines are numerically
stable as precise orthogonality is retained during the recursions.

Proposition 1: Consider d = Q>p as defined in (4) where AF =
QR, and the updated factorization AF̄ = Q̄R̄ for F̄ = F ∪ t?
as in Lemma 1. The update d̄ of d can be obtained recursively as

d̄ = Gd̃, where d̃ =

[
d+ rxt?

q>p+ ρxt?

]
and xt? denotes the t?th element

of solution vector x at the current iteration of Algorithm 1 when
solving (2).

Proof: From (4), we have

d = Q>p, and (9)

d̄ = Q̄>p̄, (10)

where p̄ denotes the vector p of (4) after an index t? is inserted in
the free set F . Then by its definition,

p̄ = p+At?xt? . (11)

Using Lemma 1 and substituting (11) in (10) gives

d̄ = G
[
Q q

]>
(p+At?xt?). (12)

On substituting (5) in (12), we get

d̄ = G
[
Q q

]>
(p+Qrxt? + ρqxt?)

= G

[
Q>p+Q>Qrxt? + ρQ>qxt?

q>p+ q>Qrxt? + ρq>qxt?

]
. (13)

Since Q has orthonormal columns and q is orthogonal to the span of
Q, we have Q>Q = I , q>q = 1, Q>q = 0 and q>Q = 0. Hence,
by substituting these relations and (9), (13) simplifies as

d̄ = G

[
d+ rxt?

q>p+ ρxt?

]
. (14)

Proposition 1 shows through (14) that computing d̃ from d only needs
2(|F| + m + 1) flops and d̄ is obtained by using 6|F ′′| flops for
applying the Givens rotations [17] on d̃. Updating d to d̄ without the
recursive relation (14) would cost 2m(|F| + 2) flops instead, due
to the computations in (11) and (10), at each iteration of the outer
loop of Algorithm 1. Proposition 2 establishes the recursive relation
to update d for the case in which an index is removed from the free
set F .

Proposition 2: Consider d = Q>p as defined in (4) where AF =
QR, and the updated factorization AF̂ = Q̂R̂ for F̂ = F \ t? as
in Lemma 2, then the update d̂ of d can be obtained recursively as
d̂ = H(d− r̃xt?).

Proof: Let p̂ denote the vector p of (4) after an index t? is
removed from F , then

p̂ = p−At?xt? , (15)

where from (8) the deleted column

At? = Qr̃. (16)

From (4), (15), (16), and Lemma 2,

d̂ = Q̂>p̂ = HQ>(p−Qr̃xt?).

On substituting Q>Q = I and (9) in the above equation, we get

d̂ = H(d− r̃xt?). (17)

Updating d to d̂ recursively via (17) needs only 2|F|+ 6(|F ′′| − 1)
flops instead of 2m|F| flops for computing Q̂>p̂ and (15), in each
iteration of the inner loop of Algorithm 1.

Remark 4: Even though the vector d is initialized with machine
precision accuracy, as a precaution to avoid the error accumulated
over potentially several recursive updates in large sized problems it is
recommended to reinitialize d via Step 43 in Algorithm 1 after every
N iterations, with N chosen according to the available computing
precision.

V. NUMERICAL RESULTS

A. Random BVLS problems
This section describes the results obtained in MATLAB1 by testing

the proposed solver (Algorithm 1) and various others on random
BVLS problems. In order to test for numerical robustness and per-
formance while dealing with ill-conditioned or nearly rank-deficient
problems, the condition number of the A matrix is set to 108 (≡ 1016

for the Hessian of the equivalent QP min
l≤x≤u

1
2x
>A>Ax − b>Ax).

The following solvers are considered for the numerical tests: 1)
BVLS SP - Stark and Parker’s BVLS algorithm [1] implemented
in embedded MATLAB; 2) RBVLS - Algorithm 1; 3) BVLS2 - a
variant of Algorithm 1 in which the number of orthogonalizations
in QR update procedures is restricted to one for faster execution;

1All the numerical tests (details available through the link
http://dysco.imtlucca.it/nilay/bvlsgen.pdf) have been run on a Macbook
Pro 2.6 GHz Intel Core i5 with 8GB RAM. All matrix operations have been
computed through plain C code interfaced to MATLAB. The execution time
of each solver is obtained from its internally measured time in order to avoid
counting the time for interfacing it with MATLAB.
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Fig. 1: Solver performance comparison for feasible BVLS test problems1 with condition number of matrix A = 108, 180 random instances
for each A ∈ R1.5n×n, and all possible non-zero cardinality values of the optimal active set. In Figures 1a-1b, the optimal cost J of (2)
obtained using each solver is compared with the benchmark value Jref obtained using Gurobi.

4) QPoases C - box-constrained variant of the open source QP
solver QPOASES version 3.2.0 [19] with C backend and main
setting reliable, where we also enable settings that avoid additional
computational overhead while solving nearly rank-deficient problems;
5) OSQP - solver version 0.3.0 of the QP method [5] based on
ADMM using sparse matrices and 5000 maximum iterations to limit
its maximum execution time; 6) Gurobi - the dual simplex algorithm
of Gurobi 7.5.2 [20] was chosen for the tests as it performed
best amongst its other available algorithms; 7) fastGP - the fast
gradient projection algorithm [2] with restart in every 50 off 3000
maximum iterations and termination criterion based on [21, Equation
6.18]; 8) ODYSQP - ODYS QP solver2 [22]; 9) CPLEX - primal
simplex algorithm (method cplexlsqlin) of CPLEX 12.6.3 [23].
For all solvers, the feasibility or optimality tolerance was set to
10−9 with all computations in double precision (machine precision
ε ≈ 10−16), except for the single precision (ε ≈ 10−7) version
RBVLS single of Algorithm 1, where the same tolerance was set
to 10−6. The tolerances for all solvers are relaxed to 10−6 for the
MPC example in Section V-B. For first-order methods OSQP and
fastGP, the tolerances are internally relaxed based on problem-specific
termination criteria [5], [21]. In Figures 1a-1b, the cost function
values compare the quality of the solution instead of the solution
vector obtained from different solvers because in the presence of
tolerances and poor-conditioning, the solution values obtained may
differ while numerically yielding the same value of the cost function.
Figure 1 demonstrates that the proposed BVLS solver is suitable for
applications like embedded MPC where numerical robustness and

2ODYS QP solver version “General purpose” 2017 has been used for all
tests reported in this paper.

computational efficiency are necessary requirements.

B. Application: embedded linear model predictive control

We now consider BVLS problems that arise when solving the MPC
problem for control of an AFTI-F16 aircraft based on a linear time-
invariant (LTI) model [6]. These problems have a high condition num-
ber, a property typically encountered in MPC problems involving the
use of penalty functions and open-loop unstable prediction models,
which hinders the convergence of first-order methods such as fastGP.
In order to count only the time required for online computations, for
all the QP solvers, the time required for computing the Hessian matrix
and its factors is not accounted, as it can be done offline once and
stored. For the same reason, the QPoases C and ODYSQP solvers
are provided with pre-computed dense matrix factorizations of the
Hessian, and in case of OSQP only solve time was measured. Since
the considered MPC optimization problem is numerically sparse, the
solvers OSQP, Gurobi, CPLEX and QPoases C are provided with
sparse matrices for a faster performance. The proposed algorithm is
warm-started with the previous solution (cf. Remark 1 in Section III)
and all other solvers are warm-started from the shifted previous
solution from the second instance onward, except for ODYSQP
which is always cold-started. Figure 2a shows that the proposed
algorithm is competitive in computational efficiency as compared to
the benchmark solvers, whereas Figure 2b shows that it considerably
exploits warmstarts. Although in embedded MPC applications the
worst-case CPU time is the most relevant measure, as it is used to
guarantee meeting hard real-time constraints, the average time may
still be of interest when the same CPU is shared with other tasks.

Solvers exploiting the block-sparse structure of MPC problems
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Fig. 2: Solver performance comparison for BVLS formulation based tracking-MPC simulation of AFTI-F16 aircraft. The number of decision
variables and box constraints each = 4Np resulting in matrix A ∈ R6Np×4Np . For each Np, the simulation is run for 100 time instances.

have their computational complexity scale linearly with Np [24], [25],
and over a certain value of Np they may outperform the dense solvers,
for which the computations scale quadratically as seen in Figure 2. A
subject of current research is devoted to adapt the proposed algorithm
for embedded MPC applications with a reduced requirement for
memory and computations by exploiting the specific structure of the
resulting BVLS problems.

VI. CONCLUSION

In this paper we have proposed a new method for solving BVLS
problems. The algorithm is numerically robust, is computationally
efficient, and is competitive with respect to state-of-the-art algorithms.
The numerical results demonstrate its competitiveness against fast
solution methods in solving general small to medium sized BVLS
problems such as those arising in embedded MPC, that may also be
nearly rank deficient. Numerical stability has been observed even
in single precision floating-point arithmetic due to the proposed
stable QR update procedures. Several steps of the solution method,
such as the classical Gram-Schmidt orthogonalization, involve vector
operations that provide scope for much faster implementations on
parallel computing platforms.
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