
1688 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 51, NO. 10, OCTOBER 2006

singularity problem is effectively solved by using the integral Lyapunov
function in avoiding the nonlinear parametrization from entering into
the adaptive control and repetitive control. Asymptotic convergence
of the tracking error is established in the presence of periodic uncer-
tainty, while global stability of the closed-loop system is ensured. Error
bounds have been provided to characterize the control performance.

APPENDIX

Note that for a; b 2 Rm and � 2 Rm�m, if aibi � 0, i =
1; 2; . . . ;m, and � is diagonal and positive definite, then aT�b � 0,
where ai and bi are the components of a and b, respectively. Thus, we
need only to prove for each component

(
 + 1)ai � 
bi + sat�b (bi) bi � sat�b (bi) � 0 (27)

where 
 � 0, and ai satisfies that �b1i � ai � �b2i . There are three
possible cases which we should consider in order to prove (27). Case
�b1i � bi � �b2i : It follows that (
 + 1)ai � (
bi + sat�b (bi)) =
(
 + 1)(ai � bi) and bi � sat�b (bi) = 0. Hence, (27) is true for this
case. Case bi < �b1i : It follows that 
bi + sat�b (bi)) = 
bi + �b1i <

(
 + 1)�b1i � (
 + 1)ai. Since bi � sat�b (bi) = bi � �b1i < 0, then
(
bi +�b1i )(bi� �b1i ) > (
 + 1)ai(bi � �b1i ). Hence, (27) also holds for
this case. Case bi > �b2i : It follows that 
bi + sat�b (bi)) = 
bi +�b2i >
(
 + 1)�b2i � (
 + 1)ai. Since bi � sat�b (bi) = bi � �b2i > 0, then
(
bi + �b2i )(bi � �b2i ) > (
 + 1)ai(bi � �b2i ). In summary, (27) is true
for all three cases.
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A Decomposition Algorithm for Feedback Min–Max
Model Predictive Control

D. Muñoz de la Peña, T. Alamo, A. Bemporad, and E. F. Camacho

Abstract—An algorithm for solving feedback min–max model predictive
control for discrete-time uncertain linear systems with constraints is pre-
sented in this note. The algorithm is based on applying recursively a de-
composition technique to solve the min–max problem via a sequence of low
complexity linear programs. It is proved that the algorithm converges to
the optimal solution in finite time. Simulation results are provided to com-
pare the proposed algorithm with other approaches.

Index Terms—Optimization algorithms, predictive control for linear sys-
tems, uncertain systems.
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I. INTRODUCTION

Most control design methods need a model of the process to be con-
trolled. These models are always subject to uncertainties and only de-
scribe the dynamics of the process in an approximate way. Model pre-
dictive control (MPC) is one of the control strategies that is able to
deal with uncertainty in an explicit way. One approach used to design
robust control laws is to minimize the cost function for the worst pos-
sible uncertainty realization. This min–max approach was introduced
by Witsenhausen [19]. Early model predictive control approaches can
be found in [2], [8]. These works deal with open-loop predictions and
optimize a single sequence of control inputs for the worst possible tra-
jectory of the uncertain variables. Further results address the feedback
min–max problem, where the optimization is done over a sequence of
control laws in order to take into account that more information about
uncertain variables will be available in the future through feedback
(see [14], [18] and the references therein). In both formulations, the re-
sulting min–max optimization problems can be computationally very
demanding. Different strategies have been proposed in the literature to
overcome this problem; see, for example, [1], [13], and [15].

This note deals with feedback min–max MPC-based on a linear per-
formance index, namely an index that leads to the optimization of a
linear function. In [3] multiparametric programming and dynamic pro-
gramming is used to compute an explicit solution. The method pro-
posed in [9] treats the same problem class, but uses a dual instead of
a primal approach to perform the dynamic programming recursion. In
[10], it is shown that the min–max problem can be cast as a large-scale
linear program. However, both methods can only be applied to prob-
lems with very small horizon, as the complexity of the explicit solutions
and the size of the LP problems grow exponentially and very fast with
the prediction horizon.

In this note, a novel algorithm to solve the min–max problem is pro-
posed. The approach is able to handle some of the problems mentioned
above. The algorithm exploits the structure and the convexity prop-
erties of the min–max optimization problem. It applies a nested de-
composition procedure to solve the problem via a sequence of linear
programs of lower complexity. Due to the combinatorial nature of the
problem, the computational burden of the algorithm still grows expo-
nentially with the prediction horizon, however, it provides an improved
way to implement min–max controllers online on a broader family of
plants.

II. PROBLEM FORMULATION

Consider the discrete-time linear system

x(t+ 1) = A (w(t))x(t) +B (w(t))u(t) +D (w(t)) (1)

subject to constraints

Gxx(t) +Guu(t) � g (2)

where x(t) 2 Rn is the state vector, u(t) 2 Rn is the input vector,
and w(t) 2 Rn is the uncertainty vector that is supposed to be
bounded, namely w(t) 2 W where W is a compact polyhedron. The
system matrices are defined by the uncertainty as M(w(t)) = M0 +

n

k=1 e
T
kw(t)Mk , where ek is the kth column of the identity matrix

of size nw .
Digital Object Identifier 10.1109/TAC.2006.883062

Feedback min–max MPC obtains a sequence of feedback control
laws that minimizes the worst case cost, while assuring robust con-
straint handling. A polyhedral terminal region �f is taken into account
to constraint the state at the end of the prediction.

The min–max problem can be solved by taking into account not all
possible values of the uncertainty (which leads to an infinite dimen-
sion problem), but only the extreme realizations. See [10], [18]. The
enumeration of all the possible extreme realizations of the uncertainty
vector w along the prediction horizon gives rise to what is called a sce-
nario tree. This tree is used to solve the min–max problem as a finite
dimensional deterministic problem. The root node of the tree represents
the initial time-step. Level n of the tree stands for time-step n and con-
tains all possible extreme uncertainty trajectories of length n, i.e., all
the possible combinations of n vertices of the uncertainty setW . Each
node has q children, one for each vertex of W . Each node is then de-
fined by an uncertainty vector wi which characterizes the uncertainty
realization from the parent node. By definition,wi is one of the vertices
of W .

A possible uncertain trajectory defining a scenario is then a path from
the root node of the tree down to a leaf. All the nodes of the tree are
numbered, starting from the root node (node 0) to the leaf nodes, stage
by stage (so the enumeration of the nodes of a given stage is lower than
their children nodes). M is the total number of nodes. The time step of
the node is denoted by n(i). Each node i has a set of children I(i) and
a parent node p(i). The set of children is empty for the leafs nodes and
the root node has no parent.

To each node a cost function V̂i(xp(i); up(i)) is assigned. This func-
tion depends on the previous decision variables xp(i), up(i), i.e. the
variables of the father node, and is defined as the optimum of the fol-
lowing optimization problem1:

min
x ;u

kQxik1 + kRuik1 + max
j2I(i)

V̂j(xi; ui) (3a)

s:t: (3b)

xi = A(wi)xp(i) +B(wi)up(i) +D(wi) (3c)

Gxxi +Guui � g (3d)

A(wj)xi +B(wj)ui +D(wj) 2 �
n(i)+1 8j 2 I(i): (3e)

The subindex i of the variables xi, ui denotes node enumeration. The
set �n(i)+1 corresponds to the feasible set of the problem for the next
step and is a polyhedron. For the leaf nodes, �N = �f . Note that the
optimization variable xi of each node is fixed by (3c).

To obtain the control input, the cost function of the root node V̂0(x)
is minimized for a given initial state x, i.e., the following optimization
problem is solved:

min
x ;u

kQx0k1 + kRu0k1 + max
j2I(0)

V̂j(x0; u0) (4a)

s:t: (4b)

x0 = x (4c)

Gxx0 +Guu0 � g (4d)

A(wj)x0 +B(wj)u0 +D(wj) 2 �
1 8j 2 I(0): (4e)

1Although only the infinity norm is taken into account, the proposed approach
can be applied to any feedback min–max control problem with a stage cost that
can be evaluated via an LP problem, such as costs based on 1-norms, or, more
generally, convex piecewise linear costs.
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The definition of V̂0(x) takes into account that the state of the root node
is given by the measured state of the system. See constraint (4c). The
boundary conditions are V̂i(xp(i); up(i)) equal to

min
x

kPxik1

s:t: xi = A(wi)xp(i) +B(wi)up(i) +D(wi)

for all leaf nodes (nodes such that I(i) is empty). The value of the cost
function at the leaf nodes do not depend on any other node, i.e., can be
formulated as an LP problem. The cost function is defined by full-rank
matrices Q, R, and P .

The control law is applied in a receding horizon scheme. At each
sampling time the problem must be solved for the current state x and
the optimum value V̂ �0 (x) is obtained. The controller applies the op-
timal control input for the first time-step u�0 . Note that the optimiza-
tion problem formulated above is of very high complexity. In the fol-
lowing sections, an algorithm that takes advantage of the structure of
the problem by means of a decomposition method is presented.

III. MULTISTAGE MIN–MAX LINEAR PROGRAMMING

In this section, the multistage min–max linear program in standard
form

V
�

i zp(i) = min
z

c
T
i zi + max

j2I(i)
V
�

j (zi) (5a)

s:t: Wizi = hi � Tizp(i) (5b)

zi � 0: (5c)

is considered. The main result of this note is an algorithm that solves
problem (5). The standard form is introduced to simplify the notation.
As problem (3) belongs to the class (5), the algorithm presented can be
applied to evaluate the feedback min–max MPC controller described
in the previous section.

Problem (5) is defined by a scenario tree. Each node i has a set of
children I(i) and a parent node p(i) and is defined by matrices and
vectors ci , Wi, hi , and Ti. All these parameters are deterministic and
can be different for each node. The objective is to minimize V �0 , the
cost function at the root node

V
�

0 = min
z

c
T
0 z0 + max

j2I(0)
V
�

j (z0)

s:t: W0z0 = h0

z0 � 0:

The boundary conditions are given by the problem solved at each leaf
node

V
�

i zp(i) = min
z

c
T
i zi

s:t: Wizi = hi � Tizp(i)

zi � 0:

Multistage min–max linear programs are related to multistage sto-
chastic linear programs [6]. In the latter, instead of the worst case, the
expected value of the cost function for a given discrete distribution of
the uncertainty is minimized.

Problem (3) can be formulated as a multistage min–max linear pro-
gram because the infinity norm can be evaluated using a linear program
[17]. The matrices and vectors ci ,Wi, hi and Ti depend on the system,
the cost function, the constraints, and the value of the uncertainty from

the parent node to node i (what in the previous section was defined as
wi). The initial state of the system defines the constraints in the root
node which does not depends on any previous decision, namely h0 de-
pends only on x. Recall constraint (4c).

The set of variables zi corresponding to each node includes the state,
the input, the auxiliary variables introduced to evaluate the cost func-
tion, and the slack variables needed to represent the feedback min–max
problem in standard form.

The constraints represent both the system constraints from (2)
and the constraints introduced to model the cost function. The value
V �i (zp(i)) represents the cost function at node i depending on the
previous decision vector zp(i) (recall that p(i) is the index of the
parent node of i).

IV. NESTED DECOMPOSITION ALGORITHM

This section presents an algorithm for solving the multistage
min–max linear program (5) by using nested decomposition. This
algorithm exploits the specific structure of the problem and the con-
vexity properties of the objective function. It is based on the ideas
first introduced by Benders in [4] for solving mixed-integer problems
which also have been successfully applied to stochastic programming
[5], [6].

The method consists on solving a sequence of LP problems that ap-
proximate the value of the original problem. In (5), the value of the
function V �j (zi) has to be evaluated. These functions are piecewise
linear functions over polyhedral regions (see the results in [3]). In the
proposed algorithm, these functions are substituted by an outer lin-
earization, i.e. a lower bound that can be evaluated by linear program-
ming. This lower bound is improved at each iteration and converges to
the exact value of V �j (zi).

To simplify the algorithm, we address here a particular case of mul-
tistage min–max linear programs. It is assumed that V �i (z) is bounded
and greater than zero for all nodes. This assumption holds in the case
of feedback min–max problems, where the objective function satisfies
this condition by definition.

At each step m of the algorithm, subproblems Pm
i are solved, one

for each node i of the scenario tree, to obtain the lower bound of the
cost function V �i (z). As each of the functions of the children nodes are
also approximated by an outer linearization, the resulting subproblem
is a linear program. Problems Pm

i are defined as

V
m
i zp(i) = min

z ;� ;�
c
T
i zi + �i (6a)

s:t: Wizi = hi � Tizp(i) (6b)

D
k
i;jzi + �i;j � d

k
i;j 8j 2 I(i); k � r

m
i;j (6c)

�i � �i;j ; 8j 2 I(i) (6d)

zi; �i � 0; �i;j � 0; 8j 2 I(i): (6e)

These problems are modified at each iteration. The number of con-
straints in (6c) for each children node j at step m is rmi;j . These con-
straints are added in order to evaluate a lower bound on the value
of V m

j (zi), namelyV m
j (zi) � �i;j 8j 2 I(i). At the first iteration

r0i;j = 0 for all nodes and j 2 I(i). This means that for the first itera-
tion, the value of �i;j of the children of each node i is zero (recall that
�i;j � 0). Each time a new optimality cut is added (rmi;j increases), the
approximation provided by V m

j (zi) is tighter.
Each �i;j is a lower bound on the value of V m

j (zi). To evaluate the
maximization over the set of childrens, the auxiliary variable �i is in-
cluded. Constraints (6d) evaluate the maximization over all the children
of node i using an epigraph approach.

In this section, we prove that V m
i (z) is a lower bound on V �i (z) and

that, when the algorithm stops, both values are equal.
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As in the previous section, when solving the root node, constraint
(6b) is replaced by W0z0 = h0, because the root node has no parent.
For the feedback min–max problem, h0 depends on the initial state of
the system x0.

When solving a leaf node, variables �i;j and constraints (6c) are
omitted because these nodes do not have children. Note that this means
that, by definition, V m

i (z) = V �
i (z) for each leaf node and at every al-

gorithm iteration m.
The algorithm solves problems with relative complete recourse [6],

i.e., feasibility of the root problemP 0
0 assures feasibility of all the prob-

lems of the nodes of the scenario tree for all steps m. For general prob-
lems, feasibility cuts can be added to the algorithm as in stochastic
linear programming [5], [6]. Note that feedback min–max is formu-
lated to have relatively complete recourse. By definition, if x0 lies in
�0, there exists a sequence of control laws that drive x0 to the terminal
region while satisfying the constraints for all possible uncertainties be-
cause constraint (3e) holds for each node.

The algorithm is based on adding optimality cuts at each time step.
These optimality cuts are obtained from feasible solutions to the dual
problem of Pm

i .
Theorem 1 [c.f. [7]]: Define Di = �Ti Ti and di = �Ti Tizp(i) +

V m
i (zp(i)), where �i are the dual variables of the equality constraints

(6b) for a given zp(i), and V m
i (zp(i)) is the optimal value determined

by solving problem (6) for zp(i). Then, it holds that for all z

V
m
i (z) � di �Diz: (7)

Note that as the number of optimality cuts rmi;j is increased at each
step m for each children node j, the set of dual constraints of a pre-
vious optimum solution may not be optimal, but still remains feasible
if new zero variables �ki;j of the new optimality cuts are added. Hence,
although problems Pm

i differ at each iteration because optimality cuts
are added, the lower bounds on the optimal value remain valid.

The proposed algorithm can be summarized as follows.

Algorithm 1

INITIALIZATION m = 0, r0i;j = 0, ei = 0, i = 0; . . . ;M � 1,
j 2 I(i).

IF P 0
0 is infeasible

Multistage min–max problem is infeasible. Stop.

END IF

DO

FOR i = 0; . . . ;M � 1

Solve Pm
i using zp(i) and obtain V m

i (zp(i)), zi, �i [the
dual variables of the equality constraints (6b)] and �i;j ,
j 2 I(i).

END FOR

FOR i = M � 1; . . . ; 0

FOR j 2 I(i)

IF �i;j < V m
j (zi).

r
m+1
i;j = r

m
i;j + 1:

D
r

i;j =�
T
j Tj :

d
r

i;j =�
T
j Tjzi + V

m
j (zi):

ELSE

r
m+1
i;j = r

m
i;j :

END IF

END FOR

IF I(i) is not empty

ei = max
j2I(i)

V
m
j (zi)� �i;j + ej :

END IF

END FOR

m = m + 1.

WHILE e0 > 0

Stop.

Theorem 2: The solution obtained by applying Algorithm 1, denoted
by z�0 , is an optimal solution of (5). The algorithm converges in finite
time.

Proof: The optimality cuts are obtained from a set of optimal
dual variables of Pm

j as sub-gradients of the optimal solution V m
j (z).

These sub-gradients are defined using the dual variables of the equality
constraints (6b) �j and the optimal value of the cost function V m

j (z)
which includes the remaining dual variables for different values of z.
By taking into account Theorem 1 and the definition of Dk

i;j and dki;j ,
the following inequality holds at each iteration m and node j:

V
m
j (z) � max

k=1;...;r
d
k
p(j);j �D

k
p(j);jz: (8)

By construction, if I(i) is empty it holds that V m
i (z) = V �

i (z) because
in this case (5) and (6) are equal. Taking this into account and applying
(8) backwards from the leaf nodes, it holds that at each iteration m and
node j

V
�

j (z) � V
m
j (z): (9)

The algorithm finishes when e0 = 0. By construction, if e0 = 0, then
ei = 0 for i = 0; . . . ;M � 1, i.e., for the values zi of the algorithm
solution it holds

V
m
j zp(j) = max

k=1;...;r
d
k
p(j);j �D

k
p(j);jzp(j) (10)

for j = 0; . . . ;M � 1.
By definition, all the previous functions of z are convex so the min-

imization problems have an unique minimum value. If the following
conditions are satisfied: a) zi is a minimizer of Pm

i (and so minimizes
�i), b) ei = 0, and c) V �

j (zi) = V m
j (zi), then the following holds:

V
�

i zp(i) = V
m
i zp(i) : (11)

By taking into account that for the leaf nodes the hypothesis V �
j (zi) =

V m
j (zi) is true, by applying backwards (11) it is proved that

V
�

0 = V
m
0 : (12)

Finite termination of the algorithm is assured because the optimality
cuts are generated from the dual variables of the optimal solutions of



1692 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 51, NO. 10, OCTOBER 2006

TABLE I
COMPUTATIONAL ASPECTS FOR DIFFERENT PREDICTION HORIZONS

Pm

i . As Pm

i are LP problems, the optimal dual variables are attained
at the vertices of the feasibility set of the dual problem. As the number
of vertices is finite and no cut can be repeated, the maximum number
of iterations of the algorithm is finite.

The computational burden of the algorithm presented in this sec-
tion depends on the number of nodes of the worst-case scenario tree,
which grows in an exponential manner with the prediction horizon.
This means that the computational burden can be very high for large
horizons. It is important to remark that at the end of any iteration m, a
feasible solution zm0 with a bound on the error em0 is obtained, so sub-
optimal solutions could be used when limits on the computation time
are imposed.

V. EXAMPLE

The computation time and the memory requirements of the pro-
posed algorithm are compared with the one corresponding to solving
the min–max problem with a single large scale LP problem [10]. Con-
sider the problem of robustly regulating to the origin the system (c.f.
[3])

x(t+ 1) =
1 1

0 1
x(t) +

0

1
u(t) +

1 0

0 1
w(t) (13)

subject to constraints on the state and the input, namely, kx(t)k1 �
10 and ku(t)k1 � 3. No terminal region is taken into account. The
disturbance in supposed to be bounded in the hypercube kw(t)k1 �
1:5. We consider the performance measure based on infinity norm with

P = Q =
1 1

0 1
, R = 1:8 and different predictions horizons.

Table I shows different results for prediction horizons from N = 2
to 6. The results are obtained from over a hundred randomly selected
initial states.2 In Table I, entry node denotes the number of nodes of the
scenario tree, iter the mean number of iterations of the decomposition
algorithm, and Dec the time in seconds. Entry mem(Dec) is the size
of the file that the proposed algorithm needs to solve the optimization
problem. The SMPS format [12] has been used to store the problem.
Entry mem(LP) is the size of the MPS [11] file of the large scale LP
and LP is the time needed to solve the problem. Note that for N = 6
we could not solve the LP problem.

In the simulation results, it is seen that the proposed algorithm gives
promising results. It outperforms the LP solver in computation time and
memory requirements. For a prediction horizon of 5, the computation
time is two orders of magnitude smaller.

VI. CONCLUSION

The note has shown how to compute the solution of a multistage
min–max linear program by taking advantage of the structure of the

2The simulations have been realized in Matlab in a AMD Athlon Xp 2800+
using [16].

problem. The proposed algorithm can be applied to implement feed-
back min–max controllers. The decomposition algorithm also gives an
insight into the underlying structure of the problem formulation.
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