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Abstract—This paper focuses on optimal and receding horizon
control of a class of hybrid dynamical systems, called Discrete
Hybrid Stochastic Automata (DHSA), whose discrete-state tran-
sitions depend on both deterministic and stochastic events. A
finite-time optimal control approach “optimistically” determines
the trajectory that provides the best tradeoff between tracking
performance and the probability of the trajectory to actually
execute, under possible chance constraints. The approach is also
robustified, less optimistically, to ensure that the system satisfies
a set of constraints for all possible realizations of the stochastic
events, or alternatively for those having enough probability
to realize. Sufficient conditions for asymptotic convergence in
probability are given for the receding-horizon implementation of
the optimal control solution. The effectiveness of the suggested
stochastic hybrid control techniques is shown on a case study in
supply chain management.

Index Terms—Hybrid systems, model predictive control, opti-
mization, stochastic systems.

I. INTRODUCTION

M ODERN automated systems are often constituted by in-
teracting components of heterogenous continuous/dis-

crete nature. It is indeed common to analyze and design sys-
tems in which some of the subsystems are physical processes
described by equations involving continuous-valued variables,
whilst some others are digital devices, whose dynamics are dis-
crete-valued. Discrete dynamics are also used to model approx-
imations of complex physical interactions such as impacts and
stiction. Dynamical systems having such a hybrid continuous/
discrete nature are named hybrid systems [1].

Several mathematical models were proposed in the last years
for deterministic hybrid systems [2]–[4], that can be used for
analysis of stability and other structural properties [5]–[7], iden-
tification [8], and for controller synthesis [9]–[11]. The draw-
back of such models is that no uncertainty is taken into account.
Uncertain hybrid systems, and in particular stochastic hybrid
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systems, represent a difficult challenge [12]. Because of the hy-
brid nature of the dynamics, even simple questions such as the
existence of solutions of the stochastic differential/difference
equations and the characterization of the probability distribu-
tion functions are not easy to answer. Due to the heterogeneity
of the hybrid dynamics, several different stochastic models have
been proposed depending on the kind of dynamics (continuous,
discrete, or both) affected by uncertainty.

In Markov jump linear systems [13], [14], the continuous dy-
namical equations of the system switch among different linear
models, with jumps described by a Markov chain. This well
analyzed model has the limitation that the discrete dynamics
are not influenced by the continuous ones. A more complex
stochastic hybrid model is the piecewise deterministic Markov
process (PDMP) [15], that is a continuous-time system that in-
teracts with a discrete-state stochastic system modeled as a con-
tinuous-time controlled Markov chain. Other stochastic models
of hybrid systems were proposed in [16], [17], namely contin-
uous-time stochastic hybrid systems, with uncertainty affecting
only the continuous dynamics, and the more general switching
diffusion process [18], [19], where both the discrete and contin-
uous dynamics are affected by uncertainty.

The structural properties of some of these models have been
analyzed in [20]–[22], and they have been applied in air traffic
control [23], manufacturing systems [24], and communication
networks [25]. More recently reachability analysis was applied
in [26] as a control paradigm for stochastic hybrid systems, in
order to maximize the probability that the system evolves into a
desired safe region.

In this paper, we introduce a discrete-time stochastic hybrid
model, denoted as Discrete Hybrid Stochastic Automaton
(DHSA), tailored to the synthesis of optimization-based control
algorithms. In DHSA, the uncertainty appears on the discrete
component of the hybrid dynamics, in the form of stochastic
events that, together with deterministic events, determine
the transition of the discrete states. As a consequence, mode
switches of the continuous dynamics become nondeterministic
and uncertainty propagates also to continuous states. DHSA
exhibit stochastic behaviors similar to PDMPs, when expressed
in discrete time, and constitute a powerful modeling framework.
For instance, unpredictable behaviors such as delays or faults in
digital components, unexpected operating mode changes, and
discrete approximations of continuous input disturbances can
be modeled by DHSA. The main advantage of DHSA is that
the number of possible values that the overall system state can
have over a given bounded time interval is finite (although it
may be large), so that the problem of controlling DHSA can be
conveniently treated by numerical optimization. In particular,
receding horizon control (RHC) algorithms can be synthesized
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for DHSA, leading to a model predictive control (MPC) design
framework for stochastic hybrid systems. Thus, this paper
extends to hybrid systems the RHC approach to stochastic
control, developed mainly for linear systems [27]–[35] and,
more recently, for Markov jump linear systems [36], [37].

The paper is organized as follows. Section II introduces
DHSA and their properties. Section III defines two types of
finite horizon stochastic optimal control problems based on
DHSA: A control approach that uses stochastic information
about the uncertainty to obtain an optimal trajectory whose
probability of realization is known, and an extension of it that
also ensures robust satisfaction of certain constraints. Both
control approaches are evaluated in a case study in supply chain
management in Section IV. In Section V, we study RHC strate-
gies based on the proposed DHSA model and finite horizon
optimal control problems, providing sufficient conditions for
convergence in probability of the state for both vanishing and
persistent disturbances.

II. DISCRETE HYBRID STOCHASTIC AUTOMATON

The Discrete Hybrid Automaton (DHA) introduced in [38]
models hybrid dynamical systems that evolve in a deterministic
way: For any given initial state and input sequence, the trajec-
tories of the system are uniquely defined. A DHA can be au-
tomatically translated into an equivalent mixed logical dynam-
ical model [9] by translating logic relations into mixed-integer
linear inequalities [9], [38], [39]. Below, we extend the DHA to
DHSA, that takes into account possible stochastic discrete-state
transitions.

A. Model Formulation

A DHSA is composed by the four components shown in
Fig. 1: the switched affine system, the event generator, the
stochastic (nondeterministic) finite state machine, and the
mode selector. The switched affine system satisfies the linear
difference equations

(1)

in which is the discrete-time index,
is the current mode of the system,

and are the vectors of continuous
states and continuous exogenous inputs, respectively, at time ,
and , are constant matrices of suitable dimen-
sions1. The event generator produces endogenous binary event
signals defined by

(2)

where is the event generation func-
tion defined as

where , , are con-
stant matrices defining linear threshold conditions, and the su-

1Equation (1) can be extended with an output equation � ��� �
� � ��� � � � ��� � � , � � , where � �� � � are
constant matrices [38].

Fig. 1. Discrete hybrid stochastic automaton (DHSA). The superscript de-
notes the successor at time � � �.

perscript denotes the -th row. The mode selector is defined
by the Boolean function

(3)

where is the vector of binary states and
is the vector of exogenous binary inputs. In (3) we

assume a “one-hot” encoding of the discrete state, hence
, where , , is the unitary vector

of . As a consequence, is the number of the discrete-state
values of the system.

Elements (1), (2), and (3) are the same as in DHA2. However,
while in DHA the discrete dynamics are defined by the finite
state machine (FSM)

(4)

where is a Boolean func-
tion defining the unique successor of the current state, in DHSA
they are defined by the stochastic FSM (sFSM)

(5)

where and denotes
probability. Given , , and , only the probability
distribution of is known. An example of sFSM

is reported in Fig. 2. When the current state is and

there is a probability that the next state is and a proba-

bility that the next state is , with .

Definition 1: Given a binary state , an exoge-
nous binary input , an endogenous vector of events

, we say that a discrete transition to the suc-
cessor state is enabled for if the prob-
ability . An
enabled transition is said stochastic if

2The resets maps introduced in [38] can be straightforwardly included also in
DHSA, so we do not explicitly consider them in this paper.
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Fig. 2. Example of stochastic finite state machine with three possible state
values �� � �� , �� � �� , �� � �� , two events � , � , and two stochastic tran-
sitions with probabilities � , � � �� � enabled in �� � �� .

. Two or more transitions that are enabled for are
called conflicting on .

Definition 2: An sFSM (5) is stochastically well-posed if
, for all

.
In order to demonstrate how a complex system can be mod-

elled as a DHSA, we briefly introduce a supply chain case study,
that will be discussed in details in Section IV. In a supply chain
composed of production, storage, and retailer nodes, the accu-
mulation of products in the inventories and of wear in the ma-
chines can be described by real-valued dynamics. The invento-
ries are constrained by the storage capacity and when the ma-
chine wear increases above a danger threshold, breakdowns,
that disrupt the production capability, are possible with a cer-
tain probability. The DHSA model of this system represents the
real-valued wear and inventory dynamics by the SAS, the activa-
tion of the dangerous wear threshold by the EG, and the current
condition of the production machines by the sFSM, whose state
indicates whether a machine is working, risking breakdown, or
broken. The MS is used to select the wear accumulation and the
production dynamics according to the state of the sFSM.

B. Reformulation of DHSA as DHA With Uncontrollable
Events (ueDHA)

A more explicit characterization of the uncertainty affecting
the DHSA (1), (2), (3), (5) is needed for use in numerical op-
timization algorithms. The key idea is that an sFSM (5) having

stochastic transitions can be equivalently represented by
an FSM (4) by introducing a random binary input ,
called uncontrollable event, for each transition .
The enabled stochastic transition occurs
if and only if a , with

(6)
Let be associated with deterministic transitions,
that is, whenever a transition from a binary state to
another is deterministic, or, equivalently, no conflicting (sto-
chastic) transitions exist. Given any

, let de-
note the subset of indices of the uncontrollable events associ-
ated with the conflicting transitions on .

Let be the set of vectors
that satisfy the condition

(7a)

(7b)

(7c)

Equation (7) imposes that: (i) when enabled conflicting tran-
sitions exist (i.e., ), then one
and only one transition is taken ( ); (ii) if

then the corresponding tran-
sition is deterministic, and in this case we assume without
loss of generality that all deterministic transitions are as-
sociated with , i.e., ; when

no transition is defined (the system
“hangs” at that particular discrete state). As an example, the
sFSM represented in Fig. 2 can be associated with a FSM having
additional uncontrollable events that affect

the stochastic transitions in : transition

happens when is true (“ ” denotes logic “and”),

while transition when is true,

and satisfy ,

, and . Condition
(7c) does not directly affect the evolution of the system, since
the transitions that are not in the set are
not enabled and the value of the corresponding uncontrollable
events does not affect the discrete state evolution. However,
(7c) is enforced to correctly compute the transition probability.

More generally, an sFSM having stochastic transitions
can be transformed into a deterministic automaton, denoted as
FSM with uncontrollable-events (ueFSM), defined by

(8)

where is the random vector
of uncontrollable events at time ,

is derived from (5), and from now is a short
notation for . The following proposition
is immediate to prove.

Proposition 1: An sFSM (5) is stochastically well posed if
and only if the components of in its equivalent
ueFSM (8) are produced by an IID random binary number gen-
erator with probabilities , ,

, satisfying

(9)
Note that in case of deterministic transitions (9) implies that

, which ensures that the only possible transition is always
taken.
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The notion of equivalent ueDHA to a given DHSA is formally
defined below.

Definition 3: Given a DHSA (1), (2), (3), (5), its equivalent
ueDHA is defined by (1), (2), (3), (8) with vectors

satisfying (7) and generated according to (9).
We extend the definition of well-posedness given for deter-

ministic hybrid systems in [40, Def. 1] to DHSA.
Definition 4: A DHSA (1), (2), (3), (5) is well-posed if its

ueDHA equivalent is well-posed according to [40, Def. 1] as a
deterministic DHA with inputs ,

and the components of have prob-
abilities satisfying (9).

In the rest of the paper, we will assume that DHSA models
are well-posed.

The ueDHA representation of the DHSA has two advantages.
First, the uncertainty is associated with so to that the prob-
ability of a state trajectory can be obtained as a function of the
sequence of the corresponding uncontrollable events. Second,
the ueDHA dynamics (1), (2), (3), (8) under the constraints (7)
can be written in mixed logical dynamical (MLD) form as

(10a)

(10b)

where , , and ,
are auxiliary vectors, whose value is uniquely assigned for any
fixed , , . The matrices in (10) are obtained
from (1), (2), (3), (8) by automated procedures [38].

Given ,
, and ,

the probability of the state trajectory ,
, can be computed as follows. Consider the vector

containing the probability coefficients of the
transitions and

...
...

(11)

Each term describes the probability of taking the transition
defined by at step , the probability of the complete
trajectory and hence, being defined by (6), of the complete
state trajectory defined by for the given and .

C. Stochastic Mode Selector and Additive Stochastic
Disturbances

Uncontrollable events can be easily included also in the mode
selector function (3)

(12)

where satisfies properties similar to (7), (9).

A stochastic mode selector (12) can be used to model additive
stochastic quantized disturbances affecting the contin-
uous dynamics. Consider the simplest case

(13)

with taking values in with probabilities
, , and is a constant ma-

trix of suitable dimension. We introduce uncontrollable
events , , with the same
probabilities , define the switched affine dynamics

, , , and define (12) as
. The quantized disturbance can

be considered as a piecewise constant approximation of a
given continuous disturbance with probability distribution

, for instance by partitioning the domain of into cells
, and defining , .

III. FINITE HORIZON STOCHASTIC OPTIMAL CONTROL

A finite-time optimal control problem for a discrete-time dy-
namical system can always be reformulated as a finite-dimen-
sional optimization problem, in which the optimization vector
is the sequence of control inputs and the constraints
embed conditions on inputs and states that must be satisfied,
such as bounds on inputs and states. If the system is stochastic,
a sequence of stochastic variables will also appear in
the optimization problem.

When stochastic optimization algorithms are used to optimize
the expected value of the performance criterion, usually a “sce-
nario enumeration” approach is employed [41]. This amounts
to consider a discrete set of disturbances and to explicitly enu-
merate all of them in the optimization problem. However, when
the optimal control horizon gets large, the problem becomes
easily intractable as the number of scenarios grows exponen-
tially. Scenario enumeration can be applied to DHSA by enu-
merating the realizations of . However, the exponential
growth of the number of scenarios will affect the DHSA as well
(see the discussion at the end of Section III-A).

For the above reason, in this paper we avoid minimizing
average performance and consider instead the problem of
choosing the input profile that optimizes the most favorable sit-
uation, under penalties and hard constraints on the probability
of the disturbance realization that determines such a favorable
situation. Such an “optimistic” approach is detailed next.

A. Finite Horizon Optimal Control Setup

Consider the convex performance index
defined as

(14)

where for DHSA ,
are reference signals for state ( ) and input ( ) trajecto-
ries3, and we assume
that , for all references .

3References on output trajectories can also be included similarly.
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Typical example of the stage cost that satisfy such assump-
tions are
where are full rank matrices, or

where ,
are positive (semi)definite matrices.

Next, consider the probability cost defined as

(15)

The smaller the probability of a disturbance realization ,
the larger is the probability cost, so that trajectories that realize
rarely are penalized. The most desirable situation is to obtain
a trajectory with high performance (small ) and high proba-
bility (small ). Hence, we define as objective function

(16)

where , and is the
probability weight trading off between optimism (performance)
and realism (chance, i.e., likelihood of the predicted trajectory).
The coefficient must be greater than 0 to account for the prob-
ability of the trajectory in (16), since as will be shown later, this
is important for convergence of the control algorithm.

In order to completely eliminate trajectories that realize rarely
from the set of feasible solutions, we also consider the chance
constraint [27], [28], [34]

(17)

where is called probability bound. Chance constraint
(17) enforces that , and hence the corresponding trajectory

, realizes with probability at least . More general constraints
on could be imposed. The problem of optimally controlling a
DHSA with respect to (16) subject to (17) is formulated through
its equivalent ueDHA.

1) Problem 1 (Stochastic Hybrid Optimal Control, SHOC):

(18a)

(18b)

(18c)

(18d)

where , are the sequence of
auxiliary vectors in (10), (18c) models constraints on the closed-
loop system and the probabilities , , of satisfy
(9).

In order to formulate (18) as a mixed-integer linear/quadratic
program, we need to transform (15) and (17) into linear func-
tions of . We assume that can be ex-
pressed through mixed-integer linear inequalities [39] (see later
in (23)). can be dealt with as described in [42] for the deter-
ministic case (see also (23)).

Consider a DHSA whose transition probabilities are collected
in vector , and consider the equivalent ueDHA
with uncontrollable events . By (11),

, where represents the contribution on
the trajectory probability of the stochastic transition at step ,

and is defined by

if
if .

(19)

Equivalently, . Hence

(20)

For all

Since for , , for all
,

(21)

Thus, (20) is expressed as a linear function of , and (17) as a
linear constraint on .

The solution of (18) is a pair , where is the op-
timal control sequence for the predicted sequence of un-
controllable events that respects all the dynamical and opera-
tional constraints, the chance constraints, and that represents the
best tradeoff between performance and likelihood of the pre-
dicted trajectory. Note that, since random event probabilities are
a function of the system state, dynamics prediction ( ) and
control action selection ( ) have to be performed together.

Since only can be decided and actuated, the trajectory
may be different from the one provided by (18), unless the re-
alization of the stochastic events is equal to . The larger ,
the more the prediction likelihood is important in the optimiza-
tion problem, hence trajectories where more likely will co-
incide with will be preferred, at the expense of a possibly
diminished performance. Chance constraint (17) ensures that

, or, in other words, that the actual state evo-
lution of the system is different from the expected optimal one
with probability at most . The more restrictive is (17), the
more trajectories are eliminated a priori, which may ease the so-
lution of the optimization problem (18). However, if is set too
large, many trajectories are eliminated by (17), and (18) may be
infeasible or result in poor performance (14).

Remark 1: while useful for notational purposes, for practical
purposes , is removed from (1), since its contribution to (15)
is always zero. Condition (7c) is also removed from (1), since
if the transition associated with is not enabled, the value of

does not affect the trajectory, while setting causes an
additional cost. Thus, the optimal solution of (18) is guaranteed
to have for all associated to nonenabled transitions.

As discussed in [9], in finite horizon optimal control of DHA
the optimizer of the associated mixed integer program is com-
posed of the input vector , , . For Problem 1, the uncontrol-
lable event vector is also included. Let , , , be
the size of those vectors, respectively, be the number of con-
straints. The size of these vectors is indeed proportional to the
horizon . Along the horizon, the possible scenarios are ,
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i.e., all the possible realizations of . Note that infeasible sce-
nario pruning is not possible a priori, since the scenario realiza-
tion depends on the control input, which is a decision variable.
Thus, if a scenario enumeration approach is used for controlling
the DHSA, the size of the optimizer is ,
and the number of constraints is . In fact, is fixed
by the scenario, while and have to be duplicated for each sce-
nario (since the logical expressions are possibly different), and
the constraints enforced for all scenarios. In the SHOC problem
there are variables and constraints,
a much simpler problem than a scenario enumeration approach
would require.

B. Robust Constraint Handling

The SHOC approach does not ensure that constraints are sat-
isfied when the actual disturbance realization differs from

. Henceforth, the SHOC approach can only be used when a
possible violation of (18c) is not critical. On the other hand, for
safety critical constraints, it may be necessary to satisfy (18c)
for any disturbance realization, or at least for disturbance real-
izations having enough probability to happen.

Definition 5: Given a DHSA, an initial condition
and an input sequence , we say that a constraint

is robustly satisfied in probability if it is sat-
isfied for all such that , . We say
that the constraint is robustly satisfied if , that is, if it is
satisfied for all that can realize.

Problem (1) is extended to robustly satisfy constraint (18c).
1) Problem 2 (Robustified SHOC, RSHOC):

(22a)

(22b)

(22c)

(22d)

(22e)

where . Compared to Problem 1, Problem 2 requires
in (22e) that the optimal input is such that constraint

is robustly satisfied for all the admissible
values of stochastic events that have a certain probability to
realize (or all of them), while still optimizing the input sequence

and the predicted disturbance trajectory as in Problem 1.
Note that in (17) is a lower bound on the probability of the
computed optimal solution, while in (22e) defines an upper
bound on the probability of the disturbance sequences against
which robust constraints are enforced.

By the techniques of Section III-A and of [9], (22) can be
formulated as

(23a)

(23b)

(23c)

(23d)

(23e)

where is the predicted sequence of uncontrollable
events, is any other sequence of uncontrollable events
with probability to realize greater than , (23a)–(23b) are the
reformulation of the performance index (22a) and of the dy-
namics (22b), (23c) is the mixed-integer equivalent reformula-
tion of constraint (18c), and (23e) the reformulation of (22c).
For simplicity of notation, (resp., ) collects and as-
sociated4 to the DHSA dynamics evolving from by and

(resp., ).
Because of the quantified constraints (23e), (23) cannot be di-

rectly formulated as a mixed integer program. As the possible
values of are finite, it would be possible to ex-
pand the quantified constraints in groups of normal constraints,
one for each realization of , as in scenario enumera-
tion. However, as observed earlier, the obtained mixed-integer
problem would be intractable in most practical cases.

In general, only certain sequences lead to constraint vio-
lation for a fixed . We propose a procedure to enumerate
only such potentially dangerous sequences . The procedure
is based on the interaction between a “partially” robustly con-
strained optimal control problem to get a candidate solution ,
and a reachability problem aiming at determining whether an
event sequence with probability larger than exists
that violates (18c), for the given and control input

. Such a reachability problem is solved by the mixed-integer
feasibility program

(24a)

(24b)

(24c)

(24d)

where represent the logical “or” and denotes the -th com-
ponent of function . When is a (mixed in-
teger) linear inequality in , , , (24d) can be expressed
through mixed logical/linear inequalities by associating to each

a binary variable (which
can be transformed to mixed integer linear inequalities by using
for instance the big-M technique [39]) and by introducing the
constraint . If (24) is infeasible, then constraint
(23e) is satisfied. On the other hand, any feasible solution of
(24) provides a counterexample to (23e). Further trajectories
violating (23e) can be iteratively found (if they exist) by simply
adding the “no good” cut in problem (24) [44].

4In case infinity norms are used in the performance index � , � also includes
additional variables required to carry on the optimization, and an additional term
linear in � needs to be added in (23b), and��� � � [43]; when quadratic forms
[9] are used, � � �.
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Fig. 3. Geometric interpretation of Algorithm III.1: optimal solution �� �� �
found by only introducing two cuts on � , without the need of explicitly charac-
terizing � .

Algorithm III.1: Robustified stochastic hybrid optimal control

1. ; SHOC problem (1);

2.do

2.1.

2.2.Solve and let be the corresponding optimal input
sequence ( if is infeasible);

2.3.if

2.3.1.Solve the reachability analysis problem (24) and let
be the solution ( if (24) is infeasible);

2.3.2.if then with additional variables
and additional constraints

(25)

while and ;

3. .

Algorithm III.1 is used to solve problem (23) and is based on
the iterative solution of the optimal control problem , whose
dimension increases at each iteration of step 2.3.2., looking for
a candidate solution , and of a verification problem, whose
number of decision variables remains constant, that looks for
a stochastic event sequence that leads to constraint viola-
tion when . Both problems can be solved via mixed in-
teger linear/quadratic programming. The dimension of the op-
timal control problem increases until no dangerous stochastic
sequences are found. The variables and the constraints
(25) are added to enforce constraint with respect to , even if
a different trajectory is optimizing . Algorithm III.1 termi-
nates in finite time because each new sequence determined
at an iteration of step 2.3.1. is different from the previous ones

by virtue of (25), and because the number of ad-
missible stochastic event sequences is finite. Termina-
tion with occurs if (23) is infeasible.

Algorithm III.1 has the geometrical interpretation depicted
in Fig. 3. Let be the set of input sequences that fulfill con-
straints (23b)–(23d), and let be the set of input sequences
that in addition satisfy (23e), that is, is the feasibility set of
the SHOC problem while is the feasibility set of the RSHOC
problem, where clearly . The information extracted from
(24) is used to “cut away” part of , without cutting . The iter-

ative procedure continues until the optimal , so that also
solves (23). Thanks to Algorithm III.1, an explicit characteriza-
tion of , which might require a large number of constraints,
is in general avoided. Nevertheless, it must be noted that Al-
gorithm III.1 still has a combinatorial complexity. We finally
remark that it is straightforward to generalize the algorithm to
robustly enforce only a subset of the constraints.

C. Model Predictive Control of DHSA

Both the SHOC and RSHOC problems are open-loop and fi-
nite horizon optimal control problems. To use them in practical
applications, a receding horizon closed-loop control strategy is
needed to ensure state-feedback and unlimited operations over
time. We achieve such features by exploiting the optimal control
problems presented in the previous sections in a MPC setup.

Let be the optimal
trajectory obtained by solving open-loop optimal control
problem (18) from ,

and be
the corresponding optimal input profile. The MPC policy for
DHSA (dhsa-MPC) is defined by Algorithm III.2.

Algorithm III.2: dhsa-MPC algorithm

1. ;

2.while (TRUE)

2.1.at time , measure (or estimate) ;

2.2.solve SHOC problem (18) (or RSHOC problem (23)) where
and obtain

, ;

2.3.discard and apply input
;

2.4. ;

end

Indeed, the application of MPC for DHSA control is straight-
forward once the SHOC/RSHOC problems are defined, where
the only major difference from a standard MPC algorithm is that
part of the decision variables ( ) are discarded. How-
ever, the optimization problems defined by SHOC and RSHOC
are different from both classical nominal and robust MPC prob-
lems. Accounting for the stochastic nature of the dynamics,
SHOC searches for the best tradeoff between trajectory like-
lihood and performance, and RSHOC also guarantees robust
constraint satisfaction. However, differently from robust MPC
approaches, RSHOC does not optimize the worst case perfor-
mance, so that it avoids excessive conservativeness of the con-
trol action, and avoids solving min-max problems that in the
present hybrid system context would be extremely complex. The
theoretical properties of the proposed dhsa-MPC scheme will be
analyzed in Section V.

IV. A CASE STUDY IN SUPPLY CHAIN MANAGEMENT

We show the effectiveness of techniques discussed in
Section III on a problem of supply chain management. Suc-
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cessful examples of optimization-based control of supply
chains exist in the literature, see for instance [45]. We consider
a supply chain that distributes two product types , , and that
is composed of three production nodes , , two
storage nodes , , and one retailer node . The
products are fractionable, i.e., their quantities are measured by
real numbers. During each control step, any can produce at
most one type of products in a fixed quantity , ,
and ship it to one storage node only. Also, can produce only
type , only type , while both types. Moreover, a per-
centage of the items of type shipped from each storage node
to the supplier may be returned to the corresponding storage
node. The percentage of shipped items from that is returned is
represented as a discrete stochastic disturbance where

is a discrete set with cardinality , and for each ,
, is the corresponding probability.

The storage nodes provide the supplier with the requested
amount of products to be sold, so that the dynamics of the
product stored at node is

(26a)

(26b)

where if and only if producer is producing and ship-
ping type to storage , ,

, and are the amount of product of type sent from
storage to the retailer, and coefficients , .
Each storage node stores products of both types and has
a limited storage space , where the occupation of product
types is considered to be the same and normalized to 1. Hence,

. Similarly, the products of type provided
from to are limited by , hence . The ob-
jective of the supply chain planning system is to meet as much
as possible the product demands of products type and at the
retailer, , respectively, that is to have
as close as possible to , . Note that the demand
can be exceeded, a situation which is not desirable since case
the retailer is forced to remove the excess products by trading
them at low price.

In addition, and accumulate wear when producing. The
wear dynamics is described by

(27)

where , , is a coefficient related to mainte-
nance frequency. When the wear level there is a proba-
bility that breaks. When this happens, cannot produce
anymore until its wear crosses the lower threshold .

The system is modelled as a DHSA with six continuous states
(the products at the storage nodes , , ,
and the producers’ wear , ), eight binary inputs
(the allowed producer-to-storage node-shipping paths ), and
four continuous input variables (the quantities , provided
from the storage nodes to the retailer).

An automaton is associated to each of the producer nodes ,
, representing different states of wear: ( ), when

no break can occur; ( ), where if ,
breakdown occurs with a probability ; and breakdown ( ),
where the production at the node is blocked until .

The automata structure is reported in Fig. 2 where ,

, , if , if ,

, . Note that the automata describing
and discrete dynamics are independent, so that the full

discrete state of the system is the couple for a total
of 9 possible combinations. In order to represent the system as
an ueDHA, 4 uncontrollable events, two for each producer ,

, are added to represent the uncertain transitions in the
automata. Also, 6 uncontrollable events are added, 3 for each
storage node, to represent the discretized probability distribu-
tions of item returns . Hence, 10 uncontrollable events are
added in total.

The control problem is to make each product at the retailer
track the reference demand, minimizing

where , , is the com-

plete input vector, is the vector of uncontrollable
events, and the horizon is . State and input constraints are
added to enforce the mutual exclusivity relations of production,
limits on the quantities stored at the supplier, and limits on the
items shipped to the retailer, and . The weight matrix

penalizing demand tracking errors is , while

the input weight matrix is a diagonal matrix that weighs and
by 4, and , and all the production input by 10. The

probability cost is constructed as described in Section V, we
have set and simulations for different values of are
shown. The optimization problem is converted to a mixed-in-
teger quadratic problem with 126 continuous variables, 204 dis-
crete variables, and 1536 mixed-integer linear inequalities. The
simulations were executed on a 2-MHz Pentium-IV PC with 2
GB of RAM running Matlab 7.0 and Cplex 9.0 for solving the
optimization problems.

Figs. 4 and 5 show the solution of the optimal control
problem for a constant value of the reference demand, for the
cases and , respectively. For a small
value of , the controller decides to track the reference as
fast as possible, even at the risk of breakdowns. When is
increased, the controller acts more cautiously avoiding such
a risk. The effect of the weights are even more visible in the
simulations reported in Fig. 6 where the SHOC problem is used
in the dhsa-MPC strategy, and the uncontrollable events that
affect the system evolution are generated randomly according
to the corresponding probabilities. The reference is constant
over the prediction horizon and equal to the current demand.
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Fig. 4. Supply chain management problem: SHOC solution for � � �� .
(a) Upper plot: demand (dashed) and product (solid) at the retailer. Lower plot:
product occupancy at supplier nodes. (b) Wear dynamics at producer nodes, and
thresholds � , � . � (up), � (down).

Fig. 5. Supply chain management problem: SHOC solution for � � �� .
(a) Upper plot: demand (dashed) and product (solid) at the retailer. Lower plot:
product occupancy at supplier nodes. (b) Wear dynamics at producer nodes, and
thresholds � , � . � (up), � (down).

When the controller tries to avoid breakdowns, hence
during certain periods it is not able to entirely meet the retailer
demand. When the controller tries to aggressively
meet the demand, which results in a better tracking, but also
in a higher risk of breakdowns, with consequent impossibility
to meet the retailer demand. The simulations are repeated
five times in Fig. 7. As expected the solution obtained for

exhibits higher variance, since the low probability
weight does not avoid low probability predictions, which have a
good chance to lead to unexpected transitions. The computation
of the solution along these simulations took (on average) 3.28
s, with 23.9 s is the worst case.

Finally, the RSHOC algorithm is applied, where it is required
that the total inventory is , al-
ways. The solution of the robustified optimal control problem
for with is obtained after three iterations
(hence, three optimal control and three verification problems are
solved, for a total of 13.68 s). The simulation of the worst case,
the one where the producers break down as soon as they are at
risk and there are no returns, , , is compared with
the SHOC solution in Fig. 8, where it can be noticed that the ro-
bustified control succeeds in robustly enforcing the constraint.
By setting , only two iterations are needed to find the
solution, while the drawback is that the system is not robust to
all disturbance realizations.

V. CONVERGENCE PROPERTIES OF DHSA CONTROL

In this section, we provide sufficient conditions for asymp-
totic convergence in probability of a DHSA controlled by the
MPC Algorithm III.2. We separate the problem of obtaining
convergence of a deterministic system and the problem of ob-
taining convergence of a system affected by stochastic distur-
bances. The first can be addressed by well known results of
asymptotic convergence of hybrid MPC [9], [11] and is there-
fore not handled here. Instead, by exploiting the convergence
theory of Markov chains [46], we focus on the second issue
showing that the convergence properties of the underlying deter-
ministic MPC scheme are preserved despite the stochastic dis-
turbances. We first highlight some immediate results.

1) Result 1: The DHSA is a discrete-time controlled Markov
process defined over the hybrid state-space , that is, there ex-
ists a function , such that

.
Result 1 immediately follows from (2), (5), that uniquely de-

fine the probability of the successor binary state as a function of
, , , and .
2) Result 2: The DHSA in closed-loop with dhsa-MPC is a

discrete-time Markov process defined on the hybrid state space
, that is, there exists a function ,

such that .
Result 2 follows by noticing that the MPC policy

is a static state feedback.
We extend to DHSA the following definitions for Markov

chains [46].
Definition 6: Given a DHSA, a set is recurrent if

the asymptotic probability to reach from itself (possibly in
infinite time) is 1. is positive recurrent if the average
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Fig. 6. Supply chain management problem: SHOC algorithm executed in receding horizon mode, with � � �� (left), � � �� (right). (a) Case � � �� .
Upper plot: demand (dashed) and product (solid) at the retailer. Lower plot: product occupancy at supplier nodes. (b) Case � � �� . Upper plot: demand (dashed)
and product (solid) at the retailer. Lower plot: product occupancy at supplier nodes. (c) Case � � �� . Wear dynamics at producer nodes, and thresholds � ,
� . � (up), � (down). (d) Case � � �� . Wear dynamics at producer nodes, and thresholds � , � . � (up), � (down). (e) Case � � �� . Producers
discrete state. � (up), � (down). (f) Case � � �� . Producers discrete state. � (up), � (down).

time needed to reach from any is finite. A possible
case is .

The following is the convergence in probability notion used
here, where is any norm.

Definition 7 ([47]): A sequence of random vectors
, , converges in probability to a

(possibly random) vector if
.

Let be the set of states from which the state
is reachable within steps. Define such that

, where is the state tra-
jectory along steps with maximum probability from state
to computed with respect to , . Let be the set of
states for which problem (18) is feasible from , and
let the initial state be .

A. Convergence of MPC Policy Based on SHOC or RSHOC

For convergence analysis, given a dhsa-MPC problem we de-
fine the related deterministic MPC strategy (D-dhsa-MPC) as
the case where both and are manipulated variables. The
D-dhsa-MPC is a standard hybrid MPC problem, whose dif-
ference with the dhsa-MPC is that at Step 2.3. of Algorithm
III.2 the D-dhsa-MPC ideally applies both and . We call
deterministic behavior of the closed-loop DHSA, the (hypo-
thetic) state trajectory generated by D-dhsa-MPC. The associ-
ated probability of the D-dhsa-MPC trajectory is computed by
(21) and the generated sequence . The deterministic be-
havior is the evolution obtained if the MPC prediction is correct,
i.e., , for all . We call deviations the
evolutions that are different from the deterministic behavior.
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Fig. 7. Supply chain management problem: multiple simulations of SHOC al-
gorithm executed in receding horizon mode, with � � �� and � � �� .
(a) Case � � �� . Demand (dashed) and product (solid) at the retailer. (b)
Case � � �� . Demand (dashed) and product (solid) at the retailer.

Assumption 1: The D-dhsa-MPC is converging and the op-
timal cost ,

for all , where and is

the equilibrium input corresponding to .
As D-dhsa-MPC is a standard (deterministic) hybrid MPC,

Assumption 1 is usually satisfied by using terminal state con-
straints and defining cost weight matrices in the objective func-
tion as reported in [9], [11]. In what follows, we will enable the
validity of Assumption 1 by using the terminal state constraint,
which yields converging dynamics for hybrid systems modelled
as DHA by [9], [38].

We prove asymptotic convergence in probability to the target
state according to Definition 7 by showing that the probability
that the desired behavior realizes at each step (i.e.,
that ,for all ) is finite and that, by
summation along all the possible trajectories that are executed,
the cumulative probability tends asymptotically to 1.

The key step is to prove that the probability of each
D-dhsa-MPC trajectory is finite. Constraint(17) is formulated
along a finite horizon, which, in a receding horizon approach,
shifts at every control step, hence it cannot guarantee finiteness
of the trajectory probability along an infinite horizon.

Assumption 2: The following conditions hold:
2.1 the terminal state constraint is added to (18);
2.2 in (17) satisfies

;

2.3 for all , for all
,

where is the function that describes the ueDHA
state update, i.e, (1), (2), (3), (7), (8);
2.4 the equilibrium is not affected by stochastic events,

;
2.5 the optimal performance index is zero for .

Assumption 2.3 can be removed if RSHOC is used, since the
feasibility of the RSHOC problem at the initial instant implies
Assumption 2.3. Assumptions 2.4, 2.5 ensure that the target
state will never be left, once it is reached. Assumptions 2.1–2.5
also imply Assumption 1, as by the terminal constraint conver-
gence of the deterministic hybrid MPC can be proved [9]. As-
sumption 2.4 will be relaxed in the following sections.

Lemma 1: Let Assumptions 1 and 2 hold. For any initial state
the probability of the trajectory of the

D-dhsa-MPC to realize is finite and lower-bounded by a real
positive number .

Proof: See Appendix I.
From the proof of Lemma 1, it is easy to verify that if the

state belongs to a bounded set, a finite uniform bound
exists.

Assumption 3: The state of the DHSA always remains into
a bounded set .

If not intrinsically guaranteed by the system dynamics,
Assumption 3 can be enforced for instance by adopting the
RSHOC approach (22) with to enforce the state con-
straint robustly.

Theorem 1: Under the assumptions of Lemma 1 and Assump-
tion 3, the state of the DHSA in closed-loop with dhsa-MPC
converges in probability to the target .

Proof: By Lemma 1, the fact that by Assumption 2.3,
, for all and that by Assumption

3, is bounded for all , the probability of the
complete D-dhsa-MPC trajectory to realize is ,
hence . By
Assumption 1, is also the lower bound on the probability
of asymptotically converging to without any deviation.
Accordingly, .
Let be such that , ,

, hence at the first deviation occurs.
One may see as the initial state of a new D-dhsa-MPC
trajectory, again with probability of converging .
Thus, the probability of converging after at most one deviation
is . For , let

hence is the probability of experiencing at most deviations
before convergence to .

We prove convergence by induction. For , we have
. Assume that

(28)
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Fig. 8. Solution and worst-case simulation of the RSHOC strategy for � � �� . Upper plot, RSHOC solution: demand (dashed) and product (solid) at the
retailer. Lower plot: worst case simulation, cumulative inventory � (solid), lower limit (dashed), and behavior of the SHOC solution (dash-dot).

Then

where is the probability that after the
deviation, the trajectory converges without further deviations.
By the induction assumption (28)

and thus we have . Since

(29)

we conclude that .

B. Persistent Disturbances: Recurrence of the Target State

In this section, we relax Assumption 2.4 by allowing sto-
chastic transitions from the target state . Accordingly, we as-
sume that is an equilibrium only if ,

. As , , for .
Since to achieve convergence (16) for
must be zero, we modify the cost function by introducing
that is enabled only at and we replace
by 0 in (21).

Lemma 2: Let be an equilibrium input for for
the ueDHA, . By remapping the DHSA

into a modified ueDHA with enabled only for
, and by replacing with 0 in (21), under

the assumptions of Theorem 1 except for Assumption 2.4 there
exists a finite a lower bound of the probability that
the D-dhsa-MPC trajectory reaches the target state without
deviations.

The proof of Lemma 2 and the computation of the lower
bound can be obtained similarly to Lemma 1, by considering the
probability of reaching the target state without accounting for
remaining in it. However, contrarily to Lemma 1 , Lemma 2 does
not account for the evolution after the target state is reached.
Indeed, once at the probability to remain in depends on

.
Theorem 2: Let be an equilibrium input for the

ueDHA dynamics (1), (2), (3), (7), (8) for . Under the
assumptions of Lemma 2, the target state is a recurrent state
for the Markov process obtained by the DHSA in closed loop
with the dhsa-MPC.

The proof of Theorem 2 is identical to the proof of Theorem 1,
where the probability of reaching the target state is computed
using the bound obtained in Lemma 2.

Lemma 3: Consider the D-dhsa-MPC closed loop, any given
, and , where

. Under the assumptions of Lemma 2, if for all ,

, for all , for any
there exists such that for some

.
Proof: See Appendix I.

Commonly used cost functions, including the ones
Section III-A, satisfy the conditions of Lemma 3. Using
Lemma 3, positive recurrence of DHSA in closed-loop with
dhsa-MPC can be proven.

Theorem 3: Under the assumptions of Lemma 3, for all

the set , where ,
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contains the target state and is positive recurrent for a DHSA
in closed-loop with a dhsa-MPC controller.

Proof: follows by the assumed property of the
stage cost . We need to show that the average
time to reach from any state is finite.
Consider two time instants , , and such that

, , , . For
, let be such that there exist time instants ,

, , such that if
, otherwise. Hence, is the

number of deviations from the optimal disturbance realization
during the recursion. Let

the probability of having exactly deviations, and let
be the stochastic variable indicating the time needed to reach

from after exactly deviations. The mean recurrence
time (i.e., the mean time to go from to ) can be
expressed as and by
Lemma 3 . Thus, for any initial state

, . Let
be the lower bound of the probability computed in Lemma 2
to reach the target state without any deviation. We know that

, and an upper bound on the probability of
reaching with unexpected events is .
This is obvious since to reach the target after exactly devi-
ations, deviations must occur and their probability is lower
bounded by . The average recursion time of the target
state is therefore

a finite value that indicates positive recurrence.

VI. CONCLUSIONS

This paper has proposed a discrete-time model of stochastic
hybrid systems that allows the numerical solution of optimal
control problems where performance and probability are traded
off, possibly under chance constraints and/or robust constraints.
Fault-tolerant control and stochastic reachability analysis prob-
lems can be also addressed by slightly modifying the proposed
methodology.

Although the computational complexity of the approach in-
creases with the number of sources of uncertainties and the com-
plexity of the hybrid model, the example presented in this paper
has shown that even in the case of a system with a multidimen-
sional state space, a large input dimension, and multiple sources
of uncertainty, the solution is computed in a few seconds.

Under suitable and usually not very restrictive assumptions
on the cost function and on the constraints, closed-loop prop-
erties of asymptotic convergence in probability in the case of
vanishing disturbances, and of positive recurrence in the case of
persistent disturbances, are guaranteed.

TABLE I
NUMERICAL VALUES USED IN THE SUPPLY CHAIN EXAMPLE

APPENDIX

PROOFS OF LEMMAS

Proof of Lemma 1: Given , because
of the terminal constraint in Assumption 2.1 (see also [9]), and
Assumption 2.4

(30)

where is the optimal cost from , and
indicates the probability cost of

the first step of open-loop optimal control from . Thus, by
Assumptions 2.1, 2.4, 2.5, and by Assumption 1, it holds that

(31)

The terms in the right hand side of (31) are the deterministic cost
and the probability cost to continue with the trajectory planned
at the previous step of the MPC algorithm, and extended to re-
main on the target state . Let

(32)

Because of (31),
. Since and

, , along steps of
the trajectory . Since

(33)

by recursive summations, we obtain

and thus

(34)

where is the actual
closed-loop MPC state trajectory from along steps. Thus,
by setting
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by (34) it follows that

(35)
is finite and lower bounded. Hence, for the complete
D-dhsa-MPC closed-loop trajectory, which by Assumption 1
converges to the target state, has a finite probability
to realize.

Proof of Lemma 3: By Assumption 3, the trajectory of the
D-dhsa-MPC closed loop is such that , .
Hence by the definition of , along the trajectories generated
by the D-dhsa-MPC control strategy, , ,
and . Let be the initial state and
assume by contradiction that for all , . By (30)

and therefore . Since is bounded,
there exists a finite such that

Hence, ,
which implies , a contradiction. By choosing

, where the maximum ex-
ists because we are considering a bounded state-space, and
denotes roundoff to the smallest greater or equal integer, the
lemma is proven.
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