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Abstract— Autonomous driving in urban environments
requires safe control policies that account for the non-
determinism of moving obstacles, such as the position other
vehicles will take while crossing an uncontrolled intersection.
We address this problem by proposing a stochastic model
predictive control (MPC) approach with robust collision avoid-
ance constraints to guarantee safety. By adopting a stochastic
formulation, the quality of closed-loop tracking is increased by
avoiding giving excessive importance to future obstacle configu-
rations that are unlikely to occur. We compute the probabilities
associated with different obstacle trajectories by learning a
classifier on a realistic dataset generated by the microscopic
traffic simulator SUMO and show the benefits of the proposed
stochastic MPC formulation on a simulated realistic intersection.

Index Terms— Autonomous vehicles, model predictive control,
scenario trees, stochastic model predictive control, supervised
learning, classification methods, decision trees.

I. INTRODUCTION

AUTONOMOUS driving has attracted massive interest
both from industry and academia in the last years due to

the enormous potential benefits it could introduce in terms
of safety, energy optimization, and increased infrastructure
efficiency. Unfortunately, achieving fully automated reliable
driving requires significant further research efforts [1]. One
of the main challenges consists of dealing with uncertain
moving obstacles, such as other vehicles, pedestrians, etc.
Various types of sensors are nowadays able to provide reliable
information about the current obstacle positions, see, e.g., [2].
However, in order to drive safely and effectively, the control
algorithm needs to take future obstacle positions into account.
This poses two challenges: how to obtain such information;
and how to exploit it in order to issue safe control commands.

Several approaches have been proposed for modeling pedes-
trians and surrounding vehicles; see, e.g., the overview in [3].
In particular, interacting multiple-model (IMM) filters that
predict the intention and future states of surrounding vehicles
were suggested in [4] and [5]. A similar approach was taken
in [6], where, in addition, hidden Markov models (HMMs)
were used to recognize vehicle maneuvers and probabilistic
trajectories generated with the help of variational Gaussian
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mixture models. A multimodal hierarchical Inverse Reinforce-
ment Learning (IRL) approach was proposed instead in [7]
to learn joint driving pattern-intention-motion models and use
them to probabilistically predict continuous motions. A sim-
pler but effective and computationally inexpensive approach
that retains the ability to predict multimodal distributions
was proposed in [8]. In [9], the authors proposed a gen-
eral semantic-based intention and motion prediction based
on deep neural networks; similar approaches were also pro-
posed in [10] and [11] to predict lane change maneuvers.
A human-like decision model for unsignalized intersections
was suggested in [12] by an intention-aware prediction of
other vehicles via convolutional neural networks with mul-
tiple object tracking combined with a Kalman filter. In [13],
recurrent neural networks were used in long short-term mem-
ory (LSTM) form to predict the future driving lane of the
vehicle. In [14] LSTMs were also used to jointly predict
turning intentions and the corresponding obstacle trajectories.
A hybrid approach using a neural classifier for maneuver
classification and an LTSM memory for trajectory prediction
was analyzed in [15]. For lane-change maneuver prediction,
a combination of support vector machines and neural net-
works was considered in [16], while random forests and
conditional random fields method were suggested in [17]
for a T-intersection. To address uncontrolled intersections,
a learning-based approach has been applied to both intention
prediction and control in [18].

Assuming that a model estimating the future positions of
the surrounding obstacles is available, this can be naturally
exploited for planning the motion of the ego vehicle by
using model predictive control (MPC) techniques [19], [20],
as collision avoidance can then be formulated as an explicit
constraint. Indeed, MPC has gained considerable attention
in the last years in automotive control, especially for its
ability to handle constraints on system variables, not only
in academic research but also in industrial practice; see,
e.g., [21] for a documented use of MPC in high-volume
production. Regarding motion planning, MPC enables tracking
reference paths at desired speeds while ensuring collision
avoidance, thanks to the introduction of explicit constraints
that keep the predicted distance between the ego vehicle and
obstacles above a prescribed safety margin; see, e.g., [22],
in which an MPC formulation was used for path planning in
a dynamic environment by modeling the surrounding obstacle
vehicles as polygons, and [23] for an MPC formulation using
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Fig. 1. Uncontrolled intersection example: the ego vehicle (red) drives
straight and the obstacle vehicle (green) takes a left turn.

spatial-based models. More recently, a distributed MPC
scheme was used in [24] to control vehicle platoons in urban
road networks.

To handle uncertainty in the prediction, stochastic MPC
formulations [25] can be introduced, in particular, scenario-
based approaches [26]; see, e.g., [27], [28], and [29] for
applications of stochastic MPC in automotive control. SMPC
controllers based on imposing chance constraints for collision
avoidance autonomous driving can be found in [30] and [31].
In [32], the authors proposed the use of stochastic MPC based
on Gaussian mixture models to get a multimodal prediction of
the trajectories of the surrounding vehicles. MPC approaches
tailored to collision avoidance with pedestrians were proposed
in [33] and [34], while a generic MPC framework providing
rigorous safety guarantees in uncertain environments was
analyzed in [35] and [36].

Alternative approaches for safe path planning were proposed
in [37] and [38]. A stochastic scenario-based MPC approach
was adopted in [39] by relying on partially observable Markov
decision process models. More recently, [40] employed what
the authors called branch MPC, which uses ideas similar
to [34] and explicitly models human decision-making to
predict the obstacle vehicle intentions.

A. Contribution

This paper proposes a scenario-based stochastic MPC
formulation with robust collision-avoidance constraints for
commanding the longitudinal acceleration and steering rate of
the ego vehicle, focused on the case of uncontrolled intersec-
tions. We estimate the probabilities associated with different
future scenarios, which are crucial for closed-loop perfor-
mance, by means of a classifier that predicts the intention of
incoming vehicles to drive straight ahead, turn left, or turn
right. The classifier is trained on a realistic dataset generated
by the microscopic traffic simulator SUMO (Simulation of
Urban Mobility) [41]. We adopt bagged decision trees for clas-
sification due to their ability to associate a probability to each
target class (straight/left/right) and their superior performance
with respect to other supervised learning approaches that we

have considered. The effectiveness of the overall approach is
analyzed in realistic simulation settings.

The paper is organized as follows. In Section II, we for-
mulate the proposed scenario-based stochastic MPC problem.
Section III presents the classifier based on bagged decision
trees used to predict the other vehicles’ behavior, how it is
trained, how it is exploited to formulate the MPC problem, and
compares it to alternative classification methods. Closed-loop
simulation results are presented in Section IV, and conclusions
are drawn in Section V.

II. PROBLEM FORMULATION

In order to define a prediction model for MPC, we con-
sider for simplicity the following classical kinematic bicycle
model [42] of the ego vehicle

ẋ = v cos(θ + δ) (1a)
ẏ = v sin(θ + δ) (1b)

θ̇ =
v

l
sin(δ) (1c)

v̇ = a (1d)

δ̇ = ω (1e)

in which (x, y) are the fixed absolute frame coordinates of
the center of the front axle of the ego vehicle; θ denotes the
vehicle orientation with respect to the direction of the x axis;
v is the longitudinal speed; and δ is the steering angle. In the
sequel, we denote by X = [x y θ v δ]′ the state vector of
the model and by U = [a ω]

′ the input vector, where a is the
longitudinal acceleration and ω the steering rate. Model (1)
is discretized in time by employing an explicit Runge-Kutta
4 method with sampling interval Ts, obtaining the following
discrete-time nonlinear model

X t+1 = f (X t , Ut ) (2)

where t denotes the sample step.
Our goal is to design a controller that can make the

state X and input U of the ego-vehicle track given reference
trajectories X r, U r, respectively, while avoiding colliding with
obstacles. In this paper, we will only consider the case of
a single obstacle characterized by its coordinates (xo, yo),
although the methodology presented here can straightfor-
wardly be extended to the presence of multiple obstacles.
In the following paragraphs, we introduce three different
MPC formulations of increasing computational complexity
that we will compare in the numerical simulations reported
in Section IV.

A. Prescient Model Predictive Control

Consider the following (ideal) Prescient MPC formulation

min
{Xk|t , Uk|t }

k = 0, . . . , N

N∑
k=0

∥Xk|t − Xr
k|t∥

2
Q + ∥Uk|t − U r

k|t∥
2
R (3a)

s.t. Xk+1|t = f (Xk|t , Uk|t ) (3b)
X0|t = X t (3c)
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Xk|t ∈ X (3d)
Uk|t ∈ U (3e)
Ak|t (Xk|t − X r

k|t ) ≤ Bk|t (3f)

(xk|t − xo
k|t )

2
+ (yk|t − yo

k|t )
2

≥ d2
min. (3g)

In (3), we assume that at the current time t a measurement
or an estimate of the state X t is available, (xo

k|t , yo
k|t ) denotes

the known obstacle trajectory (we will relax this assumption
later). The given reference samples are (X r

k|t , U r
k|t ), k = t, t +

1, . . . , t + N , and ∥x∥
2
Q = x ′Qx , where matrix Q ∈ R5×5 is

symmetric and positive semi-definite, while matrix R ∈ R2×2

is symmetric and positive definite. The sets X , U denote,
respectively, the sets of feasible state and input vectors. The
linear constraints in (3f) are used to model constraints such as
road bounds, where

Ak|t = [I2 − I2]
′

[
cos(θ r

k|t ) sin(θ r
k|t )

− sin(θ r
k|t ) cos(θ r

k|t )

]
with θ r

k|t is the given reference orientation of ego vehicle with
respect to the global axis for k = t, t + 1, . . . , t + N and
I2 is the identity matrix of dimension 2. The right hand side is
given by Bk|t =

[
Lr
2

Wr
2

Lr
2

Wr
2

]′
, where L r and Wr are lengths

that depend on the road profile and are chosen small enough
to guarantee that the ego vehicle remains within the road.
The constraints in (3g) enforce collision avoidance in that the
Euclidean distance between the position of the ego vehicle and
that of the obstacle is greater than a given safety distance dmin.
Note that UN |t is a redundant variable that could be eliminated
from (3).

Problem (3) is solved at each time step t . The first com-
ponent U PMPC

0|t of the optimal solution is commanded as the
input Ut to the vehicle. According to a receding horizon
strategy, the remaining components U PMPC

1|t , . . . , U PMPC
N |t are

discarded, and the problem is solved again at time t + 1, and
so on.

The control law (3) cannot be applied in practice, as it
requires knowing the future obstacle positions (xo

k|t , yo
k|t ),

which is an unrealistic assumption in most cases of interest.
Nonetheless, we will consider (3) as a baseline policy for
comparison with more realistic control strategies which we
detail next.

B. Robust Model Predictive Control

To take into account the uncertainty associated with future
obstacle positions, we consider next the following Robust
MPC formulation

min
{Xk|t , Uk|t }

k = 0, . . . , N

N∑
k=0

∥Xk|t − Xr
k|t∥

2
Q + ∥Uk|t − U r

k|t∥
2
R (4a)

s.t. Xk+1|t = f (Xk|t , Uk|t ) (4b)
X0|t = X t (4c)
Xk|t ∈ X (4d)
Uk|t ∈ U (4e)
Ak|t (Xk|t − X r

k|t ) ≤ Bk|t (4f)

Fig. 2. Scenario tree used in the SMPC formulation (5).

(xk|t − xoi
k|t )

2
+ (yk|t − yoi

k|t )
2

≥ d2
min

∀i = 1, . . . , mt (4g)

where (xoi
k|t , yoi

k|t ), i = 1, . . . , mt , are meaningful corner-case
scenarios used to account for the set of all possible trajectories
over the future horizon taken by the obstacle. Formulation (4)
is robust in that collisions are avoided in all possible scenarios;
in fact, the only difference between (3) and (4) is in the
obstacle avoidance constraint (4g). In (4), mt denotes the
number of corner cases considered, which in general depends
on t .

C. Stochastic Model Predictive Control

The main drawback of (4) is its possible conservativeness,
due to the fact the same predicted input sequence {Uk|t } is used
to counteract all possible future realizations {(xoi

k|t , yoi
k|t )}, and

all such corner cases are considered equally likely. To attenuate
such a potentially conservative behavior without sacrificing
robustness with respect to obstacle avoidance constraints, let
us associate a probability ωi

t to each scenario i ,
∑mt

i=0 ωi
t = 1,

ωi
t ≥ 0, ∀t ≥ 0. We assume that the scenarios are organized

as a scenario tree; see the example depicted in Figure 2. Each
different branch of the tree is parameterized with a set of
corresponding command inputs {ui

k+ j |t } to be optimized and
the number of leaves of the tree is equal to the number mt of
considered corner cases. The time instants over the prediction
horizon at which a split in sub-scenarios occurs are those at
which one will be able to recognize different maneuvers taken
by the obstacle, e.g., drive straight or drive left.

As multiple control moves can occur at the same prediction
instant, the state prediction is no longer unique as in the
prescient and robust MPC cases. In fact, we associate the
state trajectory {X i

k|t } to scenario i and let {U i
k|t } denote the

corresponding sequence of free inputs. To take into account
the tree structure, i.e., that scenarios i and j have a common
subpath

(xoi
k|t , yoi

k|t ) = (x
o j
k|t , y

o j
k|t ), k = 0, . . . , ki j

we impose the equality constraints (a.k.a. “causality con-
straints”) U i

k|t = U j
k|t for all k = 0, . . . , ki j , where ki j denotes

the number of future prediction steps that scenarios i and j
have in common. Note that all scenarios originate from the
current state, i.e., X i

0|t ≡ X t , and have the first move ui
0|t in

common, that will be used as the actuation values commanded
to the vehicle at time t .
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In accordance with the probabilistic scenario tree defined
above, we formulate the following Stochastic MPC problem

min
{X i

k|t , U i
k|t }

k = 0, . . . , N
i = 1, . . . , mt

mt∑
i=1

ωi
t

N∑
k=0

∥X i
k|t − Xr

k|t∥
2
Q + ∥U i

k|t − U r
k|t∥

2
R

(5a)

s.t. X i
k+1|t = f (X i

k|t , U i
k|t ) (5b)

X i
0|t = X t (5c)

X i
k|t ∈ X (5d)

U i
k|t ∈ U (5e)

Ai
k|t (X i

k|t − X r
k|t ) ≤ Bi

k|t (5f)

(x i
k|t − xoi

k|t )
2
+ (yi

k|t − yoi
k|t )

2
≥ d2

min

∀i = 1, . . . , mt (5g)

U i
k|t = U j

k|t , k = 0, . . . , ki j . (5h)

An obvious reason why the SMPC formulation (5) is
less conservative than the RMPC formulation (4) is that it
has more degrees of freedom since it can employ different
input values in different scenarios. This implicitly defines a
closed-loop optimal policy over the prediction horizon, rather
than a single open-loop trajectory as in (4) and (3). Note
that constraints (5g) are enforced for all possible scenarios
i = 1, . . . , mt , that can occur at time t . Consequently, obstacle
avoidance is ensured independently of the probabilities ωi .

III. LEARNING OBSTACLE SCENARIO PROBABILITIES

In order to use the SMPC formulation described in the
previous section to drive the ego vehicle, we need to define
the corner-case uncertainty scenarios and the corresponding
probabilities ωi

t , i = 1, . . . , mt .
For simplicity, as depicted in Figure 1, we consider the sim-

plest case of a four-way intersection in which collisions with a
single obstacle vehicle must be avoided. The adaptation of our
framework to more realistic scenarios is straightforward and
we selected simple scenarios also for the ease of discussing
and interpreting the results. Hence, we have mt ≤ 3 possible
obstacle maneuvers

M ∈ {straight, left, right}

i.e., the obstacle can only pass the intersection by driving
straight, turning left, or right.

In addition to each corner case, we need to also define
the following probabilities: ω1

t associated with M = straight,
ω2

t with M = left, and ω3
t with M = right. To this

end, we collect trajectories (see Section III-A) of multiple
obstacles at intersections and use them to train a classifier
(described in Section III-B), with categorical output M and
a suitably defined input feature vector F that is sufficiently
informative about the current state of the obstacle (see also
Section III-B). As our ultimate goal is to get the time-varying
discrete probability distribution {ω1

t , ω
2
t , ω

3
t }, we will employ

classification methods that also return probabilities.

Each of the three possible corner-case scenarios is associ-
ated with an obstacle trajectory

(xoi
k|t , yoi

k|t ), k = 0, . . . , N , i = 1, 2, 3 (6)

that will be used in (4g) and (5g). The obstacle coordinates
in (6) are (xoi

k|t , yoi
k|t ) = f oi (do

k|t ). In order to obtain a continu-
ous function, we use B-spline interpolation, as described in the
next section, and parameterize it by the distance do traveled
by the obstacle vehicle along the center of its lane.

A. Data Collection

We use the microscopic traffic simulator SUMO (Simulation
of Urban Mobility) [41] to generate realistic data of obsta-
cle trajectories. We consider a real uncontrolled intersection
extracted from Open Street Map and use different types of
vehicles with a variety of driving styles.

In order to define the driving style, we rely on the Intelligent
Driver Model (IDM) [43], included in SUMO and describes
the position and velocity of a vehicle as follows

ẋδ = vδ (7a)

v̇δ = amax

(
1 −

(
vδ(t)
vdes(t)

)ϵ

−

(
σ ∗ (vδ(t), 1vδ(t))

σδ(t)

)2
)
(7b)

where amax and dmax are the vehicle’s maximum desired
acceleration and deceleration, respectively; vδ , vdes, and ϵ

are the current velocity, the desired velocity, and a tuning
parameter; 1vδ is the relative velocity with respect to the
vehicle in front. Moreover, in (7)

σ ∗ (vδ(t), 1vδ(t)) = σ0 + vδ(t)T +
vδ(t)1vδ(t)
2
√

amaxdmax
(8)

where σ0 is the minimum desired distance from the vehicle in
front, and T the desired time headway, while the net distance
between the two vehicles is given by

σδ(t) = df(t) − dδ(t) − lf = 1dδ(t) − lf. (9)

In (9), label f indicates that the quantity refers to the front
vehicle, and d is the position of a vehicle along the centerline
of the road, while lf is the length of the vehicle in front.

In this paper, as we consider free road behaviors,
Equation (7) simplifies to v̇δ = amax

(
1 −

(
vδ(t)

vdes(t)

)ϵ)
.

In SUMO, in a free-driving scenario the term vdes(t) is given
by

vdes(t) = min(vmax, s vdes
max, s vlim)

where vmax, vdes
max, and vlim are the maximum speed, desired

maximum speed, and speed limit respectively, and s is a
parameter called speed factor.

To collect obstacle vehicle data, we consider 3 types of
vehicles, namely a passenger car, a motorcycle, and a bus, each
with 5 different speed factor values ranging from 0.6 to 1.4.
Moreover, for each type of vehicle, we select 6 different
vehicle speeds within the range of 40 to 60 km/h.
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B. Classifier

To classify the intent of the obstacle vehicle to go straight,
turn left, or turn right we use a bagged decision tree [44],
due to its ability to return the discrete probability distribu-
tion {ω1

t , ω
2
t , ω

3
t } associated with the predicted categorical

target M . The motivation to choose this specific classifier
is that, as we will discuss next, we observed experimentally
that it produces better probability estimates compared to other
methods, such as, e.g., Naïve-Bayes classifiers [45] and Sup-
port Vector Machines (SVM) [46], without using additional
calibration methods [47].

The feature vector consumed by the classifier is defined as

Ft = [vo ao θo
di f f do

ln do
lt do

t ]
′

where, assuming the center of the lane for a straight scenario
as the reference lane, vo and ao are, respectively, the speed
and acceleration of the obstacle, θo

diff denotes the obstacle’s
orientation with respect to the reference, do

ln , do
lt are, respec-

tively, its longitudinal and lateral distances from the reference,
and do

t is the distance traveled by the obstacle.
We collected 270 scenarios, out of which 216 trajectories

are used for training and the remaining 54 for testing the
classifier. The obstacle starts 250 m away from the beginning
of the intersection and travels a total distance of 280 m. As a
result, by using a resolution of 0.1 m, we collected 605,016
training data and 151,254 test data. The bagged-tree classifier,
based on 25 learners, is trained in approximately 160 s
on an Intel(R) Corei7-8550U CPU @ 1.80GHz machine in
MATLAB R2019a using the fitcensemble and templateTree
functions available in the Statistics and Machine Learning
Toolbox for MATLAB. The resulting number of splits in the
tree is 90,323 (14.93% of the training data set). The predicted
probability ωi

t associated with the actual outcome Mi , i =

1, 2, 3, averaged on all trajectories, is displayed in Figure 3
(training data) and Figure 4 (test data): it is evident that when
the obstacle is almost 150 m away from the intersection, all
the scenarios are equally probable (ωi

t ≈
1
3 , ∀i = 1, 2, 3);

they become more distinguishable as the obstacle moves
towards the intersection. In particular, the obstacle is correctly
predicted with probability 1 to drive straight about 21 m before
the intersection, and about 5.5 m for left and right turns.

Figure 5 compares the Receiver Operating Characteristic
(ROC) curve, relating the True Positive Rate (TPR) and False
Positive Rate (FPR), obtained by the trained bagged decision
tree with those obtained by a Naïve-Bayes (NB) and Support
Vector Machine (SVM) classifier for the three different scenar-
ios, i.e., {Straight, Left, Right} on test data. More specifically,
Figure 5a shows the ROC curve by considering data points
whose distance from the intersection is in the interval [100, 25]

m (i.e., far away from the intersection), while Figure 5b for
data in the interval [25, 5] m (i.e., close to the intersection).
It can be observed that, close to the intersection, the TPR is
much better for all the classifiers and the bagged decision
tree has a significantly higher TPR compared to NB and
SVM. As expected, far away from the intersection it is nearly
impossible to distinguish the three scenarios. Finally, when the
obstacle is closer than 5 m to the intersection the TPR for the

Fig. 3. Predicted probability ωi
t associated with the outcome Mi of each

training trajectory as a function of the distance traveled by obstacle do
t with

respect to the intersection, averaged on all training trajectories with outcomes
M j , j = 1, 2, 3. The black vertical line represents the starting point of the
intersection.

Fig. 4. Predicted probability ωi
t associated with the outcome Mi of each

test trajectory as a function of the distance traveled by obstacle do
t with

respect to the intersection, averaged on all test trajectories with outcomes
M j , j = 1, 2, 3. The black vertical line represents the starting point of the
intersection.

bagged decision tree is 1 for all scenarios, indicating that the
classifier correctly identifies the obstacle’s intention.

C. Scenario Tree

For setting up the SMPC controller, we consider the sce-
nario tree depicted in Figure 2, in which there are three
branches and we set k12 = k13 < k23, where t + k12 = t + k13
is the time at which we can distinguish between scenario1
(straight) and the remaining scenarios, while t + k23 is the
time at which we can distinguish between the left and right
scenarios. The trained classifier generates both the associated
probabilities and the times at which we can distinguish the
scenarios using the data generated in SUMO. Once the sim-
ulation reaches the time instants at which the scenarios can
be distinguished, the tree is pruned and the corresponding
collision avoidance constraints are removed from SMPC. Note
that, in general, pruning is independent of the probabilities
assigned to each scenario.

IV. SIMULATION RESULTS

To compare the PMPC, RMPC, and SMPC approaches
introduced in this paper, we consider several realistic examples
simulated in SUMO. Firstly, we consider an uncontrolled inter-
section in Lucca, Italy, where right-hand driving is prescribed
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Fig. 5. ROC curve of Naïve-Bayes, Bagged trees, and SVM classifiers on
the testing dataset for different ranges of distance from the intersection.

by the road code, importing the road layout from Open Street
Map. We model the ego vehicle as a passenger car of 5 m
length, maximum speed vmax , and speed factor s = 1. Closed-
loop performance is assessed by the following measure

Jcl =

ts∑
t=0

∥X t − Xr
0|t∥

2
Q + ∥Ut − U r

0|t∥
2
R (10)

consistently with the MPC cost function, where ts is the
total simulation time. SUMO’s IDM model is used offline to
generate a discrete set of reference samples for Xr and U r ,
given a desired maximum speed vmax of the ego vehicle. Such
samples are used to define B-spline interpolation functions
fX r : R 7→ R5, fU r : R 7→ R2, such that, for a generic
distance d along the central line of the road, fX r(d) =

[xr(d) yr(d) θr(d) vr(d) δr(d)]′ and fU r(d) = [ar(d) ωr(d)]′

provide the corresponding state and input references, respec-
tively. Then, at each controller execution step t , given the
piecewise-constant velocity and orientation profiles

v(τ) = v⋆
k+1|t−1

θ(τ ) = θ⋆
k+1|t−1, ∀τ ∈ [(t + k)Ts, (t + k + 1)Ts]

obtained from the previous MPC solution {v⋆
k|t−1, θ

⋆
k|t−1},

k = 0, . . . , N , we use explicit Runge-Kutta 4 to integrate the
differential equation

ḋ(τ ) = v(τ) cos(θ(τ ) − θr(d(τ )))

over the prediction horizon [tTs, (t + N )Ts] to get samples
dk|t , k = 0, . . . , N , of the distance d traveled by the ego

Fig. 6. Example 1: Simulation results.

vehicle, starting from the initial condition d0|t = d(tTs) (i.e.,
the current longitudinal distance traveled by the ego vehicle).
Finally, the corresponding MPC references are obtained as
X r

k|t = fX r(dk|t ) and U r
k|t = fU r(dk|t ).

We use sample time Ts = 0.1 s for both discretizing the
continuous-time ego-vehicle model and executing the MPC
controller, which has prediction horizon N = 40. The CPU
time for solving a single Prescient, Robust, and Stochastic
MPC problem is on average, respectively, 0.7 s, 0.9 s, and
2 s using CasADi [48] and the interior-point nonlinear pro-
gramming solver IPOPT [49]. Note that no particular care was
taken in solving the MPC problems efficiently, and dedicated
software will produce significantly lower computational times.

Example 1. The ego vehicle travels at vmax = 43 km/h
and passes the crossroad without turning, the obstacle vehicle
is a motorcycle taking a right turn at vo

max = 44 km/h
with speed f actor = 1.1. Figure 6 shows the positions of
both ego and obstacle vehicle near the intersection, and the
probabilities ω1

t , ω2
t , ω3

t estimated by the classifier with respect
to the distance traveled by ego d(tTs) from the intersec-
tion. It is apparent that, initially, RMPC and SMPC behave
similarly until the scenarios start becoming distinguishable,
i.e., the probability distribution starts getting non-uniform.
In Figure 6b the black vertical line represents the point
at which the ego vehicle enters the intersection. Note that,
as remarked earlier, a right turn can only be predicted with
high probability by the classifier when the obstacle is close
to the intersection. Thanks to the use of the scenario tree,
SMPC tends to behave more similarly to PMPC than RMPC,
which instead remains conservative. This is a crucial benefit
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Fig. 7. Example 2: Simulation results.

of using SMPC compared to other schemes: even without an
exact information about the future positions of the obstacle,
past information is used in a more clever way to infer possible
obstacle positions and the related chances to realize. Thanks
to the probabilistic model and the use of additional degrees
of freedom associated with it, SMPC takes control decisions
that, by construction, are best in expectation. This behavior
is reflected in Table I, which shows that the cost associated
with SMPC is significantly smaller than that of RMPC, which
instead gives the same importance to all possible scenarios.

Example 2. The second example refers to the case in which
the ego vehicle aims at passing the intersection without turning
at a maximum speed vmax = 50 km/h, while the obstacle is
a bus coming from the opposite direction at vo

max = 54 km/h,
with speed factor s = 1.3, taking a left turn. The results
obtained using the different MPC formulations in this scenario
where a collision is possible are described in Figure 7 and
Table I, from which we can infer that all the control algorithms
result in the same closed-loop costs since the ego vehicle
deviates from the reference path to avoid the collision with the
bus. Figure 7b shows the probabilities ω1

t , ω2
t , ω3

t estimated
by the classifier with respect to the distance traveled by the
ego vehicle d(tTs) from the intersection and the black vertical
line at 0 m represent the starting point of the intersection.

Example 3. The ego vehicle travels at vmax = 45 km/h,
takes a left turn, and the obstacle is a car with speed factor
s = 1 driving straight across the intersection in the opposite
direction at a maximum speed of vo

max = 40 km/h as shown
in Figure 8a. There is no potential collision between the ego

TABLE I
CLOSED-LOOP COST Jcl (10) OF PRESCIENT, ROBUST, AND STOCHASTIC

MPC OBTAINED IN THE THREE TEST EXAMPLES

Fig. 8. Example 3: Simulation results.

vehicle and the obstacle in this example. From Table I it is
evident that SMPC works closer to PMPC than RMPC thanks
to the exploitation of the scenario tree. As shown in Figure 8b,
the straight scenario is detected early by the classifier, thus
SMPC lifts the collision avoidance constraints from the other
two scenarios. Instead, the actions commanded by RMPC
suffer from the presence of the irrelevant scenario (right turn).

Example 4. The ego vehicle travels straight across the
intersection at vmax = 43 km/h. A motorcycle with a speed
factor s = 1.3 traveling at a maximum speed of 44 km/h takes
a right turn. This is a non-collision scenario, and in Table I
we observe that the RMPC has the highest closed-loop cost
as it takes into account the scenario (left turn) that leads to a
collision as well, while SMPC will consider such a scenario
very unlikely, resulting in an overall control action that has a
cost closer to that of PMPC.

Example 5. The ego vehicle crosses the intersection without
turning at vmax = 45 km/h and the obstacle is a bus taking
a left turn at a speed vo

max = 50 km/h with speed factor
s = 1. This is also a collision scenario where all the control
algorithms have the same closed-loop cost.
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V. CONCLUSION

This paper has proposed a stochastic MPC approach to
autonomous driving, particularly focusing on the case of
uncontrolled intersections. By training a classifier on obstacle
trajectories that can also return the probabilities corresponding
to each possible predictable categorical value, we could set
up a stochastic optimization problem whose solution, at each
time step t , provides the required command action on the
ego vehicle. We have shown that using such probabilities is
beneficial, as it makes SMPC less conservative than a robust
MPC approach, in which they are not taken into account.

Future work will be devoted to extending the idea to mul-
tiple obstacles; in such a case, it will be important to develop
methods to automatically reduce the number of scenarios
considered in the SMPC formulation to keep the computation
complexity of the approach manageable. Another important
variation to analyze is the use of more meaningful MPC
performance indices to optimize, such as considering driving
quality.
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