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Abstract—This paper proposes piecewise affine (PWA) virtual
sensors for the estimation of unmeasured variables of nonlinear
systems with unknown dynamics. The estimation functions are
designed directly from measured inputs and outputs and have two
important features. First, they enjoy convergence and optimality
properties, based on classical results on parametric identification.
Second, the PWA structure is based on a simplicial partition of the
measurement space and allows one to implement very effectively
the virtual sensor on a digital circuit. Due to the low cost of the
required hardware for the implementation of such a particular
structure and to the very high sampling frequencies that can be
achieved, the approach is applicable to a wide range of industrial
problems.

Index Terms—Digital circuits, nonlinear observers, piecewise
affine (PWA) functions, virtual sensors.

I. INTRODUCTION

E STIMATING the internal states of a dynamical system
from measurements is one of the basic problems in control

theory. For linear dynamical systems, it is well known that, in
case of stochastic noise affecting measurements and dynamics,
the Kalman filter provides optimal estimates. On the other hand,
for nonlinear systems, the optimal filter is, in general, very
difficult (or impossible) to derive, and one must rely on approx-
imate solutions, such as extended Kalman filters [1], unscented
Kalman filters [2], ensemble Kalman filters [3], and particle
filters [4]. For these solutions, a model of the system must
be available; however, in many practical applications, realistic
models are not available, and one has to solve a problem of
filter design from data. The standard procedure to address this
problem is to first obtain a model by using system identification
and then design an observer based on the resulting model to
obtain estimates. We will refer to this strategy as the two-step
procedure.

When designing a filter from data, the overall performance
is usually far from optimal, and alternative strategies were pro-
posed. In particular, we highlight the design method proposed
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in [5], which is a direct (one-step) procedure for designing an
optimal filter, is applicable to nonlinear systems, and is proven
to be the minimum variance estimator among the selected class
of approximating filters. We refer to the observer obtained using
the direct procedure as the virtual sensor (cf. [6]). The virtual
sensor is a function of past inputs and measured outputs, and
no model of the system is required. Only the observability
of the variables to be estimated is assumed as a necessary
condition. Apart from the contribution [5], where a stochastic
framework is considered, virtual sensors for nonlinear systems
have been proposed also in [7] using a set membership approach
and applied to relevant industrial problems in [8]–[11]. The
procedure described in [5] relies on choosing a suitable set
of basis functions, which ensures that the resulting virtual
sensor satisfies the assumptions required to apply the theoretical
results in [12].

In this paper, we propose piecewise affine (PWA) simplicial
(PWAS) functions as basis functions for the design of virtual
sensors. The main advantage of using PWAS functions is that
they can be implemented very efficiently in digital circuits
such as field-programmable gate arrays (FPGAs), providing
low power consumption, fast response times, and, at least
for high-volume applications, low cost [13]. In particular, the
use of FPGAs has proven to be very effective in embedded
systems in different fields of application [14], [15]. PWA
functions have been used extensively in the last few years for
control design (see, e.g., [16] and [17]) but surprisingly not
much for estimation purposes. The contribution of this paper
is to introduce PWAS virtual sensors in the framework of
one-step filters, showing that they enjoy all the convergence
and optimality properties of the general approach described
in [5]. Their main practical advantage is the possibility to
implement them on low-cost hardware (in particular, FPGAs),
obtaining short execution times on the order of tens of
nanoseconds.

The approach of this paper is extremely useful in at least
three types of applications:

1) when a real sensor, after being used for experiments,
is too expensive or complex to be deployed in a
product;

2) in safety-critical applications, where redundancy of mea-
surements is used to detect sensor failures;

3) when a classical observer based on the two-step proce-
dure is too imprecise, slow, expensive, or power demand-
ing to be implemented.

The proposed approach is tested in two case studies. The
first one is a discrete-time version of Lorenz’s system, whose
parameters are set to make the dynamics chaotic, that we
chose to compare our results with the ones in [5]. The
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second one concerns the control of a laboratory helicopter
model and is based on experimental data. In both cases,
the resulting FPGA implementation provides good estima-
tion accuracy and good circuit features, in terms of real-time
processing times (on the order of tens of nanoseconds) and
circuit size.

This paper is organized as follows. Section II introduces the
estimation problem. The PWAS virtual sensor is presented in
Section III. In Section IV, the convergence properties of the
proposed scheme are proven, while the issues related to its
practical implementation are discussed in Section V. The two
case studies are presented in Section VI, and some conclusions
are gathered in Section VII.

II. SYSTEM DESCRIPTION

Consider the nonlinear discrete-time dynamical model S

S :






x(t + 1) = g (x(t), u(t))
y(t) = hy (x(t))
z(t) = hz (x(t))

(1)

where x ∈ Rnx is the state vector, u ∈ Rnu is the exogenous
input vector of manipulated variables, y ∈ Rny is the vector of
measurable outputs, and t is the discrete-time instant. Vector
z ∈ Rnz collects a set of variables to be estimated. We assume
that the vector z(t) can be measured by a real sensor at time
instants t = 0, . . . , T . Then, we aim to construct a virtual sen-
sor that estimates z(t) for t > T . The functions g(·, ·) : Rnx ×
Rnu → Rnx , hy(·) : Rnx → Rny , and hz(·) : Rnx → Rnz are
assumed to be unknown. For the sake of simplicity, we assume
nz = 1; nonscalar z can be estimated componentwise using the
techniques presented in this paper.

The available measurements of u, y, and z are assumed to be
affected by noise

ũ(t) =u(t) + ηu(t) t ≥ 0

ỹ(t) = y(t) + ηy(t) t ≥ 0

z̃(t) = z(t) + ηz(t) 0 ≤ t ≤ T

where ηu, ηy, and ηz are unmeasured stochastic variables.
The notion of the observability of nonlinear systems is well

developed (see, e.g., [18] and [19]); here, we follow the defini-
tions in [5] that we briefly recall in Section IV. As highlighted in
[5], observability implies that the state vector x can be uniquely
determined by collecting a finite number Mu (Mu ≥ 0) of
samples of u and My (1 ≤ My ≤ nx) samples of y. Therefore,
if the system defined by (g, hy) is observable, then there exists
a function fz (which can be obtained from a system model, if
known) such that

z(t) = fz (U(t), Y (t))

with

U(t) ∆= [u(t − Mu + 1)′ u(t − Mu + 2)′ . . . u(t)′]′

Y (t) ∆= [y(t − My + 1)′ y(t − My + 2)′ . . . y(t)′]′

where ′ is the transposition operator. The reader is referred to
[7] for the detailed proof of this result. In case of data perturbed
by noise, we define1

Ũ(t) ∆= [ũ(t − Mu + 1)′ ũ(t − Mu + 2)′ . . . ũ(t)′]′

Ỹ (t) ∆= [ỹ(t − My + 1)′ ỹ(t − My + 2)′ . . . ỹ(t)′]′ .

The aforementioned setup, in which the system (1) is un-
known, covers a wide range of applications.

III. VIRTUAL SENSOR

The proposed virtual sensor is referred to as Vα(w) and is
obtained by estimating z in the following way:

ẑ(t)=
N∑

k=1

wkαk

(
Ũ(t), Ỹ (t)

)
∆=fα

(
Ũ(t), Ỹ (t);w

)
(2)

where w is a vector of parameters to be determined, fα :
Rnξ → R (for fixed w), with ξ =

[Ũ
Ỹ

]
and nξ

∆= Munu +
Myny , and {αk}N

k=1 is a basis of functions that is described
hereinafter. Vector w ∈ Dw ⊂ RN collects the corresponding
weights, with Dw being a compact set, determined by solving
the least squares problem

w∗=arg min
w

{
T∑

t=M

[
z̃(t)−fα

(
Ũ(t), Ỹ (t);w

)]2
}

(3)

where M = max(Mu,My), M * T . The results in [12] show
that, by properly choosing the basis functions, the estimation
error z(t) − ẑ(t) converges toward zero in a “better way” than
those obtainable with a two-step procedure (see Theorem 1
hereinafter).

For the efficient circuit implementation of the virtual ob-
server (2), we consider a class of continuous and regular PWA
basis functions, defined over a regular partition of the (closed
and convex) hyperrectangular domain

S = {ξ ∈ Rnξ : ξminj ≤ ξj ≤ ξmaxj , = 1, . . . , nξ} (4)

into a set of regular simplices. The functions that can be
obtained by combining the elements of this basis are called
PWAS functions. Each basis function αk is defined over the
domain S.

Definition 1 (Simplex): Given a set of nξ + 1 points
ξ0
i , ξ1

i , . . . , ξ
nξ

i ∈ Rnξ , called vertices, a simplex Si in Rnξ is
their convex combination

Si =




ξ ∈ Rnξ : ξ =
nξ∑

j=0

µjξ
j
i , 0 ≤ µj ≤ 1,

nξ∑

j=0

µj = 1




 .

For nξ = 1, a simplex is a segment, for nξ = 2 a triangle, for
nξ = 3 a tetrahedron, and, more generally, a nξ-dimensional
hypertriangle. The domain S is partitioned into simplices as
follows. Every dimensional component ξj ∈ [ξminj , ξmaxj ] of

1Vectors Ũ(t) and U(t) are empty vectors in case the system is autonomous,
i.e., for nu = Mu = 0.
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S is divided into pj subintervals of length (ξmaxj − ξminj)/pj .
Consequently, the domain is divided into

∏nξ

j=1 pj hyperrec-
tangles and contains N =

∏nξ

j=1(pj + 1) vertices vk. Each
rectangle is further partitioned into nξ! =

∏nξ

i=1 i simplices
by resorting to the algorithm proposed in [20]; thus, S con-
tains L = nξ!

∏nξ

j=1 pj simplices Si such that S = ∪L−1
i=0 Si

and
◦
Si ∩

◦
Sj = ∅, ∀i, j = 0, . . . , L − 1, i 0= j, with

◦
Si denoting

the interior of Si. The resulting partition is called simplicial
partition or type-1 triangulation and is univocally identified
by vector p. The corresponding class of continuous functions
that are affine over each simplex constitutes an N -dimensional
linear space PWASp[S] ⊂ C0[S] [21], where C0[S] denotes
the space of continuous functions defined over S. Therefore,
it is possible to define different bases, made up of N linearly
independent functions belonging to PWASp[S]. By choosing
some (arbitrary) ordering of the functions of any of these
bases, we can regard them as an N -length vector. Then, a
scalar PWAS function fα ∈ PWASp[S] is defined as a linear
combination of the basis functions as in (2). The coefficients
wk, collected into the vector w, determine uniquely fα for each
given ξ ∈ S.

Different types of basis functions can be defined; in this
paper, we refer to the so-called α-basis [22]. The function
αk(ξ) is a PWAS hyperpyramid (a pyramid if nξ = 2), which
takes the value 1 at vk and 0 at all the other vertices. Hence,
every element of the basis has a local nature, is affine over
each simplex, and satisfies the conditions, 0 ≤ αk(ξ) ≤ 1,
∀ξ ∈ S, and

αk(vh) = δh,k =
{

1 if h = k
0 if h 0= k

where δh,k is the Kronecker’s delta. Of course, other bases can
be defined and used: The interested reader is referred to [23]
and [24] for some examples.

A. Circuit Implementation

The circuit implementation of the proposed virtual sensor is
made up of two blocks: a bank of registers to store past values of
ũ(t) and ỹ(t) (i.e., the vectors Ũ(t) and Ỹ (t)) and an arithmetic
unit to calculate the value of the PWAS function fα.

Whatever basis one chooses, a PWAS function can be imple-
mented in a circuit by using linear interpolators. Indeed, given
a nξ-dimensional input vector ξ, the value of a PWAS function
can be obtained by linearly interpolating only the nξ + 1 values
assumed by the function at the vertices defining the simplex
that the input vector belongs to. The algorithm usually adopted
to locate such a simplex is based on Kuhn’s lemmas [20] and
is optimal with respect to the number of inputs [25]. Some
examples of digital circuit solutions for fast piecewise-linear
interpolation can be found in [13], [26], and [27].

We remark that speed is just one of the key features of
the proposed circuit implementation. Other important features
are related to the possibility of implementing the proposed
architectures in embedded systems, with low-cost hardware
resources.

IV. CONVERGENCE ANALYSIS OF THE ESTIMATION ERROR

This section proves the convergence properties of the pro-
posed virtual sensor. After recalling from [5] the properties that
a generic virtual sensor must enjoy to ensure convergence, we
prove that the PWAS virtual sensor (2) satisfies such properties.

Consider the minimum variance filter K(θM) obtained by us-
ing a two-step procedure: 1) by estimating a state-space model
of (1) from a set of available measurements and 2) by designing
an observer based on such a model. The filter K(θM) is based
on the parameter set θM ∈ DθM , where DθM is a compact
set, and designed relying on a class of models M(θM) of
system (1). In particular, consider the model M(θ∗M), identified
in accordance with a prediction error method from a set of
available data ũ(t), ỹ(t), and z̃(t) and the corresponding filter
realization K(θ∗M). The estimate produced by K(θ∗M) can be
represented in regression form as

ẑK(t) = fK
(
θM, Ũ(t), Ỹ (t), Ẑ(t)

)

where

Ẑ(t) ∆= [ẑ(t − Mz)′ ẑ(t − Mz + 1)′ . . . ẑ(t − 1)′]′

with t > T , Mz ≥ 0 (Mz = 0 means that Ẑ(t) is an empty
vector).

The estimates ẑV produced by a generic virtual sensor V(θV)
(which is obtained by applying the direct approach) are

ẑV(t) = fV
(
θV , Ũ(t), Ỹ (t), Ẑ(t)

)
(5)

where t > T , θV ∈ DθV , where DθV is a compact set. An
optimal realization V(θ∗V) of the virtual sensor is obtained by
minimizing a quadratic criterion similar to (3)

θ∗V =arg min
θV

{
T∑

t=M

[
z̃(t)−fV

(
θV , Ũ(t), Ỹ (t), Ẑ(t)

)]2
}

(6)

with M * T . Note that the PWA virtual sensor (2) is a special
case of (5), based on PWAS basis functions and with Mz = 0.

The following result describes the convergence properties of
V(θ∗V) compared to K(θ∗M).

Theorem 1 ([5] and [12]): Consider system (1), and as-
sume that (g, hy) is observable. Consider a minimum variance
filter K(θ∗M) and a virtual sensor V(θ∗V) whose parameters
are obtained by solving problem (6). Assume that there exist
two scalars C > 0 and λ, 0 < λ < 1, such that the following
conditions hold.

1) The estimate is limited at origin, i.e.,
∣∣∣fV

(
θV , Ũ0(t), Ỹ0(t), Ẑ0(t)

)∣∣∣ ≤ C (7)

where Ũ0, Ỹ0, and Ẑ0 are zero vectors of dimensions
Munu, Myny , and Mz , respectively.

2) The virtual sensor (5) has exponential fading memory,
i.e., considering two different realizations of vectors
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Ũ(t), Ỹ (t), and Ẑ(t) named Ũ1(t), Ỹ1(t), and Ẑ1(t) and
Ũ2(t), Ỹ2(t), and Ẑ2(t), respectively, it yields

∣∣∣fV
(
θV , Ũ1(t), Ỹ1(t), Ẑ1(t)

)
− fV

(
θV , Ũ2(t), Ỹ2(t), Ẑ2(t)

)∣∣∣

≤ C
t∑

s=0

λt−s [‖ũ1(s) − ũ2(s)‖1 + ‖ỹ1(s) − ỹ2(s)‖1

+ ‖ẑ1(s) − ẑ2(s)‖1] (8)

where ‖ · ‖1 denotes the 1-norm in the Euclidean space.
This condition requires that the remote past inputs of the
virtual sensor are forgotten at an exponential rate.

3) The function fV(θV , Ũ(t), Ỹ (t), Ẑ(t)) is differentiable
with respect to θV for all θ ∈ DθV , and its gradient
∇θVfV(θV , Ũ(t), Ỹ (t), Ẑ(t)) fulfills the following expo-
nential fading property:∥∥∥∇θVfV

(
θV , Ũ1(t), Ỹ1(t), Ẑ1(t)

)

−∇θVfV
(
θV , Ũ2(t), Ỹ2(t), Ẑ2(t)

)∥∥∥
1

≤C
t∑

s=0

λt−s [‖ũ1(s)−ũ2(s)‖1+‖ỹ1(s)−ỹ2(s)‖1

+ ‖ẑ1(s) − ẑ2(s)‖1] . (9)

Then, denoting the statistical expectation by E[·], the follow-
ing results hold with probability 1 as T → ∞.

i) The vector of the parameters defined in (6) leads to the
minimization of the estimation error variance among all
the virtual sensors with the same structure, i.e., V(θ∗V) =
arg min

V(θV)
E[(z(t) − ẑV(t))2].

ii) If K(θ∗M) ∈ V(θV) (i.e., it is possible to express the two-
step observer in regression form as a particular realiza-
tion of the virtual sensor), one obtains that E[(z(t) −
ẑK(t))2] ≥ E[(z(t) − ẑV(t))2] which means that the vir-
tual sensor has a performance that is better than or equal
to that of the two-step observer.

iii) If there exists θo
M ∈ DθM such that S = M(θo

M) (i.e.,
there exists a set of parameters of the two-step observer
that describes exactly the system dynamics) and K(θo

M) ∈
V(θV), then V(θ∗V) is a minimum variance filter.

For ii) and iii) to be applied, it is necessary that K(θ∗M) has
fading memory. !

In conclusion, Theorem 1 proves that, in the favorable sit-
uation of no modeling error (and assuming K(θ∗M) is com-
putable), the two-step procedure performs no better than the
direct approach. Also, in the presence of modeling errors,
the virtual sensor V(θ∗V), although may be suboptimal, is the
minimum variance estimator among the selected approximating
class of filters. Such a result cannot be ensured using the two-
step procedure, where modeling errors can determine large per-
formance deteriorations. Finally, note that minimum variance
filters are, in general, very difficult to derive (or to implement)
for nonlinear systems; as a consequence, approximations like
the extended Kalman filter are often used with no guarantees
even on the boundedness of the estimation error.

Remark 1: To obtain the convergence results of Theorem 1,
two conditions that are not explicitly stated are needed. The first
assumption is on the data set, the second one is on the criterion

used to choose the parameter vector (these are labeled as
conditions S3 and C1 in [12], respectively). As also highlighted
in [5], these conditions are automatically fulfilled if system (1)
is observable and if a quadratic criterion as in (6) is used. As ob-
servability and a quadratic criterion are required in Theorem 1,
we conclude that the results shown in [12] still hold. The three
additional requirements (7)–(9) correspond to condition M1 in
[12] and are exclusive properties of the structure of the virtual
sensor.

The rest of this section is devoted to show that the proposed
PWAS virtual sensor Vα(w) fulfills the aforementioned require-
ments and, hence, the convergence properties of Theorem 1.

Lemma 1: For the PWAS virtual sensor Vα(w) defined in
(2), there exist two scalars C > 0 and λ, 0 < λ < 1 such that
the following conditions hold.

1) The estimate is limited at origin, i.e.,
∣∣∣fα

(
Ũ0(t), Ỹ0(t);w

)∣∣∣ ≤ C (10)

for Ũ0(t) ≡ 0 ∈ RMunu and Ỹ0(t) ≡ 0 ∈ RMyny .
2) The virtual sensor (2) has exponential fading memory∣∣∣fα
(
Ũ1(t), Ỹ1(t);w

)
− fα

(
Ũ2(t), Ỹ2(t);w

)∣∣∣

≤ C
t∑

s=0

λt−s [‖ũ1(s) − ũ2(s)‖1 + ‖ỹ1(s) − ỹ2(s)‖1] (11)

for any (Ũ1(t), Ỹ1(t)) and (Ũ2(t), Ỹ2(t)).
3) Function fα is differentiable with respect to w for all

w ∈ Dw, and the following exponential fading property
is satisfied:∥∥∥∇wfα
(
Ũ1(t), Ỹ1(t);w

)
−∇wfα

(
Ũ2(t), Ỹ2(t);w

)∥∥∥
1

≤ C
t∑

s=0

λt−s [‖ũ1(s) − ũ2(s)‖1 + ‖ỹ1(s) − ỹ2(s)‖1] (12)

for any (Ũ1(t), Ỹ1(t)) and (Ũ2(t), Ỹ2(t)). !
Proof: Let nξ = Munu + Myny , and define

Ξ(t) ∆=
[
Ũ ′(t) Ỹ ′(t)

]′
∈ Rnξ .

1) Let Ξ0(t) ≡ [Ũ ′
0(t) Ỹ ′

0(t)]′ = 0 ∈ Rnξ . Then, by
recalling that 0 ≤ αk(·) ≤ 1, for any k, with a
slight abuse of notation, we get |fα(Ξ0(t);w)| =
|
∑N

k=1 wkαk(Ξ0(t))| ≤
∑N

k=1 |wk|
∆= C1 > 0.

2) Take two vectors Ξ1(t) and Ξ2(t), and consider the left-
hand side of (11)

|fα (Ξ1(t);w) − fα (Ξ2(t);w)‖

=

∣∣∣∣∣

N∑

k=1

wk (αk (Ξ1(t)) − αk (Ξ2(t)))

∣∣∣∣∣

≤
N∑

k=1

|wk [αk (Ξ1(t)) − αk (Ξ2(t))]|

=
N∑

k=1

|wk| |αk (Ξ1(t)) − αk (Ξ2(t))|

≤ C1

N∑

k=1

|αk (Ξ1(t)) − αk (Ξ2(t))| .
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Due to the structure of the chosen α-basis, each basis
function αk is Lipschitz continuous. Hence, there exists a
coefficient β > 0 such that

|αk (Ξ1(t)) − αk (Ξ2(t))| ≤ β ‖Ξ1(t) − Ξ2(t)‖1 . (13)

Then

C1

N∑

k=1

|αk (Ξ1(t)) − αk (Ξ2(t))| ≤ C1βN ‖Ξ1(t) − Ξ2(t)‖1 .

Consider now the right-hand side of (11). Let λ be
any scalar such that 0 < λ < 1, and let C2 > 0 be a
constant to be determined. Then, recalling that M =
max(Mu,My), we have

C2

t∑

s=0

λt−s [‖ũ1(s) − ũ2(s)‖1 + ‖ỹ1(s) − ỹ2(s)‖1]

≥ C2




t∑

s=t−Mu+1

λt−s ‖ũ1(s) − ũ2(s)‖1

+
t∑

s=t−My+1

λt−s ‖ỹ1(s) − ỹ2(s)‖1





≥ C2λ
M−1




t∑

s=t−Mu+1

‖ũ1(s) − ũ2(s)‖1

+
t∑

s=t−My+1

‖ỹ1(s) − ỹ2(s)‖1





= C2λ
M−1 ‖Ξ1(t) − Ξ2(t)‖1

where
∑t

s=t−Mu+1 λ
t−s‖ũ1(s) − ũ2(s)‖1 is zero for

Mu = 0. By defining C2 = C1βN/λM−1, we get

C1βN ‖Ξ1(t) − Ξ2(t)‖1 ≤ C2λ
M−1 ‖Ξ1(t) − Ξ2(t)‖1

which proves that (11) is satisfied.
3) Function fα is clearly differentiable with respect to w, as

∇wfα (Ξ(t);w) =∇w

N∑

k=1

wkαk (Ξ(t))

= [α1 (Ξ(t)) . . . αN (Ξ(t))] .

Consider the left-hand side of (12). From (13), we get

‖∇wfα (Ξ1(t);w) −∇wfα (Ξ2(t);w)‖1

=
N∑

k=1

|αk (Ξ1(t)) − αk (Ξ2(t))| ≤ βN ‖Ξ1(t) − Ξ2(t)‖1 .

Since the right-hand side of (12) coincides with that of
(11), by setting C3 = βN/λM−1, we get

βN ‖Ξ1(t) − Ξ2(t)‖1 ≤ C3λ
M−1 ‖Ξ1(t) − Ξ2(t)‖1 .

In conclusion, for any choice of λ, 0 < λ < 1, by
taking C = max(C1, C2, C3), the theorem is proven. "

Referring to Remark 1, the following result follows as a
corollary of the main result of [12].

Corollary 1: Consider system (1), and assume that (g, hy) is
observable. Consider a minimum variance filter K(θ∗M) and the
proposed PWAS virtual sensor Vα(w∗), whose parameters are
obtained by solving problem (3). Then, denoting the statistical
expectation by E[·], the following results hold with probability
1 as T → ∞.

1) Vα(w∗) = arg minVα(w)E[(z(t) − ẑV(t))2].
2) If K(θ∗M) ∈ Vα(w), then E[(z(t) − ẑK(t))2] ≥

E[(z(t) − ẑV(t))2].
3) If there exists θo

M ∈ DθM s.t. S = M(θo
M) and K(θo

M) ∈
Vα(w), then Vα(w∗) is a minimum variance filter. !
Proof: We need to show that conditions S3, C1, and M1

in [12] hold. Condition S3 is an assumption on the data set
and is automatically fulfilled by having assumed that (g, hy)
is observable. Condition C1 is on the choice of the parameter
vector w and is fulfilled by having adopted the quadratic crite-
rion in (3) for the PWAS virtual sensor. Finally, since Vα(w∗) is
a PWAS virtual sensor, Lemma 1 guarantees that condition M1
is satisfied. "

V. IMPLEMENTATION ISSUES

A. RLS Problem

A number of numerical issues have to be faced to design a
practical implementation of the proposed PWAS virtual sensor.

By directly solving problem (3), it is possible to obtain an
ill-conditioned problem, i.e., the solution is sensitive to small
changes in the data. A practical work-around is to rely on the so-
called Tikhonov regularization, which consists of calculating
the weights wk by solving the regularized least squares (RLS)
problem

min
w

{
σw′Γw+

T∑

t=M

[
z̃(t)−fα

(
Ũ(t), Ỹ (t);w

)]2
}

(14)

where σ is the Tikhonov regularization parameter. The second
term in the sum can be reformulated as a quadratic function of w
and takes into account the square error between the output of the
PWAS model and the actual data z̃(t). The first term performs
a Tikhonov regularization that depends on the structure of
Γ [28]. In the simplest case, Γ = I provides the zero-order
Tikhonov regularization. First-order (or higher order) Tikhonov
regularizations can be obtained alternatively by considering the
gradient of the PWAS function fα (or higher order derivatives)
in constructing Γ; see [28] for details.

The RLS problem (14) can be rewritten as

min
w

{
σw′Γw + ‖z̃ − Hw‖2

2

}
(15)

where

z̃ =




z̃M

...
z̃T



H =





α′
(
Ũ(M), Ỹ (M)

)

...
α′
(
Ũ(T ), Ỹ (T )

)



 .
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Fig. 1. Definition of the domain in a 2-D case.

Matrix H has T − M + 1 rows, each one corresponding to a
data sample, and N columns, each one corresponding to a basis
function, while z̃ ∈ RT−M+1 is the data vector and Γ ∈ RN×N

is the Tikhonov regularization matrix. Assume that σ has been
fixed. Then, problem (15) has the unique solution

wσ = (H ′H + σΓ)−1
H ′z̃ = H∗z̃ (16)

where H∗ is the (regularized) pseudoinverse matrix of H . As
Γ = Γ′, detΓ 0= 0, matrix (H ′H + σΓ) is always invertible.
A singular value decomposition of matrix H provides some
information for selecting a good value for σ [28]. An alternative
way that is suitable also for large matrices consists of cross-
validation, a method to ensure model prediction ability [28].

B. Domain Definition and Basis Function Selection

The choice of the domain of definition S ⊂ Rnξ of the PWAS
function also requires some care. Since no a priori information
is available, the boundary of S must be also estimated before
solving (14). As the circuits proposed in [13] are able to evalu-
ate PWAS functions defined over hyperrectangular domains S,
we assume such a form, and we identify the upper and lower
limits for each dimension.

Let Ŝ be the hyperrectangle that exactly contains all data.
The choice S = Ŝ is not safe enough, since some trajectory
could fall outside Ŝ for t > T (i.e., when the virtual sensor is
operating) and PWAS circuits produce an incorrect output when
the input lies outside the domain boundaries. Then, we calculate
S as an expansion of Ŝ with respect to its center by a constant
factor γ > 1. Fig. 1 shows an example for data scattered in a
2-D space. Such a heuristic criterion for choosing S must be
validated a posteriori by running simulations or experimental
tests. This procedure can be skipped when the value of γ is
imposed by physical constraints on the system.

Once the domain S is chosen, many basis functions can
be adopted among those proposed in the literature [22]–[24];
in particular, we can use the α-basis functions described pre-
viously. The resulting PWAS function is not affected by this
choice because each basis spans the same space S, although
the numerical complexity of problem (14) might depend on the
chosen basis. In particular, as the α-basis has a local nature,
each basis function is nonzero only on a limited region of
the domain S, which makes the matrices in (16) amenable for
sparse matrix computations.

TABLE I
PARAMETERS INFLUENCING A PWA VIRTUAL SENSOR

C. Parameters and Settings

The performance of the virtual sensor depends on a set of
parameters that must be fixed before solving problem (14). In
this section, we provide a short description of their effects on
the structure of the virtual sensor and highlight the tradeoffs be-
tween opposite requirements when choosing such parameters.
The description is summarized in Table I.

1) The parameters Mu and My establish the dimension of
the domain of definition of the PWAS function, given
by nξ = nuMu + nyMy . On the one hand, this quantity
must be as small as possible because the number of
coefficients wk grows exponentially with the dimension
of the PWAS function; on the other hand, usually, a more
complicated model has the ability to better capture the dy-
namics hidden in the data, thus reducing the discrepancy
between ẑ(t) and z(t). Finally, we remark that Mu and
My can be estimated through statistical techniques such
as the mutual information [29], [30].

2) The number of vertices N depends on the chosen partition
S and is the number of coefficients wk, which, in turn,
influences the complexity of the optimization problem
(14) and the dimension of the memory required by the
circuit implementation.

3) About the Tikhonov regularization parameter σ, there is
a vast literature dealing with the problem of its optimal
choice. In Section VI, we employ a cross-validation
method. The choice of σ depends on the order of the
Tikhonov regularization, i.e., on the structure of Γ. The
reader is referred to [28] for further details.

4) The observation time interval T plays an important role
in the identification of Vα, but also, the distribution of
the data y(t) and z(t) must be considered. Indeed, all the
main dynamics of S must lie inside the window [0, T ],
including transient responses. The model estimated by
solving (14) is reliable only in a neighborhood of the
data samples. Therefore, the input u(t) and the outputs
y(t) and z(t) should span uniformly the input and output
spaces for t = 0, . . . , T [31]. For this condition to hold
true, the input u(t) must be driven to stimulate all the
possible behaviors of S. If this control action on u(t) is
not feasible (for instance, because S is autonomous or be-
cause of input constraints), the system S can be observed
starting from different initial conditions x0, recording
both transient and steady-state solutions [31]. In this case,
the data set is a collection of different trajectories starting
from different initial conditions. Finally, a large value of



1234 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 59, NO. 2, FEBRUARY 2012

T can help in capturing the dynamics of S but has the
drawback that matrix H in (16) grows linearly with T , so
the memory requirements and the time needed to solve
problem (14) increase.

In the examples described in the next section, the choice of
some parameters is done as a tradeoff between the accuracy of
the estimation and the complexity and speed of the resulting
circuit, on the basis of trials with different parameter sets.

VI. SIMULATIONS AND EXPERIMENTS

We test the performance of the proposed approach on a
simulation example and on an experimental one. In both cases,
the resulting PWAS functions defining the virtual sensor were
implemented on a FPGA Xilinx Spartan 3 xc3s200, coding all
circuit inputs with a 12-b precision and adopting architecture
B in [13]. Moreover, the relatively low slice occupation for the
considered cases allows one to embed more complex systems,
such as a controller or a soft microprocessor, on the same FPGA
together with the virtual sensor.

Simulations have been carried out using the root mean square
estimation error (RMSEE) calculated over a test set as a mea-
sure of the accuracy of the estimation

RMSEE =

√√√√ 1
Ts

Ts∑

t=1

(ẑ(t) − z(t))2 (17)

where Ts is the number of samples in the test set. Standard
international units are used for parameters unless specified
differently.

A. Lorenz System

The discrete-time version of the Lorenz system (consisting in
simplified equations of convection rolls arising in atmospheric
dynamics) allows a comparison of the proposed PWAS virtual
sensor with the results obtained in [5], where a virtual sen-
sor is implemented using a one-hidden-layer neural network
(HLNN). Consider the discrete-time Lorenz system





x1(t + 1) = (1 − τs)x1(t) + τsx2(t)
x2(t + 1) = (1 − τ)x2(t) − τx1(t)x3(t) + τρx1(t)
x3(t + 1) = (1 − τβ)x3(t) + τx1(t)x2(t)
ỹ(t) = x1(t) + ηy(t)
z̃(t) = x2(t)x3(t) + ηz(t)

(18)

where τ = 0.01 is the sampling time, s = 10, β = 8/3 and
ρ = 28 are fixed parameters, and ηy(t) and ηz(t) are Gaussian
processes with zero mean and standard deviations of 0.02
and 20, respectively. With this set of parameters, system (18)
exhibits a chaotic behavior.

A PWAS virtual sensor has been derived from a set of T =
6000 samples of z̃(t) and ỹ(t). We selected a uniform partition
with seven subdivisions along each dimension and a zero-order
Tikhonov regularization. The parameters used for the virtual
sensors are reported in Table II, except for σ, which has been
estimated by a cross-validation technique. The Lorenz system
is autonomous (nu = 0), so Mu can be ignored. With My = 4
and ny = 1, we work with functions defined over 4-D domains.

TABLE II
PARAMETERS AND SIMULATION RESULTS FOR A PWAS VIRTUAL

SENSOR APPLIED TO THE LORENZ SYSTEM

Fig. 2. PWA virtual sensor estimation example: Time evolution of (thin black
line) the actual output z(t) and (dashed gray line) the estimate ẑ(t).

TABLE III
EFFECTS OF My ON A PWAS VIRTUAL SENSOR

Table II also shows the RMSEE, calculated over Ts = 2000
samples, for the PWA virtual sensor (simulated in Matlab with
double precision) and for the HLNN used in [5]. The PWAS
virtual sensor has performances comparable to those of the
HLNN. The time evolutions of the actual and estimated outputs
are shown in Fig. 2.

The latency, i.e., the time required to calculate the estimate
ẑ(t), is approximatively 65 ns, whereas the slice occupation,
i.e., the percentage of occupied resources, is 28%.

The limited numerical precision used on the FPGA has little
effects on the performance of the virtual sensor: The RMSEE
value obtained using a 12-b precision is 27.05. Typically, by
increasing the number of bits, the estimation error decreases,
at the price of an increased latency. The reader is referred to
[13] for some examples on the effects of the limited numerical
precision on the implementation of PWAS functions.

The same simulation was tested under different parameter
configurations. The parameters were changed one at a time with
respect to the values listed in Table II. The results are shown in
Tables III–V, where the data of Table II are repeated for ease
of comparison. In each table, the modified parameter is marked
in bold text. In particular, Table III shows the effects of varying
My , showing that the number of basis functions changes ex-
ponentially with respect to this parameter. Table IV shows the
effects of the variation of N , which was changed by setting the
number of partitions along each dimension to seven (first row),
three (middle row), or one (last row); as expected, the RMSEE
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TABLE IV
EFFECTS OF N ON A PWAS VIRTUAL SENSOR

TABLE V
EFFECTS OF γ ON A PWAS VIRTUAL SENSOR

increases by decreasing N . Finally, Table V is related to the
variation of γ, showing the corresponding increase of RMSEE.

The chosen parameter set (see Table II) is a good tradeoff
between the accuracy of the estimation and the complexity and
speed of the resulting circuit.

B. Laboratory Helicopter Experiment

We test the proposed estimation approach on the educational
laboratory helicopter CE150 (Humusoft) of the telelaboratory
[32]. The model is nonlinear and has two degrees of freedom
(see [33] and the references therein for a detailed description).
The two control variables are generated by PID controllers, and
the two measured outputs are the elevation ψ and azimuth ϕ
of the helicopter. The continuous-time dynamics of the eleva-
tion angle can be approximately described by the following
torque balance

Iψ̈ = τ1 − τψ̇ − τf1 − τm − τG

where I is the moment of inertia of the helicopter around the
horizontal axis, τ1 = kτ1ω

2
1 is the elevation driving torque given

by the main propeller (ω1 is the angular velocity of this latter,
while kτ1 is a constant coefficient), τψ̇ = mlϕ̇2 sinψ cosψ is
the centrifugal torque (m is the helicopter mass, and l is the dis-
tance of the center of mass from the support), τf1 = cψsignψ̇ −
bψψ̇ is the friction torque (bψ and cψ are constant coefficients),
τm = mgl sinψ is the gravitational torque (g is the gravity
acceleration), and τG = kGψ̇τ1 cosψ is the gyroscopic torque
(kG is a constant coefficient). The approximate continuous-time
dynamics of the azimuth angle is

I sinψϕ̈ = τ2 − τf2 − τr

where τ2 = kτ2 sinψω2
2 is the stabilizing motor driving torque

given by the side propeller (ω2 is the angular velocity of this
latter, and kτ2 is a constant coefficient), τf2 = cϕsignϕ̇− bϕϕ̇
is the friction torque (bϕ and cϕ are constant coefficients), and
τr is the main motor reaction torque. The full model of the
experiment includes also the model of the dc motors actuating
the propellers and the equations of the PID controllers [34].

Experiments were carried out according to the closed-loop
configuration of Fig. 3. The reference trajectories ψd (elevation)
and ϕd (azimuth) are the inputs to the PID controllers, the
azimuth angle ϕ is the measured output, and the elevation angle
ψ (although available to the PID controller) is assumed here

Fig. 3. Schematics of setup for estimating the elevation angle via the PWAS
virtual sensor.

TABLE VI
PARAMETERS AND SIMULATION RESULTS FOR A PWAS VIRTUAL

SENSOR APPLIED TO THE HELICOPTER MODEL

to be unavailable and is estimated by the virtual sensor. The
presence of unmeasured stochastic disturbances ηϕ and ηψ on
the sensors is also assumed.

A two-step procedure to design an observer would require to
first obtain a model in state-space form: For example, the model
of the closed-loop system in [33] has six state variables.

To construct the virtual sensor, data are acquired with sample
time τ = 0.01 s. Let u = [u1 u2]′

∆= [ψd ϕd]′ be the input
vector, ỹ = ϕ+ ηϕ be the measured output, and z = ψ be the
estimated output. Note that there are no disturbances affecting
the signal u, so ũ = u.

A PWAS virtual sensor has been derived from a set of
T = 25 000 samples of z̃(t), ỹ(t), and ũ(t). We selected a
partition with three subdivisions along each dimension and a
first-order Tikhonov regularization. Table VI shows the values
of the parameters, the resulting RMSEE (for the PWA virtual
sensor simulated in Matlab with double precision), and the
implementation results. Once again, the chosen parameter set
is a good tradeoff between the accuracy of the estimation and
the complexity and speed of the resulting circuit. Actual and
estimated outputs are plotted in Fig. 4, together with the eleva-
tion reference input signal. For comparison purposes, different
HLNNs, analogous to that proposed in [5], have been trained on
the same data set. The lowest RMSEE has been obtained with
an HLNN with six neurons in the hidden layer and is close to
that obtained with the PWAS virtual sensor (see Table VI).

The resulting latency of the PWAS virtual sensor imple-
mented on the selected FPGA is approximatively 74 ns,
whereas the slice occupation is 29%. The RMSEE value ob-
tained with the 12-b precision is 2.32.

VII. CONCLUSION

This paper has investigated the use of PWAS functions to
construct virtual sensors. In addition to proving interesting
theoretical properties of the filter, the main practical advantage
of the PWAS structure is its implementation in low-cost digital
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Fig. 4. Time evolution of (thin black line) the actual output elevation z(t),
(dashed gray line) the estimate ẑ(t), and (dashed black line) the reference input
signal.

circuits (FPGA) at a very fast rate, constituting a valid solution
for state estimation in many practical applications.
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