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An MPC/Hybrid System Approach
to Traction Control

Francesco Borrelli, Alberto Bemporad, Michael Fodor, and Davor Hrovat

Abstract—This paper describes a hybrid model and a model
predictive control (MPC) strategy for solving a traction con-
trol problem. The problem is tackled in a systematic way from
modeling to control synthesis and implementation. The model
is described first in the Hybrid Systems Description Language
to obtain a mixed-logical dynamical (MLD) hybrid model of
the open-loop system. For the resulting MLD model, we design
a receding horizon finite-time optimal controller. The resulting
optimal controller is converted to its equivalent piecewise affine
form by employing multiparametric programming techniques,
and finally experimentally tested on a car prototype. Experiments
show that good and robust performance is achieved in a limited
development time by avoiding the design of ad hoc supervisory
and logical constructs usually required by controllers developed
according to standard techniques.

Index Terms—Antiskid systems, hybrid systems, model predic-
tive control, multiparametric programming, optimal control, trac-
tion control.

I. INTRODUCTION

FOR more than a decade, advanced mechatronic systems
controlling some aspects of vehicle dynamics have been

investigated and implemented in production [17], [19]. Among
them, the class of traction control problems is one of the most
studied. Traction controllers are used to improve a driver’s
ability to control a vehicle under adverse external conditions
such as wet or icy roads. By maximizing the tractive force
between the vehicle’s tire and the road, a traction controller
prevents the wheel from slipping and at the same time improves
vehicle stability and steerability. In most control schemes the
wheel slip, i.e., the difference between the normalized vehicle
speed and the speed of the wheel, is chosen as the controlled
variable. The objective of the controller is to maximize the
tractive torque while preserving the stability of the system. The
relation between the tractive force and the wheel slip is non-
linear and is a function of the road condition [2]. Therefore, the
overall control scheme is composed of two parts: a device that
estimates the road surface condition and a traction controller
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that regulates the wheel slip at desired values. Regarding the
second part, several control strategies have been proposed in
the literature mainly based on sliding-mode controllers, fuzzy
logic, and adaptive schemes [2]–[4], [21], [22], [25]–[27]. Such
control schemes are motivated by the fact that the system is
nonlinear and uncertain.

The presence of nonlinearities and constraints on one hand,
and the simplicity needed for real-time implementation on the
other, have discouraged the design of optimal control strategies
for this kind of problem. Recently, we proposed a new frame-
work for modeling hybrid systems [9] and an algorithm to syn-
thesize piecewise linear (indeed, piecewise affine) optimal con-
trollers for such systems [11], [12]. In this paper, we describe
how the hybrid framework [9] and the optimization-based con-
trol strategy [12] can be successfully applied for solving the
traction control problem in a systematic way. The Hybrid Sys-
tems Description Language ( HYSDEL) [29] is first used to de-
scribe a linear hybrid model of the open-loop system suitable
for control design. Such a model is based on a simplified model
and a set of parameters provided by Ford Research Laborato-
ries, and involves piecewise linearization techniques of the non-
linear torque function that are based on hybrid system identifi-
cation tools [16]. Then, an optimal control law is designed and
transformed to an equivalent piecewise affine function of the
measurements, that is easily implemented on a car prototype.
Experimental results show that good and robust performance is
achieved. Preliminary simulation results were reported in the
conference paper [13].

A mathematical model of the vehicle/tire system is intro-
duced in Section II. The hybrid modeling and the optimal con-
trol strategy are discussed in Sections III and V, respectively. In
Section VI, we derive the piecewise affine optimal control law
for traction control; and in Section IX, we present the experi-
mental setup and the results obtained.

II. VEHICLE MODEL

The simplest model of the vehicle used for the design of
the traction controller is depicted in Fig. 1 and consists of the
equations

(1)
with

(2)
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Fig. 1. Simple vehicle model.

TABLE I
PHYSICAL QUANTITIES AND PARAMETERS OF THE VEHICLE MODEL

where the involved physical quantities and parameters are de-
scribed in Table I.

Model (1) contains two states for the mechanical system
downstream of the manifold/fueling dynamics. The first equa-
tion represents the wheel dynamics under the effect of the
combustion torque and of the frictional torque, while the
second one describes the longitudinal motion dynamics of the
vehicle. In addition to the mechanical equations (1) the air
intake and fueling model (2) also contributes to the dynamic
behavior of the overall system. For simplicity, since the actuator
will use just the spark advance, the intake manifold dynamics
is neglected and the fueling combustion delay is modeled
as a pure delay. Both states are indirectly measured through
measurements of front and rear wheel speeds: assuming we are
modeling a front-wheel-driven vehicle, is estimated from
the speed of the front wheel, while is estimated from the

Fig. 2. Experimental nonlinear behavior and its piecewise-linear
approximation of the frictional torque � as a function of the slip �! and
road coefficient adhesion �. (a) Measured tire torque � for three different
road conditions: ice (lower plot), snow (middle plot), and concrete (upper
plot). (b) Piecewise affine model of the tire torque � . The circles represent
measurements data extracted from (a).

speed of the rear wheel. The slip of the car is defined as the
difference between the normalized vehicle and engine speeds

(3)

The frictional torque is a nonlinear function of the slip
and of the road coefficient of friction

(4)

The road coefficient of friction depends on the road-tire con-
ditions, while function depends on vehicle parameters such
as the mass of the vehicle, the location of the center of gravity,
and the steering and suspension dynamics [25]. Fig. 2(a) shows
a typical experimental curve for three different road
conditions (ice, snow, and concrete).
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Experiments have proven that model (1)–(4) captures the
main behavior. In this paper, we will show that it is simple
enough to be used for controller design. In literature, the slip

(3) is often normalized such that it assumes values between
zero and one; in practice they are both used. In general, the
frictional torque (4) depends on the car’s absolute speed. We
assume that the effect of the speed variation on the torque can
be neglected for the purpose of this paper. In our experiments,
the variation of absolute speed is relatively small. We assume
that the clutch is locked.

III. HYBRID SYSTEMS

Mixed logic dynamical (MLD) systems [9] allow specifying
the evolution of continuous variables through linear dynamic
equations, of binary variables through propositional logic state-
ments and automata, and the mutual interaction between the
two. Linear dynamics are represented as difference equations

, . Boolean variables are
defined from linear-threshold conditions over the continuous
variables. The key idea of the approach consists of embedding
the logic part in the state equations by transforming Boolean
variables into 0–1 integers, and by expressing the relations as
mixed-integer linear inequalities [9], [14], [24], [30].

By collecting the equalities and inequalities derived from the
representation of the hybrid system, we obtain the MLD system [9]

(5a)

(5b)

where is a vector of continuous and bi-
nary states, are the inputs, ,

represent auxiliary binary and continuous variables, re-
spectively, which are introduced when transforming logic rela-
tions into mixed-integer linear inequalities, and
are matrices of suitable dimensions.

IV. DISCRETE-TIME HYBRID MODEL OF THE VEHICLE

The model obtained in Section II is transformed into an equiv-
alent discrete-time MLD model through the following steps.

1) The frictional torque is approximated as a piecewise
affine function of the slip and of the road coefficient
of friction by using the approach described in [16]. The

algorithm proposed in [16] generates a polyhedral parti-
tion of the -space and the corresponding affine ap-
proximation of the torque in each region. Alternatively,
a similar piecewise affine approximation of the torque
function can be computed using the bounded-error ap-
proach of [7] to hybrid identification, which allows one
to impose a desired maximum approximation error and to
determine a corresponding piecewise linear model which
fits the data points within such error bound.

If the number of regions is limited to two, we get

if
if

(6)

where , , ,
, , and , as depicted in

Fig. 2(b).
2) Model (1) is discretized with sampling time ms

and the piecewise affine (PWA) model (6) of the frictional
torque is used to obtain the following discrete-time PWA
model of the vehicle, as shown in (7) at the bottom of the
page, where . At this stage is considered as
the control input to the system. The time delay between
and will be taken into account in the controller design
phase detailed in Section VI-B.

3) The following constraints on the torque, on its variation,
and on the slip need to be satisfied:

(8a)

(8b)

(8c)

(8d)

In order to constrain the derivative of the input, the
state vector is augmented by including the previous
torque . The variation of the combustion torque

will be the new input variable.
We point out here that discrete-time models are needed for

recasting the optimal control problem as a mathematical pro-
gram. The resulting hybrid discrete-time model has three states
( previous , , ), one control input

, one uncontrollable input , one regulated

if

if

(7)
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Fig. 3. Typical behavior of lateral and longitudinal tire forces.

output , one auxiliary binary variable in-
dicating the affine region where the system is operating,

, and two auxiliary contin-
uous variables describing the dynamics in (7), i.e.,

if
otherwise

where are the matrices in
(7). The resulting MLD model

(9a)

(9b)

is obtained by processing the description list reported in the
Appendix through the HYSDEL compiler. Matrices
include constraints (8); they are omitted here for lack of space
and can easily be obtained and analyzed in Matlab using, e.g.,
the Hybrid Toolbox [5].

V. CONSTRAINED OPTIMAL CONTROL

Fig. 3 depicts the lateral and longitudinal frictional torque as
a function of the wheel slip. It is clear that if the wheel slip
increases beyond a certain value, the longitudinal and lateral
driving forces on the tire decrease considerably and the vehicle
cannot speed up and steer as desired.

By maximizing the tractive force between the vehicle’s tire
and the road, a traction controller prevents the wheel from slip-
ping and at the same time improves vehicle stability and steer-
ability. The overall control scheme is depicted in Fig. 4 and is
composed of two parts: a device that estimates the road surface

Fig. 4. Overall traction control scheme. In this paper, we focus on the design
of the hybrid MPC controller.

condition , and consequently generates a desired wheel slip
, and a traction controller that regulates the wheel slip at the

desired value . In this paper we only focus on the second
part, as the first one is already available from previous projects
at Ford Research Laboratories.

The control system receives the desired wheel slip , the
estimated road coefficient adhesion , and the measured front
and rear wheel speeds as input, and generates the desired engine
torque (the time delay between and will be compensated
a posteriori as described in Section VI-B).

In the sequel, we describe how a model predictive controller
(MPC) can be designed for the posed traction control problem.
The main idea of MPC is to use the model of the plant to predict
the future evolution of the system [23]. Based on this predic-
tion, at each time step , a certain performance index is opti-
mized under operating constraints with respect to a sequence of
future input moves. The first of such optimal moves is the con-
trol action applied to the plant at time . At time 1, a new
optimization is solved over a shifted prediction horizon. For the
traction control problem, at each time step , the following finite
horizon optimal control problem is solved:

(10)

(11)

where matrices are given in
(9), is the optimization vector, and

is the prediction horizon. Note that the optimization variables
are the torque variations , and that the set
point and the current road coefficient of adhesion
are considered constant over the prediction horizon .

Equations (10) and (11) can be translated into a mixed in-
teger linear program (MILP) (the minimization of a linear cost
function subject to linear constraints with binary and continuous
variables) of the form

(12a)

subject to
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(12b)

where ,
, and

is a vector of additional slack variables satisfying
, ,

introduced in order to translate the cost function (10) into
the linear cost function (12a). Matrices
are matrices of suitable dimension that, as described in
[6], [11], and [12], can be constructed from and

(such a construction can be
automatically performed by using, for instance, the tool in [5]).
The resulting control law is

(13)

where denotes the sequence of
optimal input increments computed at time by solving (12) for
the current measurements , , set point , and
estimate of the road coefficient .

VI. CONTROLLER DESIGN

The design of the controller is performed in two steps. First,
the MPC controller (10)–(13) based on model (9) is tuned in
simulation until the desired performance is achieved. The MPC
controller is not directly implementable, as it would require the
MILP (12) to be solved online at each sampling step, which is
clearly prohibitive on standard automotive control hardware.
Therefore, for implementation, in the second phase, the explicit
piecewise affine form of the MPC law is computed offline
by using the multiparametric mixed integer programming
(mp-MILP) solver presented in [15]. According to the approach
of [11] and [12], the resulting control law has the piecewise
affine form

if (14)

where . Therefore,
the set of states plus references is partitioned into polyhedral
cells, and an affine control law is defined in each one of them.
Rather than solving the MILP (12) online for the given , the
idea is to use the mp-MILP solver to compute offline the solution
of the MILP (12) for all the parameters within a given poly-
hedral set. Although the resulting piecewise affine control action
is identical to the MPC designed in the first phase, the online
complexity is reduced to the simple evaluation of a piecewise
affine function. The control law can be implemented online in
the following simple way: 1) determine the th region that con-
tains the current vector (current measurements and refer-
ences) and 2) compute according to the cor-
responding th control law. A more efficient way of evaluating
the piecewise affine control law based on the organization of
the controller gains on a balanced search tree is reported in[28].

A. Tuning

The parameters of the controller (10)–(13) to be tuned are the
horizon length and the weights and . By increasing the
prediction horizon , the controller performance improves, but
at the same time the number of constraints in (11) increases.
As in general the complexity of the final piecewise affine con-
troller increases dramatically with the number of constraints in
(11) (see [10] for the case of linear systems), tuning amounts
to finding the smallest , which leads to a satisfactory closed-
loop behavior. Simulations were carried out to test the controller
against changes to model parameters. Experimental results and
simulations have proven that such horizon is a good compro-
mise between performance and computational complexity. Per-
formance can be improved with longer horizons in simulation,
though the model mismatch present on the tire models bound
such improvement in experiments. Robustness has been proved
with extensive simulations. Theoretical results on robustness of
constrained hybrid systems are still under investigation.

A satisfactory performance was achieved with , ,
, which corresponds to an explicit controller consisting

of regions. We will refer to this as hybrid controller.
We have tried also controllers with larger horizons both in sim-
ulation and in experiments. We do not include the results in this
paper. In order to have a feeling on the sensitivity of the solution
complexity to the horizon length, we mention here that by using

, , , one obtains a slightly better perfor-
mance at the price of regions in the explicit controller.

B. Combustion Torque Delay

The vehicle model in Section II is affected by a time delay
of sampling intervals between the desired
commanded torque and the combustion torque . To avoid
the introduction of auxiliary states in the hybrid model (5),
we take such a delay into account only during implementation
of the control law.

Let the current time be and let the explicit optimal
control law in (14) be denoted as . Then,
we compensate for the delay by setting

(15)

where is the -step ahead predictor of . Since at
time , the inputs , , and therefore

, , are available, can be computed
from , by iterating the PWA model (7) under the
assumption , .

In order to motivate the assumption in (15), in the Appendix
we show that for the related setting of linear quadratic regulation
(LQR) of linear time-invariant models with delays (quadratic
performance indexes, infinite prediction horizon), such an as-
sumption is exact, that is, the LQR gain for the delayed system is
obtained by combining the LQR gain for the delay-free system
with a -steps ahead predictor. Through tedious algebraic ma-
nipulations, it is possible to prove that this is true also in the
present hybrid finite-horizon context.
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Fig. 5. Measured and estimated half-shaft torque during TC operation.

C. Road-Tire Friction Estimation

An important ingredient of a well-developed traction control
system is the ability to estimate the friction coefficient between
the road and tire. In the context of the above control system de-
sign, this means that it is important to identify what kind of road
or ground surfaces the vehicle is traversing, which may include
snow, ice, sand, etc. Then, depending on the road/tire friction
interface properties, one can chose the appropriate control set-
tings as discussed above.

In general, the tire-road friction estimation algorithms can be
loosely grouped in two different classes, depending whether the
estimation is focused on the steep-positive-slope or almost-flat
portion of the tire tractive force versus slip curve. Some of the
most common approaches are based on wheel spins, so that the
estimation is performed primarily during the excessive wheel
slips or spins on a mostly flat portion of the tire force-slip curve.
During these periods, one estimates the wheel torque and corre-
sponding tire tractive force, which is then divided by the normal
force to obtain an estimate of the prevailing friction potential.
The wheel torque can be estimated using dynamic models of
relevant parts of power train, where one can further increase the
robustness of the estimate by exploiting different torque paths[20].

One practical example of such an approach is proposed in
[1]. The corresponding estimation results in terms of coeffi-
cient of friction can be found in [19], for the case of abrupt
snow-to-ice transitions. The quality and speed of estimation in
this case was facilitated by appropriate wheel torque estimation.
Typical performance of the torque estimator used in this paper
is shown in Fig. 5, which compares the estimated and actual
measured half-shaft torque (closely related to the wheel torque
in the present case) during vehicle operation on a split (ice-
cement) road surface. Additional details can be found in [19].

For the above estimation approach to work, it was necessary
to produce a wheel spin that would guarantee the operation on
the near flat portion of the tire force-slip curve. This initial spin
then can lead to loss of vehicle tractive performance and direc-
tional or handling capacity. In some cases—such as a vehicle
coasting down a stretch of slippery road—the initial wheel-spin
could be avoided if a timely online estimate of road surface char-
acteristics could be produced even before the abrupt application
of a gas pedal. The corresponding estimation techniques are
based on the estimation of the prevailing slopes in the initial,
steep-positive-slope region of the tire force-slip curves, where
slip is typically small (see, e.g., [18]). While such techniques

lead to somewhat slower estimation, and are in general less ro-
bust, they create opportunities for further significant improve-
ments in traction and overall vehicle control in the future.

Since this paper focuses on model predictive and hybrid as-
pects of controls, the simulations were run under the assumption
that an exact estimate of road friction is available at the start of
(but not before) the first spin. However, the actual vehicle tests
were performed with a controller that included a practical esti-
mator based on the first approach described above, i.e., based
on the near flat portion of the tire force-slip characteristics [1].
Future developments may include the estimators based on the
second approach, which can nicely complement predictive ca-
pabilities of MPC and hybrid controls.

VII. MOTIVATION FOR HYBRID CONTROL

There are several reasons that led us to solve the traction
control problem by using a hybrid approach. First, the non-
linear frictional torque in (4) has a clear piecewise-linear be-
havior [27]: The frictional torque increases almost linearly for
low values of the slip, until it reaches a certain peak after which
it starts decreasing. For various road conditions the curves have
different peaks and slopes. By including such a piecewise lin-
earity in the model, we obtained a single control law that is able
to achieve the control task for a wide range of road conditions.
Moreover, the design flow has the following advantages.

1) From the definition of the control objective to its solution,
the problem is tackled in a systematic way by using the
HYSDEL compiler and multiparametric programming
algorithms.

2) Constraints are embedded in the control problem in a nat-
ural and effective way.

3) The resulting control law is piecewise affine and re-
quires much less supervision by logical constructs than
controllers developed with traditional techniques [e.g.,
proportional-integral-differential (PID) control].

4) It is easy to extend the design to handle more accu-
rate models and include additional constraints without
changing the design flow. For example, one can use a
better piecewise-linear approximation of the frictional
torque, a more detailed model of the dynamics, and in-
clude logic constructs in the model such as an hysteresis
for the controller activation as a function of the slip.

In terms of performance, the results obtained with our ap-
proach are comparable with a well-tuned PID controller used at
Ford Motor Company. The experiments will show that a good
performance is achieved despite the limited development time
compared to the time needed for the design of the PID controller.
Moreover, the hybrid approach proposed in this paper provides
an insight on the achievable limits of control performance, as
discussed next.

VIII. SIMULATION RESULTS

Extensive simulations were carried out before testing the hy-
brid controller on a passenger vehicle. In particular, we first con-
sider standard linear MPC design. We consider different con-
trollers, based on linear or affine models of the vehicle. Then,
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we compare their performance with respect to the hybrid MPC
controller performance. In this section, we present a summary of
the simulation results obtained by using linear and hybrid MPC
synthesis techniques.

The choice of linear prediction models is dictated by well-
known experimental results. There is a large qualitative differ-
ence in two different regions of slip operations. In the first region
the system is stable and the torque increases as a function of the
slip (denoted as affine model 1). In the second region, the system
is unstable (or marginally stable) and the torque decreases as a
function of the slip (affine model 2). By combining (1) and (6),
we obtain two linear models for the vehicle dynamics of dimen-
sion two

Affine model 1

(16)

Affine model 2

(17)

The next choice of linear models (denoted as linear model 3 and
linear model 4) considers the same two regions of slip operation
as before, but it also includes an additional state which is used to
estimate the torque . In fact, by combining (1) and the deriva-
tive of obtained by differentiating (6), we obtain two linear
models of dimension three for the vehicle dynamics

Linear model 3

(18)
Linear model 4

(19)
These four models were used to design four linear MPC con-
trollers subject to constraints (8), where the delay in (2) was
compensated as described in Section VI-B. The four linear trac-
tion controllers were simulated by using a nonlinear model of
the vehicle driving on a polished ice surface with

rad/s and m/s (which represent the ve-
hicle standing initially still with the wheels slipping). We com-
pared the performance of the linear controllers to the one ob-
tained by using a hybrid controller.

Linear MPC based on affine model 1. The performance is in
general very bad independently of the MPC tuning. Fig. 6 de-
picts a simulation of one of the best tuned MPC based entirely
on affine model 1. The explanation for such poor behavior can

Fig. 6. Simulation results: linear MPC based on affine model 1, �! =

2 rad/s. In the upper plot, the slip trace is a solid line and the desired slip is a
dotted line.

Fig. 7. Simulation results: linear MPC based on affine model 2, �! <

2 rad/s. In the upper plot, the slip trace is a solid line and the desired slip is a
dotted line.

be mainly found in the large model mismatch, due to the large
difference in tire slope characteristics between the two model
regions. This poor performance may be improved by adding a
Kalman filter or, perhaps better, by adding additional states (for
instance, by extending the linear two-dimensional model with
the integral of the output in order to obtain an integral action,
as was done in the hybrid context in [8]). The benefits of using
Kalman filtering and of augmenting the linear model with addi-
tional states are clear when linear model 3 is used.

Linear MPC based on affine model 2. The performance
improves compared to affine model 1. However, a small model
mismatch generates a steady-state offset, as can be seen in
Fig. 7. Such a steady-state error can be removed with the
introduction of additional states and Kalman filtering, as de-
scribed earlier. The advantage of using Kalman filtering and an
extended model is apparent from the performance achieved by
using linear model 4.
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Fig. 8. Simulation results: linear MPC based on linear model 4, �! =

2 rad/s. In the upper plot, the slip trace is a solid line and the desired slip is a
dotted line.

Fig. 9. Simulation results: MPC based on hybrid model, �! = 2 rad/s. In
the upper plot, the slip trace is a solid line and the desired slip is a dotted line.

Linear MPC based on linear models 3 and 4. These two cases
lead to similar performance, which is, in general, good, as can
be seen from Fig. 8 for the case of model 4. In fact, the ve-
hicle model is very sensitive to the frictional torque model .
In models 3 and 4, the frictional torque is a state that can be
estimated from the measurements by using a Kalman filter. De-
spite a model mismatch, the estimation of is relatively good,
and this justifies the good performance of such controllers.

Hybrid MPC based on MLD model (9). Fig. 9 depicts the sim-
ulation results for the hybrid case. The first immediate compar-
ison between the linear MPC and the hybrid MPC can be high-
lighted. The linear MPC presents about 21% larger initial spin
compared to the hybrid MPC; this can be seen by comparing
Fig. 8 with the corresponding simulation results for the hybrid
case shown in Fig. 9. Note in particular that model 4 leads to an

additional engine torque pulse in the initial phase of slip control,
which in turn results in an additional “glitch” in the initial slip
curve and overall more excessive initial spin.

The experimental results obtained with the linear MPC con-
troller based on model 4 will be presented in the next section. We
want to point out that the optimal hybrid controller presented in
this paper quantifies the best performance achievable in the con-
trol problem at hand, therefore providing a measurement unit
for the degree of performance achieved by the linear MPC con-
trollers, which is unknown a priori.

IX. EXPERIMENTAL SETUP AND RESULTS

The hybrid traction controller was tested in a small (1390 kg)
front-wheel-drive passenger vehicle with manual transmission.
The explicit controller was run with a 20-ms timebase in a
266-MHz Pentium II-based laptop. Vehicle wheel speeds were
measured directly by the laptop computer, and the calculated
engine torque command was passed to the powertrain control
module through a serial bus. Torque control in the engine
was accomplished through spark retard, cylinder air/fuel ratio
adjustment, and cylinder fuel shutoff where needed. The overall
system latency from issuance of the torque command to pro-
duction of the actual torque by the engine by the engine was
relatively large (0.25 s), which is in part attributed to computa-
tional and implementation delays. The vehicle was tested on a
polished ice surface (indoor ice arena, ) with a variety
of ramp, step, and sinusoidal tracking reference signals. Control
intervention was initiated when the average driven wheel speed
exceeded the reference wheel speed for the first time.

As indicated above, the experiments were conducted on a uni-
form ice surface in an ice arena that provided suitable test and
development facilities during the warmer periods of the year.
Due to the obvious space limitations, only limited speed tests
were possible, which can still display key characteristics of a
given traction control system. In particular, the tests were done
for aggressive, wide-open throttle (“full gas”) tip-ins from a
standstill condition in first gear, where brakes were typically ap-
plied prior to the tip-in and the clutch was abruptly and fully en-
gaged. This large initial disturbance and subsequent “pedal-to-
the-metal” operation creates some of the most demanding con-
ditions for the traction controller. Note that the target slip is ini-
tially step-changed to about 10 rad/s and then gradually lowered
as the engine speed is kept constant during the vehicle launch
acceleration. Once the vehicle speed reaches the synchronous
level with the corresponding engine speed (around 10 s) the slip
target is kept to a constant value of 2 rad/s.

Fig. 10 shows test results for the case of a linear MPC based
on model 4, and Fig. 11 for the hybrid control case. From the si-
nusoidal response in Fig. 10(b), it can be seen that the MPC sys-
tems bandwidth is around 0.5 Hz. In addition, the comparison of
Figs. 10 and 11 show that the hybrid control on the average re-
sults in circa 20% lower initial slip peak and significantly faster
containment of the first spin. As explained in Section VIII, this
is due to an additional engine torque hesitation pulse that can be
seen in Fig. 10.

Extensive study of simulations and experimental results have
revealed that the oscillations that can be observed in the hybrid
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Fig. 10. Experimental results: linear MPC based on linear model 4. The third
and sixth plots depict the operating region i of the explicit controller (14), with
i � n . (a) Ramp and step slip reference. (b) Sinusoidal slip reference.

Fig. 11. Hybrid controller. Experimental results for a step slip reference. The
third plot depicts the operating region i of the explicit controller (14), with i �

n .

case (Fig. 11) are due to the use of absolute values in cost func-
tion (10). The oscillations can be reduced by using smoother ob-
jective functions based on quadratic errors. The use of explicit
hybrid MPC based on quadratic performance is under investi-
gation by the authors. The theory and the results for the case of
quadratic costs will be reported in future publications. We want
to mention that the frequencies of the oscillations that can be
seen in Fig. 11 are filtered by the dynamics of the car; thus, they
are typically not felt by the driver.

A comparison between the test results of Figs. 10 and 11 and
corresponding simulation results of Figs. 8 and 9 reveals sim-
ilar trends, including the above hesitation pulse effects and sig-
nificantly smaller slip overshoots and better overall slip target
tracking achieved with the hybrid controller (relatively large ini-
tial engine torque of circa 220 Nm is not present in the simula-
tion results, which used an effective net torque between the en-
gine and brakes). Good qualitative and quantitative correlation
between the simulation and experimental results confirms that
the above simple model was appropriate for this paper.

X. CONCLUDING REMARKS

In this paper, we described a hybrid model and an opti-
mization-based control strategy for a vehicle traction control
problem. We showed, through experiments carried out at Ford
Research Laboratories, that good and robust performance is
achieved on polished ice, which represents some of the most
challenging road surfaces since it requires the largest amount
of torque reduction and precise control in the least favorable
(small signal-to-noise ratio) region of vehicle operations. The
performance was relatively robust with respect to manual
transmission clutch modes of application, which represents a
challenging disturbance that is characteristic for manual power
trains with their inherent event-to-event and driver-to-driver
variability. It was also shown, through a comparison between
simulation and actual vehicle test results, that the simple vehicle
model used for the study reported in this paper was well suited
for MPC and hybrid control designs and related performance
predictions. Furthermore, the resulting optimal piecewise
affine control law was easily implemented on low-cost testing
hardware.

The simulation and test results demonstrated that the
-optimal hybrid controller used in this problem can lead to

about 20% reduction in peak slip amplitudes and corresponding
spin duration when compared to best case linear MPC coun-
terparts. At the same time, the hybrid controller provided a
systematic way to create a benchmark of optimal possible
performance against which many other controllers—classical
as well as modern—could be compared.

It should be pointed out that this paper was based on a very
course approximation of tire characteristic curves. Further im-
provements are possible by more granular resolution of these
characteristics. For these more complex piecewise affine parti-
tions, we are developing efficient forms of implementation that
greatly reduce the number of regions to be stored by exploiting
properties of multiparametric linear programming. We are also
currently working to extend the results of this paper to MPC for-
mulation based on quadratic costs.
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APPENDIX

Below we report the description list in HYSDEL of the trac-
tion control model described in Section IV.

SYSTEM FordCar {

INTERFACE {
/ Description of variables and con-
stants /

STATE {
REAL taotold;
REAL we;
REAL vv;

}

INPUT { REAL deltataot; REAL mu;
}

PARAMETER {

/ Region of the PWA lin-
earization /

/ /
REAL ;
REAL ;
REAL ;

/ Other parameters /
REAL ;/
REAL ;
REAL ;
REAL ;
REAL ;
REAL ;
REAL ;
REAL ;
REAL ;

/ Dynamic behavior of the
model
(Matlab generated) /

REAL ;
REAL ;
REAL ;
REAL ;
REAL ;
REAL ;
REAL ;
REAL ;
REAL ;
REAL ;

REAL ;
REAL ;
REAL ;
REAL ;

REAL ;
REAL ;
REAL ;
REAL ;
}

}

IMPLEMENTATION {
AUX {

REAL zwe, zvv;
BOOL region;

}
AD {

/ PWA Domain /

[deltawmin, deltawmax, e];
}
DA {

zwe={IF region THEN

[zwemin, zwemax, e]
ELSE

[zwemin, zwemax, e]
};

zvv={IF region THEN

[zvvmin, zvvmax, e]
ELSE

[zvvmin, zvvmax, e]
};

}

CONTINUOUS {
;

;

;
}

MUST { ;
;
;

;
}

}
}

Consider discrete-time linear system

(20)

where and are the state and input vectors,
respectively, and the corresponding augmented system

(21)
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where

...

(22)

and

...
...

...
...

...

... (23)

where is the identity matrix and is a
matrix with all the elements equal to zero.

Theorem 1: Let be the LQR gain of (21) with
and being the state

and input weighting matrices, respectively. Then

(24)

where is the LQR gain for system (21) with and
weighiting matrices and , i.e.,

(25)

(26)

Proof: The optimal control law for system (21) is

(27)

where

(28)

(29)

Partition the matrix according to the structure of the matrix

...
...

...
...

...
(30)

where , , , ;
, , . By using the form

(30) of and (23), the LQR gain in (28) can be written as

(31)

It is immediate to prove by substitution that the Riccati equa-
tion (29) of the augmented system is solved by the following
equations:

(32)

(33)

(34)

Equation (31) together with (32)–(34) prove the theorem.
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Erratum
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SYSTEMS TECHNOLOGY, the paper entitled “An MPC/Hybrid System
Approach to Traction Control” by F. Borrelli, A. Bemporad, M. Fodor,
and D. Hrovat should have been listed in the “Papers” section on the
Table of Contents [1]. It was inadvertently included among Brief Pa-
pers. IEEE regrets the error.
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