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Abstract—Model Predictive Control (MPC) is a very attractive
candidate to replace standard field-oriented control algorithms
for electrical motors. We demonstrate that it is possible to imple-
ment an MPC algorithm for Continuous Control Set (CCS-MPC),
with both inputs and states constraints, in which the associated
Quadratic Programming (QP) problem is solved online, even on
the computationally limited platforms used in control of electrical
motors. We detail the implementation of an active-set algorithm
to solve efficiently the associated QP problem. Moreover, by
exploiting recent results on active-set solver certification we
are able to assess the computational complexity of the online
optimization algorithm, providing the exact worst-case solution
time. The controller is experimentally tested on an embedded
control unit for the torque regulation of a permanent magnet
synchronous motor, and benchmarked against explicit MPC.
Computational feasibility, low-memory occupancy, and worst-
case certification are achieved, fulfilling all the requirements of
embedded control.

Index Terms—Model predictive control, electrical motors,
torque control, synchronous drives, real-time optimization,
quadratic programming, embedded control, complexity certifi-
cation.

I. INTRODUCTION

IMPROVING the performance of electrical systems is
strategic in many applications, therefore Model Predictive

Control (MPC) is a very active topic for power converters
and drives control [1]–[4]. As far as transistor-based systems,
the literature splits into Continuous Control Set (CCS)-MPC,
which takes actions into a continuous set, corresponding to
the modulator duty-cycle [5] and Finite Control Set (FCS)-
MPC which instead manipulates directly the transistors [6],
[7]. Recent research has compared the two strategies [8]–[10],
with attempts to benefit from both [11]. FCS-MPC provides
a faster response and possibly reduces the switching losses.
However, the variable frequency increases components stress
[12]–[14], and introduces a trade-off between tracking error,
harmonics and energy efficiency [15]–[17].

CCS-MPC cancels the drawbacks associated with variable
switching frequency, and provides decoupling between sam-
pling and switching times [7], [18]. It is also the preferred
choice when dealing with pre-compensated systems [19].
Unfortunately, the online optimization problem associated with
constrained CCS-MPC, and non-trivial prediction horizon, is
typically considered unmanageable on low-cost platforms [20].
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Computational burden has been an issue for FCS-MPC too,
but recently the combinatorial complexity has been severely
reduced [21], [22], with a consequent gain in its popularity.
The goal of this paper is to demonstrate that recent advances
in convex optimization make CCS-MPC feasible on cheap
hardware as well, providing in addition an analytical bound
to its complexity [23]. The alternative to online optimization
would be explicit MPC (EMPC), which pre-solves the opti-
mization problem offline [24]. However, the logarithmic search
time and polynomial memory occupancy make EMPC feasible
only for small problems, with few inputs and a short horizon.
Successful applications of EMPC for electrical motors hold
only for simplified formulations, one-step ahead prediction
and/or approximated constraints [25], [26].

This paper presents a CCS-MPC algorithm based on online
optimization for the torque tracking of a Permanent Magnet
Synchronous Motor (PMSM), that we refer to as Model
Predictive Torque Control (MP-TC). We demonstrate that it
is possible to efficiently solve the Quadratic Programming
(QP) problem arising in linear MPC on a platform with
scarce computational capabilities. To the best of the authors’
knowledge, online CCS-MPC for motor control and embedded
in a low-cost platform has been investigated only in [27],
[28]. However, in [27] the input constraints are not present,
and the quality of the obtained solution is not discussed.
The authors have considered input constraints in [28], but
the control performance and computational feasibility have
been assessed only with hardware-in-the-loop, and the worst-
case run time for the solver is unknown. This paper considers
an experimental setup, where the optimal control sequence is
computed by an embedded active-set solver. Such optimization
methods achieve very high accuracy in a fixed amount of
iterations, even under single-precision arithmetic.

As a further contribution, we certify analytically the worst-
case execution time of the optimization. With embedded MPC
becoming increasingly popular in industry, see for instance
the mass production of General Motors [29], [30], complexity
certification is of paramount importance. Namely one has to
prove that the inputs will be always computed in a time interval
that is smaller than the sampling one [31]. Active-set methods
have suffered for a while from the lack of such theoretical
bounds, despite the experimental evidence of an average
polynomial complexity. The authors have solved this issue in
[23] by demonstrating that the iterations taken by a dual active-
set method when solving a parametric QP problem depend in
a piecewise affine (PWA) fashion on the vector of parameters.
Therefore, we are able to compute exactly the number of
floating-point operations (flops) needed in the worst-case to
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solve the optimization problem. A block principal pivoting
method has been proved to enjoy similar properties [32] while
being faster, however the need to impose constraints on the
motor currents restricts the choice to algorithms that can
handle general inequality constraints, i.e. [23].

The proposed MP-TC has been tested on a commercially
available PMSM, controlled by a Texas Instruments© DSP,
commonly used in power electronics and electrical drives. The
comparison with EMPC is also shown, being the only valuable
alternative to meet embedded requirements for a CCS-MPC
algorithm. The results show that the proposed MP-TC highly
reduces the memory occupancy and, more interestingly, it
requires a lower worst-case number of flops when compared
to EMPC, increasing the throughput.

The paper is organized as follows. Section II derives the
mathematical model of the PMSM, and the MP-TC algorithm
is presented in Section III. The embedded solver design and
certification are detailed in Section IV, and the experimental
results reported in V. Finally, Section VI concludes the paper.

II. MATHEMATICAL MODEL

The electrical subsystem of a PMSM is modeled with
respect to the (d, q) reference, frame rotating synchronously
with the rotor

i̇d(t) = − R

Ld
id(t) +

Lq
Ld
ω(t)iq(t) +

1

Ld
ud(t) (1a)

i̇q(t) = − R

Lq
iq(t)−

(
Ld
Lq
id(t) +

λ

Lq

)
ω(t) +

1

Lq
uq(t) (1b)

where t ∈ R+ is the time index, d and q are the subscripts for
direct and quadrature quantities, L, R, i and u are the stator
inductance [H], resistance [Ω], current [A] and voltage [V].
The mechanical dynamics of a PMSM are as follows:

ω̇(t) =
B

J
ω(t) +

p

J
τ(t)− p

J
τl(t) (2a)

τ(t) =
3

2
p (λiq(t) + (Ld − Lq)id(t)iq(t)) (2b)

where ω(t) is the electrical rotor speed [rad/s], τ(t) is the
electrical torque [Nm], J is the inertia coefficient [kg·m2], λ
is the motor flux leakage [Wb], τl(t) is the load torque [Nm],
and p is the number of pole pairs. Let us assume that
the PMSM is isotropic with Ld ≡ Lq ≡ L and nom-
inal speed ω0, and let Kt = 3

2pλ be the torque con-
stant. Define the states x(t) = [id(t), iq(t)]

′, the manip-
ulated inputs u(t) = [ud(t), uq(t)]

′, the measured outputs
y(t) = [id(t), τ(t)]′ and the measured disturbances v(t) =
ω(t). Then, the following Linear-Time-Invariant (LTI) model
defines an approximation of the electrical subsystem (1):

ẋ(t) =

−RL ω0

−ω0 −R
L


︸ ︷︷ ︸

Ac

x(t) +

 1

L
0

0
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L
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Bc

u(t) +

[
0

−λ
L

]
︸ ︷︷ ︸
Gc

v(t)

y(t) =

[
1 0
0 Kt

]
︸ ︷︷ ︸

Cc

x(t) (3)

Such model is obtained by imposing a nominal speed in the
terms ω(t)iq(t) and ω(t)id(t), while allowing the flexibility
of having time-varying values in the affine term v(t). This
improves the accuracy of the model with respect to more
conservative approaches where the effect of the speed is
completely linearized around a steady-state value [27].

III. MODEL PREDICTIVE CONTROL DESIGN

Standard PI-FOC consists of a cascaded architecture where
the outer loop regulates either the rotor speed or position, and
the inner loop controls the (d, q) stator currents, see Figure 1.
MP-TC replaces the controller of the electrical subsystem,
keeping the external loop unchanged, see Figure 2. The focus
on the inner loop is motivated by the faster dynamics, and
by the necessity to impose voltage and current constraints.
In an not weakening flux operation, the direct component id
has to be stabilized at zero, while the quadrature component
iq has to track the set-point iref

q , obtained by scaling the
torque reference τ ref by the constant Kt. With isotropic ma-
chines this control algorithm is effective, as maximum current
implies maximum torque. However, in order to tackle field
weakening, Maximum Torque per Ampere (MTPA) could be
considered [7], [27], but that is out of the scope of this paper.

Inverter

PMSMPMSMPWM

abc
dq
iq

Kt

τ
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ωref
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τ ref
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PI
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abc
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Figure 1. Standard field oriented control scheme for a PMSM. Both the speed
loop and the two stator currents loops are controlled by linear regulators.

A. MPC formulation

Linear MPC solves a finite-horizon, constrained, optimal
control problem, based on a linear prediction model obtained
by discretizing (3) with sampling time Ts, such that:

x(k + 1) = Ax(k) +Bu(k) +Gv(k)
y(k) = Cx(k)

(4)

where k ∈ N is the discrete-time index, A = eAcTs ,
B =

∫ Ts
0
eAcτdτBc, G =

∫ Ts
0
eAcτdτGc, and C = Cc. The

goal is to track the reference τ ref while constraining voltages
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and currents. Therefore the following optimization problem is
solved at every time step k

min.
∆ū

Np∑
i=1

‖Wy(yk+i|k − r(k))‖22 +

Nu−1∑
j=0

‖W∆u∆uk+j|k‖22

(5a)
s.t. xk|k = x(k), (5b)

xk+i+1|k = Axk+i|k +Buk+i|k +Gv(k), (5c)
yk+i+1|k = Cxk+i+1|k, (5d)
∆uk+Nu+j|k = 0, j = 0, . . . , Np −Nu − 1 (5e)
uk+i|k ∈ U, (5f)
xk+i+1|k ∈ X, (5g)
i = 0, 1, . . . , Np − 1 (5h)

where ∆ū = {∆uk|k, . . . , ∆uNu−1|k} is the sequence
of input increments, and ∆uk+i|k = uk+i|k − uk+i−1|k,
i = 0, 1, . . . , N − 1, with uk−1|k = u(k− 1). In Equation (5)
Np and Nu are the prediction and control horizons, and r(k) =
[0, τ ref(k)]′, xk+i|k denotes the prediction of the variable x
at time k + i based on the information available at time k,
Wy and W∆u are weight matrices of appropriate dimensions.
Inputs and states constraints are imposed by Equations (5f)-
(5g), respectively, where U and X are polyhedral sets defined
in Section III-B.

Inverter

PMSMPMSMPWM

abc
dq
iq ∫

θ

ω

ωref
PI

τ ref

id

abc
dq

ud

uq MPC
iref
d

Figure 2. The proposed control scheme for PMSM. The speed loop is
controlled by a standard regulator, the inner loop is implements the model
predictive torque control here introduced.

B. Constraints
We need to impose constraints on stator voltages and

currents [33]. Specifically, the inverter imposes a phase voltage
limit linked to the modulation scheme. Given a DC-bus voltage
VDC, such limit is set to Vmax = VDC√

3
for both space-vector and

pulse-width modulations [27]. The maximum stator current
Imax is imposed to prevent overheating, and their violation for
short intervals due to constraints’ softening of (5g) is usually
permitted. Such bounds get transformed into norm constraints
in the (d, q) reference frame, such as:

u ∈ Ũ = {u ∈ R2 : ‖u‖2 ≤ Vmax} (6a)

x ∈ X̃ = {x ∈ R2 : ‖x‖2 ≤ Imax}. (6b)

U
ud

uq

Vmax

(a) Voltage constraints

X
id

iq

Imax

(b) Current constraints

Figure 3. Inputs (a) and outputs (b) constraints imposed by the MPC
controller. The blue circles represent the original norm constraints of Eq. (6).
The green regions represent their approximations, and are the polyhedra
described by the sets U and X, respectively.

A polytopic approximation of the quadratic constraints (6)
helps reducing the complexity of the optimization prob-
lem [25], [27], and in this paper we approximate the feasible
regions as in Figure 3, which results into an acceptable trade-
off between the accuracy and number of inequality constraints.

C. State estimation and integral action

Although all states are measured for this application , the
controller takes advantage of an observer to reduce the impact
of measurements noise, e.g. due to transistor switching. A
Kalman filter is employed to mitigate such noise, using the
state estimation x̂k|k instead of the measured state x(k) in (5b).
We introduce a delay of one time step in the input channel to
account for the time spent in computing the optimal control
move. Let L be the Kalman filter gain, the one-step delayed
implementation is achieved by computing the state estimate as

x̂k+1|k = (A− LC)x̂k|k−1 +Buk−1 +Gvvk + Lyk. (7)

Integral action is added to the torque reference to minimize
tracking error, therefore dealing with model uncertainties and
noise. That allows us to reject constant disturbances without
affecting the optimization problem size. The modified torque
reference is denoted by ỹref = [̃iref

d , τ̃
ref]′ and computed as:

ĩref
d (k) = ĩref

d (k − 1) + k1(iref
d (k)− id(k)) (8a)

τ̃ ref(k) = τ̃ ref(k − 1) + k2(τ ref(k)− τ(k)) (8b)

where k1, k2 are scalar parameters. Figure 4 shows the
complete real-time MPC controller scheme.

IV. ONLINE OPTIMIZATION AND COMPLEXITY
CERTIFICATION

Let us rewrite (5) as a the following parametric QP problem:

min
z

1

2
z′Hz + θk

′F ′z

s.t. Gz ≤ Sθk + s
(9)

where z =
[
∆ū′ ρ′

]′ ∈ Rnz is the vector of optimization
variables, collecting the sequence of input increments ∆ū
and the vector ρ of slack variables used for softening state
constraints, θk ∈ Θ ∈ Rnθ is the vector of parameters
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Figure 4. Block scheme of the MPC controller, with delayed Kalman filter for
state estimation, integral action for offset-free tracking and the online solver
to obtain the inputs- sequence.

defined as θk = [u′k−1, x̂
′
k+1|k, r

′
k, v

′
k]′, with Θ a set of

interest, H ∈ Rnz×nz is a symmetric and positive definite
matrix, F ∈ Rnz×nθ , G ∈ Rmz×nz , and S ∈ Rmz×nθ and
s ∈ Rmz . Solving (9) accurately and with a throughput in the
milliseconds scale is challenging on embedded hardware. One
option could be EMPC, in which the QP is solved offline for all
z, and the optimal control law is obtained via multiparametric
programming [24]. However, EMPC is less attractive when the
number of regions of the resulting PWA controller grows, as it
could require a significant amount of memory. Indeed, in the
next section we show that the memory occupancy of EMPC
would be too high for this application.

In this work we implemented an efficient QP solver based
on an active-set method, that will be shown to solve problem
(9) within the allowed time limit, and with an exact assessment
of the worst-case execution time.

A. Active-set solver

Definition IV.1 (Active set). Given a QP problem as in (9), a
constraint is said to be active at z̄ if it is satisfied as equality
constraint, i.e., Giz̄ = Siθk + si, where Ai represents the i-th
row of a matrix A, and ai represents the i-th element of a
vector a. Otherwise, it is inactive. We define the two sets

A(z̄) = {i ∈ K | Giz̄ = Siθk + si} (10a)
I(z̄) = {i ∈ K | Giz̄ < Siθk + si} (10b)

where K = {1, . . . ,m} collects the constraint indexes, A is
the active set and I the inactive set, such that I = K\A. �

Given A∗ the set of constraints active at the optimal solution
z∗, the idea behind active-set methods is to iteratively update
the optimal constraints guess Aj , known as working-set, until
Aj ≡ A∗ is verified. Let Bj indicate the set of blocking
constraints, namely those that prevent a full step in the primal
space without violating dual feasibility. Then, at each iteration
j a constraint vj ∈ Vj ⊆ I is selected, with Vj being the set of
all the violated constraints, such that Aj = {Aj−1∪ vj}\Bj .
A step towards the optimal solution is obtained by solving the
reduced equality-constrained QP problem

zj = arg min
z

1

2
z′Hz + θ′kF

′z

s.t. GAjz = SAjθk + sAj .

(11)

Algorithm 1 Dual active-set solver
Input: Matrices H , F , G, S, s of problem (9), vector of
parameters θk and set K

1: z0 ← −H−1Fθk, π0 ← 0, j ← 0, Aj−1 ← ∅;
2: V0 ← {i ∈ K |Giz0 > Siθk + si};
3: while Vj 6= ∅ do
4: vj ← arg max{Gizj − Siθk − si, ∀i ∈ Vj};
5: j ← j + 1;
6: Find blocking constraints Bj ;
7: Aj ← {Aj−1 ∪ vj} \ Bj ;
8: Solve KKT(Aj) with respect to (zj , πj);
9: Vj ← {i ∈ K |Gizj > Siθk + si};

10: end while

Output: Optimal solution z∗ = zj and active set A∗ = Aj

Problem (11) amounts to find a primal-dual pair (zj , πjAj ) that
solves the Karush-Kuhn-Tucker (KKT) system

KKT(Aj)

[
H G′Aj

GAj 0

][
zj

πj

]
=

[
−Fθk

SAjθk + sAj

]
(12)

with π =
[
π′Aj π′Ij

]′
and πIj = 0. The set Bj ⊆ Aj−1

is composed by all those constraints that would prevent to
solve the system KKT({Aj−1∪vj}) without incurring in dual
infeasibility, and that have to be dropped from the current
working-set. Algorithm 1 describes the pseudo-code of the
implemented dual active-set solver, which starts from the
unconstrained solution H−1Fθk and iterates towards primal
feasibility by adding the most violated constraint at each
iteration, preserving dual feasibility. If zj is primal feasible,
that is Gizj ≤ Siθk + si, ∀i ∈ {1, . . . ,m}, then zj ≡ z∗

holds [34]. Dual active-set solvers are preferable to primal
ones because at the price of infeasible sub-iterates, they do
not require Phase I to find a feasible initial guess and usually
find the optimizer with less iterations [35].

B. Complexity certification of the dual active-set algorithm

Knowing the computational complexity of the controller
is of highest importance in embedded real-time systems, in
order to ensure that the control routine is always performed
within the sampling time. The interest in certifying QP solvers
is a very recent matter, as a consequence of the interest in
embedded applications for MPC [23], [31]. The authors have
introduced in [23] the theory and methods to compute exactly
the worst-case execution time of a dual active-set solver,
such as Algorithm 1, when solving a QP problem with the
linear term of the cost function and right hand side of the
constraints depending linearly on a vector of parameters as
in (9). The objective of the certification algorithm is to exactly
compute the maximum number of flops Fmax performed by
Algorithm 1 when solving problem (9) for any θk ∈ Θ, in
order to guarantee that t(Fmax) < Ts, where t(F) is the time
needed by the selected processor to perform F flops. The core
result behind the certification algorithm is summarized by the
following lemma.
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Lemma IV.1. Let Θ ⊆ Rnθ be a polyhedron and z0, π0 two
affine functions of θ ∈ Θ, then for each iteration j ∈ N of
Algorithm 1 the primal-dual pair (zj , πj) obtained by solving
KKT(Aj) is PWA, and N : Θ→ {0, . . . , Nmax} is an integer
piecewise constant function, with Nmax = maxθ∈ΘN(θ) the
maximum number of iterations performed for all θ ∈ Θ.

Proof. The reader is referred to [23, Theorem IV.4].

Given the result of Lemma IV.1 it is possible to certify Algo-
rithm 1 by iteratively splitting Θ into polyhedral sub-regions
according to the possible constraints added and dropped at
each iteration. The polyhedra generated in this way at a given
iteration j represent regions of the parameter space where the
solution can be either optimal, infeasible, or requiring further
iterates. Let us define the PWA primal dual pair as

zj(θk) = Ajzθk + bjz (13a)

πj(θk) = Ajπθk + bjπ (13b)

with A0
z = −H−1F , bz = 0nz , A0

π = 0mz×nθ and b0π = 0mz .
Then z0 and π0 are affine functions of θ and the certification
algorithm builds a set Topt of optimal tuples, and a set Tinf of
infeasible ones, where the generic tuple T i is uniquely defined
by the following parameters:

T i = (Θi,F i, j,Ai, Aiz, biz, Aiπ, biπ). (14)

It is therefore possible to certify the worst-case complexity
by computing Fmax = max(Fmax

opt ,Fmax
inf ), where Fmax

opt and
Fmax

inf are the number of flops needed in the worst-case to
reach the optimum and to detect infeasibility, computed as:

Fmax
opt = max

T∈Topt
{F(T )} (15a)

Fmax
inf = max

T∈Tinf
{F(T )} (15b)

where F(T ) denotes the value F associated to the tuple T .
The certification is also useful to identify if there is any region
in the parameters’ space where the QP algorithm would fail
due to problem infeasibility. Moreover, the explicit solution
can be easily obtained as a by-product of the certification
algorithm [23], given that for each tuple we know the active
constraints and the piecewise functions (13). Such feature will
be exploited in the next section to compare the embedded QP
solver with respect to its corresponding explicit version.

V. EXPERIMENTAL RESULTS

The proposed MP-TC algorithm with real-time optimization
has been tested on the commercially available MBE.300.E500
PMSM, by Technosoft SA. The control unit is an F28335
Delfino DSP by Texas Instruments, which belongs to the
C2000 series. It has a 32-bit, 150 MHz CPU (6.67ns cycle
time) and an IEEE-754 single-precision Floating-Point Unit,
with an integrated multiplier (32× 32 bit). This hardware has
been chosen to demonstrate the viability of implementing an
online QP solver in a low-cost platform like one of the C2000
family, which is commonly used in motion control.

The motor specifications are listed in Table I. The control
scheme of Figure 4 and the QP solver have been implemented
in C code to maximize efficiency. Two interrupt levels manage

Table I
TECHNOSOFT MBE.300.E500 PMSM PARAMETERS

Parameter Units Value

Phase-phase resistance ohm 8.61
Phase-phase inductance mH 07.13
Back-EMF constant V/1000 rpm 3.86
Torque constant mNm/A 36.8
Pole pairs – 1
Rated voltage V 36
Max. voltage V 58
No-load current mA 73.2
No-load speed rpm 9170
Max. cont. current (at 5000 rpm) mA 913
Max. cont. torque (at 5000 rpm) mNm 30
Max. permissible speed rpm 15000
Peak torque (stall) mNm 154
Rotor inertia kgm2 · 10−7 11
Mechanical time constant ms 7

Table II
DESIGN PARAMETERS OF MP-TC

Prediction horizon Np 3
Control horizon Nu 1
Voltage limit Vmax 24/

√
3 V

Current limit Imax 1 A

Output weights Wy and P

[
1 0
0 1

]
Input increments weights W∆u

[
0.01 0
0 0.01

]
Sampling time Ts 0.3 ms

the controller scheduling: (i) a fast loop for current control
with 0.3 ms sampling time, and (ii) a slow loop for speed
control with 1.2 ms sampling time. The main design parame-
ters of the MP-TC are summarized in Table II. In the next the
so designed controller will be referred to as implicit MP-TC,
and later compared to explicit MP-TC for which the online
optimization is replaced by EMPC.

The certification algorithm described in Section IV-B has
been applied to the MPC setup of Table II, in order to compute
the worst-case behavior of the solver, and thus validate off-
line the controller’s complexity feasibility. The set Θ has been
derived in accordance with the physical constraints collected
in Table I. Figure 5 shows a 2D projection in the parameter
space of the optimal polyhedra corresponding to the tuples
T i ⊆ Topt, ∀i = 1, . . . , card(Topt). The same color means
the same number of iterations performed by the solver, but
with possibly different number of flops due to a different
sequence of constraints added or removed from the active set.
The algorithm certifies that Tinf = ∅ which guarantees that the
solver is never infeasible on the set Θ, and that the worst-case
number of flops required by the implicit MP-TC controller
is Fmax

I = 2431, among which 10 are square roots. The
memory occupation mI of both code and data is computed
to be 12.7 kB which is well below the single-access RAM
block of 34 kB provided by the F28335. The desired rotor
speed ωref and the achieved speed ω are shown in Figure 6.
Abrupt changes of speed are requested in order to operate
the system close to the constraints, therefore stressing the QP
solver for speed evaluation. Figure 7 shows the stator currents
in the (d, q) reference frame and the corresponding three phase
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# of iterations 1 2 3 4 5 6
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θ 6

Figure 5. 2-D projection of the certification algorithm result over the plane
defined by QP parameters p5 ≡ iref

d and p6 ≡ iref
q . Polyhedral regions with

the same color share the same number of iterations, but possibly different
flops to reach the optimum.

currents. Figure 8 presents the (d, q) stator voltages together
with the corresponding three phase variables. As shown, the
system constraints are correctly handled. Figure 9 shows the
task times obtained by means of a high precision internal
clock, and the number of iterations needed by the solver to
obtain the optimal control sequence. The solution is always
computed within the time limit of 0.3 ms. This time includes
ADC sampling, state estimation, and real-time optimization.

The proposed implicit MP-TC is compared to explicit MP-
TC. For a more comprehensive benchmark, two configurations
have been proposed. Setup 1 is the one discussed above,
whereas Setup 2 denotes a simplified version with the poly-
hedral constraints on the currents replaced by box constraints
in the (d, q) frame, similarly to [25], such that:

id ∈ [−εImax, εImax] (16a)
iq ∈ [Imax, Imax] (16b)

with ε > 0. The flops and memory occupancy of explicit MP-
TC, respectively identified by Fmax

E and mE , are obtained by
considering the implementation described in [36, Algorithm
4]. . For each of the two controller setups, different prediction
horizons are also considered, and the complete benchmark is
summarized in Table III, where NR indicates the number of
explicit regions and tCE the time required by the certification
algorithm on a 2.2 GHz Intel® Core i7-8750H. The results
show that the so implemented implicit MP-TC is always
faster and less eager in memory than explicit MPC, with
the performance scaling more favorably for implicit MP-TC
when increasing the horizon. Interestingly, explicit MP-TC is
feasible only in two out of six configurations, namely the ones
where the horizon is shortened with respect to the original
setup, exceeding for the others both time and and memory
constraints. Implicit MP-TC is always feasible besides the
single case of Setup 1 with increased horizon. This not
only proves the feasibility of CCS-MPC embedded on cheap
hardware for motor control, but also that implicit MPC can be
more efficient than explicit MPC even on a small problem.
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Figure 6. Speed tracking performance for MP-TC controller experimentally
tested on MBE.300.E500 motor. Abrupt step changes in the reference shaft
speed are applied to test the QP solver when constraints are active.
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Figure 7. Stator currents for the experimental test of MP-TC controller. From
top to bottom: i) stator current in the direct frame, ii) stator current in the
quadrature frame (red), and the reference to track (blue), iii) three phase
stator currents.

VI. CONCLUSION

This paper has proposed a Model Predictive Torque Control
(MP-TC) method with online optimization for permanent mag-
net synchronous motors. The optimal control inputs are ob-
tained by solving a Quadratic Programming (QP) problem with
an efficient, active-set, embedded solver. The computational
complexity of the solver has been exactly assessed, fulfilling
the mandatory requirement of worst-case time estimation for
embedded control. We have shown that the proposed MP-TC
with online solver is feasible on a control unit with scarce
computational resources. The algorithm has been experimen-
tally tested, and compared to explicit MPC which is considered
so far one of the few options to implement MPC in motion
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Figure 8. Stator voltages for the experimental test of MP-TC controller. From
top to bottom: i) stator voltage in the direct frame, ii) stator voltage in the
quadrature frame, iii) three phase stator voltages.
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Figure 9. Timing performance of the F28335 DSP for the experimental
test. From top to bottom: i) the time acquisitions of the control routine
(red), compared to the time limit allowed (blue), ii) the number of iterations
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control. The results shows that the proposed QP solver not only
saves considerable memory with respect to explicit MPC, but
it is certified to be faster in the worst case, even if explicit
MPC is implemented with an approximated formulation.
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