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Abstract— Vehicle active safety receives ever increasing atten-
tion in the attempt to achieve zero accidents on the road. In
this paper, we investigate a control architecture that has the
potential of improving yaw stability control by achieving faster
convergence and reduced impact on the longitudinal dynamics.
We consider a system where active front steering and differential
braking are available and propose a model predictive control
(MPC) strategy to coordinate the actuators. We formulate the
vehicle dynamics with respect to the tire slip angles and use a
piecewise affine (PWA) approximation of the tire force character-
istics. The resulting PWA system is used as prediction model in a
hybrid MPC strategy. After assessing the benefits of the proposed
approach, we synthesize the controller by using a switched MPC
strategy, where the tire conditions (linear/saturated) are assumed
not to change during the prediction horizon. The assessment
of the controller computational load and memory requirements
indicates that it is capable of real-time execution in automotive-
grade electronic control units. Experimental tests in different
maneuvers executed on low-friction surfaces demonstrate the
high performance of the controller.

Index Terms— Automotive controls, hybrid control systems,
model predictive control, vehicle stability control.

I. INTRODUCTION

VEHICLE stability systems1 are a major research area in
automotive because of the demonstrated capabilities of

reducing single-vehicle accidents [4], [5]. Recently the U.S.
Government mandated the electronic stability control (ESC) to
be mandatory in all new passenger cars in the United States,
starting from 2012. ESC [6], [7] employs differential braking,
i.e., different braking torques applied to different wheels, to
generate a yaw moment that stabilizes the vehicle when this
begins to drift. Differential braking has been proved very
effective in stability recovery at the price of perturbing the
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longitudinal vehicle dynamics, and possibly causing undesired
longitudinal decelerations.

Besides differential braking, other actuators can be used for
stability control. Active steering allows the modification of the
tire road wheel angle (RWA), i.e., the angle of the tire with
respect to the vehicle longitudinal axis measured at the point of
contact with the road. In particular, active front steering (AFS)
systems [8] are capable of modifying the relation between the
steering wheel angle (SWA), the command on the steering
wheel, and the RWA at the front tires. Thus, AFS modifies the
effective vehicle steering angle without changing the steering
wheel position. Today, AFS is used in some passenger vehicles
to improve cornering performance, but it has been investigated
also for vehicle stabilization [8]. Although AFS has reduced
authority with respect to differential braking, it is less intrusive
for the driver, since it does not affect the longitudinal vehicle
dynamics.

An even better solution that allows the retention of the
strong stabilization capabilities of ESC and the fine regulation
capabilities of AFS is to design a system that integrates both
actuators [9], [10] for stabilizing the vehicle with minimal
disturbance to the longitudinal dynamics. Such a system will
be capable of improving both cornering performance and
vehicle stabilization. However, coordinating AFS and ESC
to achieve cornering performance and vehicle stabilization
is challenging, and requires an appropriate control strategy.
Several approaches have been investigated in recent years
for vehicle stability control with different actuator configu-
rations, including H∞ control, µ-synthesis, dynamic control
allocation, and sliding modes, see [8], [9], [11]–[14], and the
references therein.

Model predictive control (MPC) [15] is a promising candi-
date for controlling systems with multiple constrained actua-
tors. MPC exploits a model of the system dynamics to predict
the future system evolution and to accordingly select the
best control action with respect to a specified performance
criterion. As opposed to standard optimal control, in MPC
the input trajectory is recomputed every time new infor-
mation on the system (e.g., a new state estimate) becomes
available, hence implementing a feedback mechanism. At
every control cycle, MPC computes the solution of a finite
horizon optimal control problem formulated based on the
system dynamics, performance criterion (cost function), and
operating constraints. Thus, a particular advantage of MPC is
the capability of coordinating several constrained actuators to
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Fig. 1. RWD test vehicle equipped with AFS and differential braking used
for experimental validation.

achieve multiple goals encoded in the performance criterion.
For several years, MPC has only been applied to systems with
slow linear dynamics. However, the recent development of
multiparametric programming [16], which allows the optimal
control problem to be solved offline, and of MPC for hybrid
systems [hybrid MPC (hMPC)] [17], [18] have considerably
increased the domain of applicability. For instance, several
applications have been proposed in automotive control, for
engine [19]–[21], traction [22], actuators [23], and energy
management [24], [25]. For vehicle stability control, linear-
time varying MPC (LTV-MPC) and nonlinear MPC (NMPC)
have been applied to autonomous vehicles in [26]. Dynamic
control allocation [14] is also related to MPC.

In this paper, we consider the problem of stabilizing the
vehicle dynamics and tracking the driver-requested yaw rate
using differential braking and AFS. Differently from the
autonomous vehicle context (e.g., [26]), here the controller
has to interact with the driver, and it has very limited infor-
mation on the desired trajectory and on the driver intent.
In order to obtain an MPC controller that can execute at
high rate on automotive-grade electronic control units (ECUs),
we use MPC techniques for which the optimal solution is
computed offline by multiparametric programming, thereby
synthesizing the control law in the form of a (nonlinear)
static state feedback. In Section II, by formulating the vehicle
dynamics with respect to the tire sideslip angles and by
considering a piecewise affine (PWA) approximation of the
tire forces with respect to such angles, we obtain a PWA
prediction model. In PWA systems [27], the state-input space
is partitioned into polyhedral regions, and in each region an
affine equation defines the system dynamics. Based on the
PWA model, in Section III a hMPC strategy is developed
to evaluate the system capabilities, and in particular the
advantages of integrating AFS and differential braking with
respect to using differential braking only. In order to reduce
the computational complexity of the controller, in Section IV
we propose an implementation based on a switched MPC
(sMPC) strategy, where the system mode (the discrete state
of the hybrid system) is assumed constant in prediction.
The obtained controller is significantly simpler, resulting in a
worst case computational load that allows for high-rate execu-
tion in automotive-grade computational platforms, and the
stability properties of the closed-loop system can be assessed.
In Section V we present experimental results in different
maneuvers executed in the test vehicle shown in Fig. 1 on

(a) (b)

Fig. 2. (a) Qualitative approximation of the tire sideslip angle–tire force
relation. (b) Schematics of the bicycle vehicle model.

low friction surfaces (icy/packed/soft snow). Conclusions and
future developments are summarized in Section VI.

Notation: R, R0+, Z, and Z0+ are the sets of real, nonneg-
ative real, integer, nonnegative integer numbers, respectively.
We indicate the identity by I , and a matrix of zeros by 0.
For a matrix A, [A]m is the mth column, while for a vector
v, [v]m is the mth component. Inequalities between vectors
are intended componentwise, while for a matrix Q, Q > 0,
(Q ≥ 0) indicates positive (semi)definitiveness. With a little
abuse of notation ∥x∥2

Q = x ′Qx .
We avoid to explicitly show the dependence from time when

not needed. For discrete-time systems, x(k) is the value of
vector x at time kTs and a(h|k) the predicted value of a(k+h)
basing on data at time k.

II. CORNERING DYNAMICS MODEL

In normal “on road” driving, which is the focus of this
paper, the vehicle dynamics can be conveniently approximated
by the bicycle model [28] shown on the right side of Fig. 2.
Such model neglects vertical load transfer, which is impor-
tant in performance driving [29], and track width, which is
important at low speeds. Despite the reduced complexity, the
bicycle model captures the relevant vehicle dynamics, and is
appropriate for feedback control design [8], [9], [12], [26].

Since the focus of this paper is a driver-assist system where
the controller does not have information about the road, we
consider a reference frame that moves with the vehicle. The
frame origin is at the vehicle center of mass, with the x-axis
along the longitudinal vehicle direction pointing forward, the
y-axis pointing to the left vehicle side, and the z-axis pointing
upward. Here, we focus on the dynamics on the xy-plane,
where, due to the choice of the reference frame, the angles
increase counterclockwise. The tire sideslip angle (or simply
slip angle) is the angle between the tire direction and the
velocity vector at the tire. In the bicycle model, α f [rad] and
αr [rad] are the tire sideslip angles at the front and at the rear
tires, respectively. According to the chosen reference frame,
the tire slip angles in Fig. 2 are negative.

By approximating the longitudinal velocity at the wheels as
equal to the one at the center of mass, vx [m/s], and the lateral
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Fig. 3. Open-loop trajectories of the nonlinear vehicle dynamics in the tire
slip angles domain for δ = 0, Y = 0, and boundaries of the PWA regions.

velocity at the wheels as the sum of the lateral velocity at the
center of mass vy [m/s] and of the component due to rotation,
we have

tan (α f + δ) = vy + ar
vx

, tan αr = vy − br
vx

(1)

where a[m] and b[m] are the distances of the front and rear
wheel axels from the vehicle center of mass, respectively, δ
[rad] is the steering angle at the road (RWA), and r [rad/s] is
the yaw rate.

The front and rear tire forces F f [N], Fr [N], respectively, are
nonlinear functions of α f , αr , and of the longitudinal slip2 σ ∈
(0, 1). Based on a tire brush model (see [30]) for constant σ ,
which is a reasonable approximation for cornering in normal
driving, we can approximate the tire forces as

Fj (α j ) =

⎧
⎨

⎩

d j (α j + p j ) − e j , if α j < −p j
c j α j , if −p j ≤ α j ≤ p j
d j (α j − p j ) + e j , if α j > p j

(2)

where j ∈ { f, r}, j = r for the rear tires, and j = f for
the front tires, p j [rad] is called the saturation angle, and
c j [N/rad], d j [N/rad], e j [N] are identified from experimental
data or from more complex tire models, e.g., [31]. Three
regions of operations per pair of tires are considered, i.e.,
negative saturation (α j < −p j ), linear (|α j | ≤ p j ), and
positive saturation (α j > p j ). A qualitative approximation of
the sideslip angle–tire force characteristic is shown on the
left side of Fig. 2, where it is shown that we allow for
nonzero slope of the curve in the saturation regions. The tire
forces (2) are symmetric, i.e., for any α j ∈ R, j ∈ { f, r},
Fj (−α j ) = −Fj (α j ).

In high-speed turns, the tire slip angles are small [28],
hence (1) is suitably approximated by

α f = vy + ar
vx

− δ, αr = vy − br
vx

. (3)

By assuming a constant longitudinal velocity vx and differen-
tiating (3) we obtain

α̇ f = v̇y + aṙ
vx

− ϕ, α̇r = v̇y − bṙ
vx

(4)

2The normalized difference between driven and driving wheels velocities.

where ϕ = δ̇ [rad/s] is the steering angle rate. From (3)

α f − αr = vy + ar
vx

− δ − vy − br
vx

hence
r = vx

a + b
(α f − αr + δ). (5)

From (3) and (5), at steady state, α f , αr have opposite
signs with respect to r , and in general |α f | > |αr |. Thus, at
steady state, r < (vx )/(a + bδ), according to the understeering
behavior of passenger vehicles [28].

Under the indicated assumptions, the lateral acceleration can
be decomposed into the acceleration of a frame rotating with
yaw rate r , and the lateral acceleration at the center of mass

v̇y = F f cos δ + Fr

m
− rvx . (6)

The yaw acceleration is

ṙ = a Ff cos δ − bFr + Y
Iz

(7)

where Iz [kgm2] is the vehicle inertia along the z-axis, and
Y [Nm] is the yaw moment obtained by differential braking,
i.e., by applying different torques at different wheels. In (7),
the four wheels braking torques are abstracted by the resulting
yaw moment along the vehicle vertical axis, thereby reducing
the model complexity.

The trajectories generated by (2), (6), and (7) for different
initial values of α f , αr , and for vx = 15 m/s, δ = 0 rad,
Y = 0 Nm are shown in the tire slip angles phase plane in
Fig. 3, where also the saturation angle values are shown. The
unstable trajectories are plotted in red and the stable trajec-
tories in black. Beside the stable equilibrium at the origin,
two unstable equilibria (circled) appears at approximately
(α f ,αr ) = ±(0.095, 0.15). The location of the equilibria
depends on the tire force characteristics (2) and on the steering
angle, consistently with the analysis in [12], based on body
slip angle and yaw rate.

For small steering angles, cos δ ≃ 1, hence substituting (5),
(6), and (7) into (4) gives

α̇ f = F f + Fr

mvx
− vx

a + b
(α f − αr + δ)

+ a
vx Iz

(a F f − bFr + Y ) − ϕ (8a)

α̇r = F f + Fr

mvx
− vx

a + b
(α f − αr + δ)

− b
vx Iz

(a F f − bFr + Y ) (8b)

δ̇ = ϕ. (8c)

System (8) has state vector x = [α f αr δ]′, input vector u =
[ϕ Y ]′, and output y = r , by (5). The dynamics (2), (5), and
(8) are represented by the PWA system

ẋ(t) = Ac
i x(t) + Bc

i u(t) + φc
i (9a)

y(t) = Ccx(t) (9b)

i(t) ∈ I : Hi(t)x(t) ≤ Ki(t) (9c)
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where x ∈ R3, u ∈ R2, y ∈ R, i ∈ I is the active region,
I = {1, . . . , s}. Inequalities (9c) are obtained from the ranges
of the linearizations in (2). The effect of (9c) is to partition the
state space into polyhedral regions that define the operating
conditions (linear, and positive and negative saturation, for
front and rear tires), which are called the modes or the regions
of the PWA system, in total, s. The matrices Ai , Bi , i ∈ I
define the vehicle dynamics in the different conditions, and
are obtained by substituting the linearized force equations (2)
into (8). The active region i of the PWA system is selected
by evaluating (9c) for the current value of the state x , i.e., the
current value of tire sideslip angles and of the steering angle.
There are three conditions for the front tires and three for the
rear tires, hence s = 9, and the PWA vector field is symmetric
with respect to the state-input vector.

Remark 1: Equation (9) is obtained for constant longitu-
dinal velocity vx and constant surface friction µ. In what
follows, we show that the controller is robust to variations
in vehicle velocity and friction. For improving model fidelity
over a wider range of conditions, multiple models can be
used.

III. CONTROLLER DESIGN AND CAPABILITIES

EVALUATION BY hMPC

The vehicle model developed in Section II is used for
prediction in an MPC algorithm. The feedback nature of MPC
is expected to compensate for the modeling approximations
in Section II and aimed at reducing the complexity of the
prediction model and of the control algorithm.

The controller designed here has to track the desired yaw
rate while keeping the slip angles within acceptable bounds.
At every control cycle, the general MPC algorithm performs
the following operations: 1) measures/estimates the system
state; 2) solves a finite horizon optimal control problem formu-
lated on the system model, performance criterion, operating
constraints, and current state; and 3) commands the first
element of the optimal control sequence to the actuators.

The direct application of MPC to the PWA model of the
vehicle dynamics (9) results in a hybrid MPC controller
(hMPC) [17], [18]. The hMPC finite horizon optimal control
problem involves continuous and discrete optimization vari-
ables, where the first ones select the continuous commands
and the second ones encode the PWA system mode. The
resulting problem is a mixed-integer program. Because of
the complexity of mixed-integer programming algorithms,
we further simplify (9) by ignoring the steering dynamics
(ϕ in (4)). The simplified model is discretized in time with
sampling period Ts = 100 ms

xr (k + 1) = Ar
i(k)x

r (k) + Br
i(k)u

r (k) + φr
i(k) (10a)

yr (k) = Cr xr (k) + Dr ur (k) (10b)

i(k) : H r
i(k)x

r (k) ≤ K r
i(k) (10c)

where k ∈ Z0+ is the sampling instant, xr = [α f αr ]′,
and ur = [δ Y ]′. We then formulate the constraints. For the
problem considered here, in order to maintain the system in
the region where sufficient lateral force can be developed, we

constrain the slip angles as

α f, min ≤ α f (k) ≤ α f, max (11a)

αr, min ≤ αr (k) ≤ αr, max. (11b)

In order to preserve feasibility, (11) is enforced by soft
constraints [21]. In this formulation, the steering angle is
actuated only by the AFS system, hence it is constrained in
the actuation range of the AFS motor

δmin ≤ δ(k) ≤ δmax. (12)

The braking torques limits induce constraints on the yaw
moment, which, for the maneuvers of interest, are

Ymin ≤ Y (k) ≤ Ymax. (13)

Based on model (10) and constraints (11)–(13), the MPC
finite horizon optimal control problem at k ∈ Z0+ is

min
Ur

N (k)

N−1∑

h=0

∥xr (h + 1|k) − x̂(k)∥2
Qx

+ ∥yr (h|k) − ŷ(k)∥2
Q y

+∥ur (h|k) − û(k)∥2
Ru

(14a)

s.t.

xr (h + 1|k) = Ar
i(h|k)x

r (h|k)

+Br
i(h|k)u

r (h|k) + φr
i(h|k) (14b)

yr (h|k) = Cr xr (h|k) + Dr ur (h|k) (14c)

i(h|k) : H r
i(h|k)x

r (h|k) ≤ K r
i(h|k) (14d)

xr (0|k) = xr (k) (14e)

umin ≤ ur (h|k) ≤ umax (14f)

xmin ≤ xr (h|k) ≤ xmax (14g)

h = 0, . . . , N − 1,

where N is the horizon, Ur
N (k) = (ur (0|k), . . . , ur (N − 1|k))

is the control input sequence, x(k) is the measured/estimated
state at time k, and Qx ≥ 0, Qu, Qy > 0 are weighting
matrices. In (14), x̂ = [α̂ f α̂r ]′, û = [Ŷ δ̂]′, ŷ = r̂ are the
set points for state, input, and output vectors, respectively.
Problem (14) is translated into a mixed-integer quadratic
program (MIQP), where a quadratic cost is minimized subject
to linear constraints, and where some variables are integer-
valued. According to the receding horizon mechanism, the
first element of the optimizer Ur

N
∗(k) of (14) is used as

control input at time k, i.e., ur (k) = ur ∗(0|k), and at the
following control cycle the procedure is repeated from the
newly estimated/measured state.

A. Simulations of the hMPC Controller

The hMPC strategy for vehicle stability control was tested
in simulation in a closed loop with a nonlinear vehicle model
derived from (1), (2), (6), and (7), which also includes a
model of the steering and brake actuators, surface dependency
on the tire model [30], and longitudinal dynamics and slip.
The simulation model represents the test vehicle in Fig. 1,
for which m = 2050 kg, Iz = 3344 kgm2, a = 1.43 m,
and b = 1.47 m. The nominal longitudinal velocity is set
to vx = 15 m/s (54 km/h), and the nominal surface is
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Fig. 4. Experimental tire data (dotted line) and piecewise linear approxima-
tion (dashed line) of the tire sideslip angle–force characteristics (2). (a) Front
tires. (b) Rear tires.

packed snow (µ = 0.45). The tire forces are identified from
a dataset collected on a similar surface using a high-precision
localization system and strain gauges installed on the steering
rack. Additional details on sensors and tire identification data
are given in [30] and [32].

In Fig. 4, the tire data and the chosen PWA approximation
are shown. The estimated parameters of the PWA model of
the tire forces are c f = −3.2 × 104, d f = 1.2 × 103, and
e f = −4.0 × 103 for the front tires, where the saturation
angle is p f = 0.12 rad, and cr = −5.7×104, dr = 1.1×103,
and er = −4.0 × 103 for the rear tires, with saturation angle
pr = 0.07 rad. We did not pursue fine optimization of the
tire model to investigate the controller robustness to modeling
errors.

The bounds in (11)–(13) are set to

αf,max = −αf,min = 0.3rad, αr,max = −αr,min = 0.275rad,

δmax = −δmin = 0.35rad, Ymax = −Ymin = 1000 Nm.

Note that the slip angles are allowed to stay in saturation.
The value of the driver-requested RWA, δdrv [rad], is

computed from the driver input on the steering wheel (SWA),
δSWA [rad], by multiplying the SWA by the steering gear ratio,
gcol, i.e., δdrv = g−1

colδSWA. In the hMPC controller, the steering
angle is actuated uniquely by the AFS motor. Hence, δdrv is
used only for calculating the target slip angles and yaw rate, by
computing the equilibrium of (9) for the current longitudinal
velocity vx , δ = δdrv, YM = 0, and ϕ = 0, while assuming
nonsaturated tires. For the following simulations, the horizon
N = 3 is used in (14).

The first simulation test, shown in Fig. 5, illustrates the
capabilities of the control strategy in recovering from a loss
of stability, i.e., from an initial condition on one of the unstable
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Fig. 5. Time history of states, inputs, and outputs in the stabilization
simulation for hMPC with AFS and brakes (solid line), and brakes-only
controller (dashed line). (a) Upper plot: yaw rate and target yaw rate (dotted
line). Lower Plot: tire slip angles. (b) Upper plot: AFS steering angle. Lower
plot: yaw moment from braking.

open-loop trajectories in Fig. 3, where the rear tires are satu-
rated, but the front tires are not. In a rear-wheel drive (RWD)
vehicle, this may be caused, for instance, by an excessive
acceleration on a low friction surface while negotiating a
turn. We compare the performance of the controller that uses
AFS and differential braking with a controller that uses only
brakes and does not perform prediction. Such a controller is
more similar to currently implemented ESC algorithms [6],
[7], which actuate only the brakes reactively rather than
predictively. With these simulations, we also aim at showing
the potential benefits of coordinating AFS and brakes, instead
of using only the brakes.

The time history of the slip angles in the test is shown
in Fig. 5(a). The hMPC controller that uses AFS and brakes
achieves faster convergence to the equilibrium. Fig. 5(b) shows
that by using AFS the activity of the brakes is significantly
reduced, and so will be the perturbation to the longitudinal
dynamics, which may disturb the driver because of the asso-
ciated aggressive decelerations.

Fig. 6 shows the trajectory of tire slip angles in the phase
plane. When both AFS and brakes are used, the maximum
value of αr is reduced and the trajectory remains significantly
closer to the origin. According to Fig. 3, the vehicle dynamics
becomes particularly unstable when the angles are large and
αr ≥ α f . Hence, the coordination of AFS and brakes appears
to improve vehicle stability.

In a second series of simulations, we analyze the robustness
to parameter variations with respect to the ones used in
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Fig. 6. Phase plane trajectory of the tire slip angles in the stabilization
simulations for AFS and brakes hMPC (solid line), and brakes-only controller
(dashed line). The saturation angles are also shown (dotted line).

the prediction model (10), referred to as “nominal,” in what
follows. While several parameters can change as a result of
the variability of the vehicle operating conditions, we report
here the simulations for those that resulted to be more critical,
i.e., the longitudinal velocity (vx ), the road friction coefficient
(µ), and the peak tire force angle (p j , j ∈ { f, r}). We evaluate
the robustness in a tracking test that simulates a step-steering,
i.e., the vehicle is requested to achieve and maintain a constant
yaw rate, starting from straight driving. The target yaw rate
behavior is generated from nominal conditions (v̄x = 15 m/s,
µ̄ ≈ 0.45) for a step change from 0 to 60 degrees in SWA.

In Fig. 7(a), we show the target yaw rate as well as the
time histories of the yaw rate and of the rear tire slip angle
(the critical angle for detecting the loss of stability) for the
cases of nominal longitudinal velocity v̄x = 15 m/s (dash,
red), and for the cases of vx = v̄x × {0.6, 0.8, 1.2, 1.4, 1.6}
in increasingly dark color (from light blue to black). When
the velocity is smaller than the nominal one, only a steady-
state error is induced. When the velocity is larger than the
nominal one, first a steady-state error is induced, and then
stability losses may occur. The latter only happens for large
variations with respect to the nominal value. In Fig. 7(b), we
show the target yaw rate (dotted) and the time histories of the
yaw rate and of the rear tire slip angle for the nominal case
µ = µ̄, the value used in the hMPC tire force model (dash,
red), and for µ = µ̄ · {1.5, 0.75, 0.5, 0.4}, in increasingly dark
color (from light blue to black). If µ is only slightly different
from the nominal value, only a steady-state error occurs, while
if µ is significantly smaller than the nominal value, stability
losses may occur. The latter only happens for extremely large
errors in the parameters, e.g., when the actual µ corresponds
to polished ice. In Fig. 7(c), we show the time histories of the
yaw rate and of the rear tire slip angle for the nominal tire
force peak angle p̄ j , j ∈ { f, r} (dash, red) and for the cases
where p j = {1.2, 0.9, 0.8, 0.7} p̄ j , j ∈ { f, r}, in increasingly
dark color (from light blue to black). The tire force continuity
is preserved by adjusting the tire peak force. For values of
p j , j ∈ { f, r}, larger than in the nominal case, the controller
keeps the slip angles smaller, and the stabilization is faster.
When p j , j ∈ { f, r}, is smaller than in the nominal case, the
slip angles grow larger and the stabilization takes longer, but
stability is maintained. Since the initial condition is the same
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Fig. 7. Time history of yaw rate and rear tire slip angle in the robustness
simulations. Nominal condition (dashed line), and non-nominal conditions
(solid line). (a) Robustness to longitudinal velocity variations. Upper plot: yaw
rate, target yaw rate (dotted line). Lower plot: rear tire slip angle. (b) Robust-
ness to µ variations. Upper plot: yaw rate, target yaw rate (dotted line). Lower
plot: rear tire slip angle. (c) Robustness to peak force angle variations. Upper
plot: yaw rate, target yaw rate (dotted line). Lower plot: rear tire slip angle.

in all the tests but the tire forces are different, the smaller the
saturation angle, the more challenging the initial condition.

The robustness tests show that reasonable ranges of para-
meter variations can be tolerated by the controller. In order
to ensure high performance and robustness across the whole
operating range, controller scheduling can be applied, as
is common practice, using different prediction models for
different conditions. However, the range where the controller
operates robustly is sufficient for the tests discussed in this
paper. Next, we develop a controller for implementation in
automotive-grade ECUs.

IV. SWITCHED MODEL PREDICTIVE CONTROL DESIGN

The hMPC controller solves every control cycle problem
(14), which is a MIQP. Although satisfactory performance
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is achieved, in terms of stability, yaw rate tracking, and
robustness to parameter variations, the memory and chrono-
metric requirements of mixed-integer programming are too
large for implementation in automotive-grade ECUs at the
desired sampling rate (10–20 Hz). Even if synthesized in
explicit form [33], the controller is still too complex in
terms of memory occupancy and worst case computations
required [1].

Explicit hMPC is complex because a PWA control law
is computed for each sequence of PWA modes along the
prediction horizon. Given s modes and horizon N , sN control
laws are computed and they cannot be merged into a single
PWA function [33]. Thus, the sN laws must be stored together
with their value functions, the functions that describe the
optimal cost as a function of the state x . At each control
cycle, all the sN laws are evaluated for the current value of
x , and the one with the smallest value function is selected.
Symmetry of (10) can be used to reduce the modes to 4, so
that for N = 3, 64 PWA control laws are obtained, for more
than 5000 regions [1].

The simulations in Section III-A have shown that the system
in closed loop with the hMPC controller exhibits relatively
few mode switches, and that almost no multiple switches
occur over short periods (0.5–1 s). As a consequence, one can
consider as prediction model the PWA system, where the mode
is maintained constant along the prediction horizon and the
constraints that enforce the PWA partitions are ignored after
the first step. Referring to (14), this means i(h|k) = i(0|k)
for all h = 1, . . . , N − 1, and (14d) is enforced only for
h = 0. Thus, the feasible mode sequences are reduced to s,
at the price of neglecting the effects of mode switches during
the prediction horizon. Furthermore, because of (14d), for an
assigned x(k) only one value i(0|k) ∈ I exists such that (14d)
is satisfied for h = 0. Hence, i(k) is uniquely assigned by
the state, so that (14d) does not need to be enforced and the
number of constraints is significantly reduced. Let

γMPC(i, x), i ∈ I (15)

be the MPC control law obtained by (14), where i(h|k) = i
for all h = 0, . . . , N − 1, and (14d) is removed. Since
for a fixed i ∈ I, (15) is applied only for the states x
such that Hi x ≤ Ki , we call it the local MPC law. The
sMPC algorithm operates as follows. Given x(k): 1) find
i(k) such that Hi(k)x(k) ≤ Ki(k) and 2) select as command
u(k) = γMPC(i(k), x(k)).

Remark 2: The PWA polyhedral partition (9c) does not
depend on the input u(k). Thus, given x(k), there is only one
feasible mode i ∈ I. In the case of general PWA partitions,
Hi(k)x(k)+Mi(k)u(k) ≤ Ki(k) , multiple MPC laws might need
to be evaluated, and the control input selected as the one
associated with the smallest value function. The solution of
s QPs is generally simpler than the solution of the MIQP (14)
modeling sN mode sequences [34].

A. Switched MPC Prediction Model

The complexity of sMPC is reduced with respect to hMPC,
hence we use as plant prediction model (8) discretized in time

with sampling period Ts = 50 ms

x(k + 1) = Ai(k)x(k) + Bi(k)u(k) + φi(k) (16a)

y(k) = Ci(k)x(k) (16b)

i(k) : Hi(k)x(k) ≤ Ki(k) (16c)

where k ∈ Z0+ is the sampling instant. In (16), the steering
rate is a control input, hence constraints on AFS motor rate
can be enforced.

Since the final objective is the design of a driver steering
assist system, we decompose the total RWA δ into the compo-
nents due to driver steering, δdrv, and to AFS, δAFS [rad]. For
the considered AFS architecture

δ(k) = δdrv(k) + δAFS(k). (17)

Similarly, the steering rate δ̇ = ϕ can be decomposed as

ϕ = ϕdrv(k) + ϕAFS(k) (18)

where δ̇drv(k) = ϕdrv(k), and ϕAFS(k) = δ̇AFS(k).
While more advanced models have been tested for driver

steering prediction, for instance, constant driver steering rate
and first order driver steering dynamics, a constant driver
steering angle prediction is used in this paper. Note that closed-
loop models of the driver are not possible here, since the
desired path is not known, as in ESC systems. Thus, for
h = 0, . . . , N − 1 in the prediction model δdrv(h|k) = δdrv(k),
and as a consequence ϕdrv(h|k) = 0, [u(h|k)]1 = ϕAFS(h|k).

In order to increase the robustness with respect to model
imperfections, we generate the yaw rate reference by

r̂(k) = vx (k)

L + κvx (k)2 δdrv(k) (19)

where L = (a + b). The reference yaw rate (19) is a static
function of the driver steering angle and the current longi-
tudinal velocity [6]. The parameter κ , called understeering
gain [28], embeds information on the tire force curves and
the surface friction, and it can be either constant or updated
online. Since by (19) the yaw rate reference is a function of
the driver steering and of the longitudinal velocity only, both
of which are assumed constant in prediction, the yaw rate
reference is also constant in prediction.

Remark 3: Equation (19) can be exploited to modify the
steady-state vehicle cornering behavior. By introducing a
mismatch between κ in (19) and the current surface, the
controller will converge to a nonzero value δAFS at steady
state, thereby increasing/decreasing the steady-state yaw rate
with respect of what would be produced without AFS.

By adding driver input δdrv and yaw rate reference r̂ to (16),
the i th mode prediction model is

x p(k + 1) = A p
i x p(k) + B p

i u p(k) + ( pφ p
i (20a)

yp(k + 1) = C px p(k) (20b)

i : [Hi 0]x p(k) ≤ Ki (k) (20c)

A p
i =

[
Ai [Ai ]3 0
0 1 0
0 0 1

]

, B p
i =

[
Bi
0
0

]

( p =
[

I
0

]
, C p = [ C [C]3 −1 ]
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where x p = [α f αr δAFS δdrv r̂ ]′, u p = [ϕAFS Y ]′, φ p
i = φi ,

i ∈ I, and yp = r − r̂ , i.e., the tracking error.

B. Cost Function and Constraints

By using ϕAFS as control input, we can include constraints
on AFS motor angle and angular rate. Owing to the
mechanical design and physical limits of the AFS motor, we
enforce

δmin ≤ δAFS(k) ≤ δmax (21)

ϕmin ≤ ϕAFS(k) ≤ ϕmax. (22)

Limits on the total steering angle [i.e., (12)], are instead
neglected in the controller design to reduce the controller
complexity, since these are not reached in normal driving.

The objective of the driver-assist steering system is to track
the desired yaw rate while avoiding the slip angles to exceed
the linear region of the tire curve (i.e., to avoid the vehicle
dynamics to be in the unstable regions) for long periods, since
this is not appropriate for normal driving. The desired behavior
is encoded by the cost function

J =
N−1∑

k=0

q(r)
i (r(k) − r̂(k))2 + q

(α f )
i α f (k)2

+q(αr )
i αr (k)2 + q(Y )

i Y (k)2 + q(ϕ)
i ϕAFS(k)2 (23)

where q(r)
i , q

(α f )
i , q(αr )

i , q(Y )
i , and q(ϕ)

i ∈ R0+, for all i ∈ I,
are the tuning weights that trade off the different objectives.

C. Switched MPC Synthesis

The number of local MPC control laws to be computed can
be reduced by considering that the angle–force relations in (2)
are symmetric and the equations for positive and negative
saturation have the same linear coefficient but different affine
terms φi . In the sMPC controller, the affine term in (20) is
assigned at the initial prediction step and remains constant
along the prediction horizon. Thus, we modify (20) including
the affine term φi in the state vector as

xs(k + 1) = As
i xs(k) + Bs

i us(k) (24a)

As
i =

[
Ap

i ( p

0 I

]
, Bs

i =
[

B p
i

0

]
, xs(k) =

[
x p(k)
φ(k)

]
(24b)

where us(k) = u p(k), and φ(k) = φ
p
i(k). Since φ(k) is

included as a parameter in x p(k), only four dynamical models
have to be considered in the sMPC design, i ∈ I = {1, . . . , 4},
thereby generating only four different local MPC laws. The
four modes represent linear and saturated tire force dynamics
for front and rear tires. Negative and positive saturation are
differentiated by the affine term φ(k), which is a parameter
in the initialization of the MPC problem and is maintained
constant along the prediction horizon.

By collecting prediction model (24), cost function (23), and
constraints (11), (13), (21), (22), we design the local MPC
laws (15), for all i ∈ I. For each mode i ∈ I, the sMPC
optimization problem is

min
UN (k)

N−1∑

h=0

∥xs(h + 1|k)∥2
Qi

+ ∥us(h|k)∥2
Ri

(25a)
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Fig. 8. Simulation of a slalom maneuver. (a) Upper plot: yaw rate reference
(dashed line) and yaw rate (solid line). Lower plot: slip angles (solid line) and
saturation angles (dotted line). (b) Upper plot: driver steering angle (dashed
line) and AFS actuator steering angle (solid line). Lower plot: differential
braking yaw moment.

s.t. xs(h + 1|k) = As
i xs(h|k) + Bs

i us(h|k) (25b)

umin ≤ us(h|k) ≤ umax, h = 0, . . . , N − 1 (25c)

xmin ≤ xs(h|k) ≤ xmax, h = 1, . . . , Ny (25d)

us(h|k) = 0, h = Nu , . . . , N − 1 (25e)

xs(0|k) = [x(k)′ δdrv(k) r̂(k) φ(k)′]′ (25f)

where UN (k) = (us(0|k), . . . , us(N−1|k)), and the prediction
horizon (N) may be different from the state constraints horizon
(Ny), i.e., the number of steps along which (11) is enforced,
and from the control horizon (Nu ), i.e., the number of free
control moves to be chosen. Choosing Ny and Nu smaller
than N reduces the controller complexity while maintaining
the prediction capabilities. Since the system mode is fixed,
(25) results in a quadratic program that has a polynomial
complexity [35], as opposed to the exponential complexity of
MIQPs [34]. The output term of (23) can be included in (25a)
as x ′

s Qi xs = xs(Cs ′ Q̄y,i Cs + Q̄x,i )xs , and Cs = [C p 0], for
i ∈ I.

The sMPC feedback law can be explicitly computed.
Problem (25) is a quadratic program that can be solved as
a function of x(k) by multiparametric programming [16]. In
this way, for each mode i ∈ I, the local MPC law is the PWA



1244 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 21, NO. 4, JULY 2013

static state feedback

γMPC(i, xs) = Fi
j xs + Gi

j (26)

j : H i
j xs ≤ K i

j (27)

where j ∈ Ji , Ji = {1, . . . , si }, and si is the number of
regions of the MPC law associated to the i th mode.

The global sMPC law is obtained by combining (26) for all
i ∈ I with the mode selection inequalities in (16c). The result
is the PWA function

us = Fi
j xs(k) + Gi

j (28a)

i, j : [Hi 0]xs(k) ≤ Ki (28b)

H i
j xs(k) ≤ K i

j , (28c)

where (28b) is the controller selection rule and (28c) is the
region selection rule. As a consequence, the closed loop is
described by the PWA system

xs(k + 1) = (As
i + Bs

i Fi
j )xs(k) + Gi

j (29a)

i, j : [Hi 0]xs(k) ≤ Ki (29b)

H i
j xs(k) ≤ K i

j , (29c)

where i ∈ I, j ∈ Ji , and whose stability can be studied
globally via quadratic or piecewise quadratic Lyapunov func-
tions [27]. A local stability analysis [36] can be developed
by identifying the control law ı̄ and the region ȷ̄ that contain
the equilibrium, and then evaluating the eigenvalues of (As

ı̄ +
Bs

ı̄ F ı̄
ȷ̄ ). Let the maximum absolute value of the eigenvalues

of (As
ı̄ + Bs

ı̄ F ı̄
ȷ̄ ) be not larger than 1 (with full geometric

multiplicity). Let XPI be the largest positive invariant set
contained in X̄ = {xs ∈ Rn : [Hı̄ 0]xs ≤ Kı̄ , H ı̄

ȷ̄ xs ≤ K ı̄
ȷ̄ }

for dynamics xs(k + 1) = (As
ı̄ + Bs

ı̄ F ı̄
ȷ̄ )xs(k) + Gı̄

ȷ̄ . Then,
(29) is stable in XS ⊆ Rn such that XS ⊇ XPI.

V. SIMULATION AND EXPERIMENTAL RESULTS

The controller designed in Section IV is evaluated in simu-
lations and experimental tests in different maneuvers.

A. Simulation Results

Because of the reduced computational load of the sMPC
algorithm, we could implement the control strategy with
horizons N = 10, Nu = 3, and Ny = 3. The bounds on the
slip angles and on the yaw moment by differential braking are
the same as in Section III-A. The bounds on the AFS motor
angle and angular rate in (21) and (22) are set to

δmax = −δmin = 0.175 rad, ϕmax = −ϕmin = 0.5 rad/s.

We have calibrated the weights in (23) to trade off between
tracking performance, robustness to the model approximations,
and reduced switching frequency on the border of the linear
region. In particular, we have set q

(α j )
i = 0, j ∈ { f, r} for all

i ∈ I such that α j is in the linear tire region (|α j | ≤ p j ),
while we set q

(α f )
i = 104, q(αr )

i = 3 × 104, elsewhere. The
changes in the weights enforce the different objectives in the
different tire force regions. When the vehicle is in the linear
tire force region the objective is to track the yaw rate, possibly
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Fig. 9. Phase plane plot of the slip angles for achievable (blue) and
unachievable (black) target yaw rate in the simulation of a slalom maneuver.

with minimum use of differential braking since this perturbs
the longitudinal dynamics, while in the tire saturation region it
becomes of primary importance to return to the linear region,
possibly by using also the brakes.

The sMPC synthesized in explicit form (28) has
273 regions, and its evaluation has worst case upper bound of
5×104 atomic operations per second, which is in the range of
capabilities of currently available automotive ECUs [36]. In
simulations and experimental tests, the average computation
load was approximately 8% of the worst case. The C-code of
this class of controllers has been demonstrated to be compat-
ible with production-like automotive ECUs in [37]. For the
closed-loop dynamics (29), we have verified local asymptotic
stability since in the linear region, maxℓ |λℓ| = 0.83, where
{λℓ}ℓ is the set of closed-loop system eigenvalues.

Before testing the controller in the vehicle, we have qualita-
tively evaluated the performance in simulation, using the same
continuous time nonlinear simulation model as in Section III.
In Fig. 8 we show a simulated slalom maneuver where the
driver steering changes every 5 s by step steering. For the
first 20 s the desired yaw rate is achievable and, since the
steering-to-yaw rate gain of (19) is tuned to match that of
the simulation model, the vehicle yaw rate converges to the
set point, with the control system assisting the driver during
the transients. After 20 s in the simulation, the amplitude of
the desired yaw rate signal is increased, resulting in a target
yaw rate that is not achievable for the available tire force.
In this case, the driver-assist system stabilizes the vehicle to
achieve a close feasible yaw rate. The controller produces
a behavior similar to a limit cycle between the linear and
saturation regions of the tire force, see Fig. 8. The trajectories
in the (α f ,αr ) phase plane are shown in Fig. 9, where the
color changes after 20 s in the simulation to highlight the
difference between feasible and infeasible yaw rate tracking
conditions.

B. Experimental Results

The sMPC controller with the parameters described in
Section V-A is evaluated on the protoype RWD vehicle (see
Fig. 1) whose parameters have been introduced in Section III
and which is equipped with a 4.2-L V8 engine and a six-speed
automatic transmission. The controller and the drivers for the
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Fig. 10. Experimental validation of the control strategy in a slalom test.
(a) Upper plot: yaw rate reference (dashed line) and yaw rate (solid line).
Lower plot: slip angles (solid line) and saturation angles (dashed line), front
in blue, rear in black. (b) Upper plot: AFS actuator steering angle (solid line),
driver steering angle (dashed line). Lower plot: yaw moment.

AFS motor and for the brake torque actuation are executed
in a dSPACE Autobox system, equipped with a DS1005
processor board and a DS2210 I/O board. The vehicle sensing
system includes encoders to measure the SWA and the AFS
actuator angle, and an Oxford Technical Solution RT3000
localization system. The RT3000 is equipped with two global
positioning system antennas and an inertial measurement
unit with three accelerometers and three angular rate sensors.
A Kalman filter is executed in a local DSP for sensor
fusion. The RT-3000 provides the controller the yaw rate
and the longitudinal and lateral velocities, from which the
slip angles are estimated by low-pass filtering (1). The yaw
rate measured by the RT-3000 is also used as “ground truth”
to evaluate the closed-loop performance. In normal vehicles
where advanced sensors are not available, the slip angles
can be estimated using methods available in the literature
(see [38] and the references therein). The yaw moment
command issued by the MPC controller is translated into
braking torques achieving such a yaw moment by using the
logics in [26]. The experimental tests reported here have
been executed on icy/packed/soft snow, µ ∈ [0.35, 0.55], for
longitudinal velocity vx ∈ [40, 75] km/h. The controller has
also been tested on surfaces with µ ∈ [0.20, 0.70].
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Fig. 11. Phase plane plot of the tire slip angles in the slalom test.
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Fig. 12. Experimental validation of the control strategy in a stability
recovery test. (a) Upper plot: yaw rate reference (dashed line) and yaw rate
(solid line). Lower plot: slip angles (solid line) and saturation angles (dashed
line), front in blue, rear in black. (b) Upper plot: AFS actuator steering angle
(solid line), driver steering angle (dashed line). Lower plot: yaw moment
from differential braking.

The first test, whose results are reported in Fig. 10, is
a slalom maneuver, similar to the sequence of step-steering
simulated in Section V-A. The driver-requested yaw rate is
tracked until the slip angles grow beyond the saturation angle.
When this happens, the controller countersteers to stabilize the
vehicle. The impact of the recovery action on the yaw rate is
more evident than what is seen in simulation because of effects
such as the uncertainty and variability of the surface friction,
the variations in the velocity, and the tire force hysteresis,
which can also be noticed in Fig. 4. A similar behavior was
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Fig. 13. Phase plane plot of the tire slip angles in the stability recovery test.
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Fig. 14. Trajectories in a double-lane-change experiment with active (solid
line) and inactive (dashed line) control. Vehicle center of mass (circle) and
heading (line).

noticed in simulations with imperfect tire models. Note that a
light countersteering action is present at steady state, compen-
sating for the difference between the actual friction and that
used in the computation of the understeering gain κ in (19). By
changing κ in (19), a steady-state pro-steering action can be
obtained, as discussed in Remark 3. Fig. 11 shows the phase
plane plot of the tire slip angles, where it is demonstrated
that the controller is rapidly pushing the slip angles back in
the linear region, when these move outside. The trajectory to
bring the rear tire sideslip angle back in the linear region is
slightly different from that in the simulation, moving for longer
time along the surface αr = pr . This is caused by the above-
mentioned uncertainties and the dynamics not captured in the
bicycle model. However, this does not affect the stabilization
capabilities.

Fig. 12 shows a vehicle stabilization test where, while
driving in circle at an approximately constant yaw rate, drift is
induced by aggressive acceleration. The drift events are shown
by the positive yaw rate peaks at approximately 8, 13, 18, and
23 s. For t ∈ [11, 15] s, the driver adjusts the trajectory with
a smooth maneuver, and the system does not intervene. When
drifts occur, the driver-assist system actuates AFS and brakes
to return the vehicle to a stable condition. Then, yaw rate
tracking is resumed. Fig. 13 shows the tire slip angle phase
plot for this test.

As the last test, we show a double-lane-change maneuver
where a trained, yet nonprofessional, driver executes the
double-lane change with and without driver-assist system
at approximately 50 km/h entry speed. The trajectories for
the cases where the stability control is active and inactive
are reported in Fig. 14, which shows that the maneuver is
completed successfully when the system is active (solid line),
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Fig. 15. Experimental validation of the control strategy in the double-lane-
change test with sMPC. Time history of states, inputs, and outputs. (a) Upper
plot: yaw rate reference (dashed line) and yaw rate (solid line). Lower plot:
slip angles (solid line) and saturation angles (dashed line). Front tire data in
blue, rear in black. (b) Upper plot: AFS actuator steering angle (solid line),
driver steering angle (dashed line). Lower plot: yaw moment from differential
braking.

−0.2 −0.1 0 0.1 0.2
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

αf [rad]

α
r

[r
ad

]

Fig. 16. Phase plane plot of the tire slip angles in the double-lane-change
test.

while it is not completed when the system is inactive
(dash line). The time histories of states, inputs, and outputs
are reported in Fig. 15.

In Fig. 15 one can see that the controller maintains the rear
tire slip angle close to the peak level in the interval [2.3, 3] s by
using the brakes and only a light countersteering. Excessive
countersteering is avoided not to excessively deteriorate the
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yaw rate tracking performance. In the subsequent time interval,
the controller uses both the actuators to improve the yaw rate
tracking and to stabilize the vehicle at the end of the maneuver.
In fact, after t = 4 s the controller stabilizes the vehicle
without any intervention from the driver. The tire slip angle
phase plot for this test is shown in Fig. 16, where one can see
that the controller maintains the rear tire close to the saturation
angle, i.e., at the peak force.

VI. CONCLUSION

In this paper, we have presented the design of a control
strategy to coordinate AFS and differential braking to improve
vehicle yaw stability and cornering control. By formulating the
vehicle dynamics in the tire slip angle domain and approxi-
mating the tire forces by PWA functions, the vehicle dynamics
was modeled as a PWA system. We have proposed a sMPC
strategy that can execute on automotive-grade ECUs, and
tested it in different maneuvers and in different conditions.
The control algorithm is currently being extended by including
adaptation to variations in µ without gain scheduling the
explicit control law, by leveraging the special structure of the
sMPC controller, and in particular the affine terms φi and
the switching conditions (28b). Also, techniques for improving
the driver–controller interaction, especially by reducing the
steering wheel feedback torque cancellation due to the AFS
motor actuation, and improved driver prediction models are
under development.
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