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Predictive Path Parameterization for
Constrained Robot Control

Alberto Bemporad, Tzyh-Jong Tarn,Fellow, IEEE, and Ning Xi, Member, IEEE

Abstract—For robotic systems tracking a given geometric path,
this paper addresses the problem of satisfying input and state
constraints. According to a prediction of the evolution of the robot
from the current state, a discrete-time device calledpath governor
(PG) generates on line a suitable time-parameterization of the
path to be tracked, by solving at fixed intervals a constrained
scalar look-ahead optimization problem. Higher level switching
commands are also taken into account by simply associating a
different optimization criterion to each mode of operation. Exper-
imental results are reported for a three-degree-of-freedom PUMA
560 manipulator subject to absolute position error, Cartesian
velocity, and motor voltage constraints.

Index Terms—Constraints, model predictive control, on-line
time-scaling, optimization methods, path parameterization,
robots, saturation.

I. INTRODUCTION

T RACKING a given geometric path in the presence of
physical and task constraints is a problem which often

occurs in robotic manipulation tasks. Physical constraints
usually consist of joint torque limits, due to joint-motor voltage
saturation, joint velocity and acceleration limits, as well as
limits on joint positions for reasons of mechanical construc-
tion. Task constraints may include jerk-free and tracking-error
constraints, the latter usually due to industrial specifications on
the tolerance of manufacture. These constraints can be taken
into account in robot motion planning by studying the problem
either in joint space, which leads to joint-space trajectory plan
and motion control, or in task space through a translation of
joint limits to task space. Because of the nonlinearity of the
robot dynamic model, this translation often involves strong
approximations and simplifications of the original constraints,
besides a huge computational load and a consequent difficulty
of real-time implementation.

In some joint-space robot motion planning schemes, the
original limits are translated into constraints on the only
reference trajectory [1]–[3]. For example, torque saturation
is converted in constraints on the desired velocity and ac-
celeration. However, this approach entails in assuming per-
fect tracking, and consequently neglecting part of the robot
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control system dynamics. Although this approach leads to
computationally efficient strategies, it is inadequate in several
applications. For instance, limits on the tracking error, which
is directly related to the transient behavior of the robot
control system, cannot be handled. In addition, in the case
of saturating joint torques, existing methods do not leave any
room for the amount of torque required by the feedback law;
therefore, even if nominally satisfied, during the execution of
the task the robot could require a total torque exceeding the
limits. More complicated constrained path-planning problems
can be formulated taking into account the overall closed-
loop dynamics, determined by the adopted feedback torque
controller; however, in most cases the resulting computational
burden is huge, and the presence of measurement noise and
unmodeled dynamics frustrates the effort of such an accurate
formulation.

Based on thetime-scalingconcept introduced by [4] (and
extended for multirobot configurations by [5]), [3] and, later,
[6] suggestedon-line trajectory time-scaling algorithms which
take into account the overall closed-loop dynamics. Basically,
given a desired path in joint space, the path acceleration

is selected on-line within a range interval directly de-
rived by the given torque limits and measurements. However,
these methods are limited to problems withinput constraints,
and require a previously computed nominal optimal time-
parameterization of the desired path.

For a given desired path to be tracked by the end-
effector of the robot, the task level motion planning and
control approach described in this paper copes with generic
input/stateconstraints—e.g., tracking error, torque, joint/task
position constraints—and does not require any previous time-
parameterization.

We assume that a feedback controller has been already
designed in order to guarantee, in the absence of constraints,
nice stability and tracking properties. However, fast reference
signals may result in a violation of the constraints. In order to
avoid this, we add to the predesigned control system a new
discrete-time device, denominatedpath governor(PG), which,
on the basis of current position and velocity measurements,
generates on line a suitable parameterizationof the desired
reference , as depicted in Fig. 1.

The PG attempts to reduce the computational complexity in
two ways: First, only a portion of the desired path is considered
at a time; second, the resulting subtrajectory depends only on a
scalar parameter—its end-point. As for predictive controllers
[7]–[10], these simpler planning processes evolve according
to a receding horizonstrategy: The planned parameterization
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Fig. 1. Path tracking with on-line path parameterization.

is applied until new measurements are available. Then, a new
parameterization is evaluated which replaces the previous one.
This provides the desired robustness against both model and
measurement disturbances. The selection of thetemporary
end-point is performed by considering two objectives: 1)
minimize the traversal time, i.e., the time required to track
the desired path and 2) guarantee that the constraints are and
will be fulfilled—i.e., no “blind-alley” is entered. The idea
of reducing the complexity of constrained tracking problems
was exploited in [11], [12] and, independently, in [13] for
linear discrete-time systems, in [14] for nonlinear systems,
and in [15] for uncertain systems. Preliminary studies on path
governors have appeared in [16].

This paper is organized as follows. In Section II we describe
the PG’s path-parameterization strategy. In Section III we state
the assumptions which are required to prove the main prop-
erties of the PG in Section IV. The constrained optimization
problem related to the PG is briefly described in Section V,
and some extensions are discussed in Section VI to cope
with switching commands and partially known desired paths.
Finally, experimental results on a three-degree-of-freedom
(3-DOF) PUMA 560 manipulator subject (See Fig. 3) to
absolute position error, Cartesian velocity, and motor voltage
constraints are presented in Section VII.

II. PATH GOVERNOR FORMULATION

The robot closed-loop dynamics is expressed by

(1)

where collects the robot positions
, velocities , possible internal states (e.g., electrical

dynamics), and the state of the controller, , and the
initial condition for some compact set ;

is the reference to be tracked by, and is a given
function of the scalar , , determined by the

specific task; , , where is
the number of derivatives involved in the control law, usually

or ; is the vector we wish to satisfy the
constraints

(2)

The aim of this paper is to design a device, referred to as
PG, which on-line selects the parameter so as to fulfill (2)
and minimize the traversal time. Since, as one can expect, this
selection involves a nonnegligible amount of computations,
this device will operate in discrete time, namely every

Fig. 2. Path governor (PG).

Fig. 3. Link coordinate assignments for PUMA 560.

seconds. In order to avoid “blind-alleys,” rather than selecting
for only , ,

the PG cautiously considers an entirevirtual parameterization
, where represents the predic-

tion time, the current time, and is a free scalar,
, denominatedtemporary end-

point. Based on the available measurements ,
the scalar is selected at time , by solving a constrained
optimization problem. This aims at minimizing the time re-
quired to track the desired path, and takes into account that
the predicted evolution —generated by applying

from the initial state —satisfies the
given constraints. The algorithm used by the PG can be
formulated as follows.

Algorithm 1:

0) Let , be fixed positive scalars, and let .
1) At time , find the temporary end-point

which maximizes

(3)

with respect to subject to the constraint that the
virtual parameterization

(4)

satisfies the constraints

(5)

where has been deter-
mined at time .
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2) Apply to the closed-
loop system (1) only for .

3) Repeat the procedure at time until
.

The PG is sketched in Fig. 2.
We underline the notational difference which will be used

hereafter between , representing thevirtual pa-
rameter at the prediction time, and which is instead
actually used to parameterize the desired path at time.

Definition 1: At time and given the current state
a temporary end-point is admissibleif the corresponding
virtual evolution , .

Remark 1: Notice that (3) aims at minimizing the time
required for tracking the desired path. On the other hand, it
also holds that

subject to
(6)

Remark 2: The generated path parameterization is continu-
ous and, where differentiable, satisfies the property

Remark 3: By setting , the previous strategy can be
regarded as a way to select at each timethe derivative

. Therefore, maximization of
corresponds to maximization of and hence to minimization
of the traversal time

Remark 4: The upper-bound induced by a finite pre-
vents that the solution . In order to reach the
maximum tracking speed, should be determined by the
constraints on vector rather than this artificial upper-bound.
Since can be selected arbitrarily large (for instance,

), in general one can ensure that the
contribution of the constraint
is arbitrarily irrelevant.

Remark 5: The formulation of Algorithm 1 does not take
into account the time required for the computation of ,
which will be denoted by . Henceforth, for real-time ap-
plications, Algorithm 1 should be modified as follows. Let

. At time , the current measurement of the
state is used to predict .
This replaces in Algorithm 1. Then is computed
during the time interval , and is
available at time for the generation of the desired path

, . This modification only introduces
a time delay equal to , as during the first time interval

is applied. Therefore in the following sections we
shall neglect this computational aspect, which instead will be
discussed in Section VII.

Remark 6: For the sake of simplicity of the proofs, through-
out the paper we refer to the reference given in joint
space rather than the desired path in task space. How-
ever, when the primal controller of the robot operates at the
task level no actual computation of the joint-space reference

by kinematic inversion is needed. Note in fact that, in the
implementation of Algorithm 1 for typical task space con-
trollers, the prediction can be computed from

, and , and that can be
replaced by in Step 2).

III. A SSUMPTIONS

In order to prove nice properties of the PG in Section IV,
we consider the class of systems (1) and referenceswhich
fulfill the following assumptions. The notation will
be used to denote the ball .

Assumption 1:The reference path is
continuous and piece-wise differentiabletimes, and

for some positive .
In particular, Assumption 1 implies that there exists a

compact set such that , .
Assumption 2:At time the temporary end-point

is admissible from the initial state .
This allows to initialize Algorithm 1 by setting .

As an example, Assumption 2 is satisfied for ,
, i.e., when the robot is initially at rest on the initial

point of the desired path.
Definition 2: The reference path is extended for

by setting

Notice that the properties in Assumption 1 still hold when
is redefined as in Definition 2.

Assumption 3:
is continuous in .

Assumption 4:
is uniformly continuous in .

Assumption 5:For all and for all , if
, then as

and , depend continuously on and are uniquely deter-

mined by . Moreover, by letting

and , stability is uniform with respect
to , in that

(7)

Assumption 6: , if , and
as , , then , , .
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Notice that often in practical applications, because of finite
numerical precision, Assumption 5 also implies Assumption
6. It is clear that, since the PG introduces a further feedback
loop (see Fig. 1), stability and tracking properties of the overall
system cannot bea priori inferred from Assumptions 5 and 6.
These properties will be investigated in Section IV.

Assumption 7:The constraint set has a nonempty interior.
Assumption 7 requires that there is some “maneuver space”

inside , and that no equality constraints can be handled.
A simple instance of is a hyper-rectangle having nonzero
volume.

Assumption 8:Let be a fixed (arbitrarily small) positive
real. Then is such that , .

Assumption 8 requires that the commanded reference po-
sitions, each one taken as a set-point, are restricted to those
ones which, in steady-state, give a corresponding constrained
vector which “lies away” from the border of of at least
a distance . By Assumption 7 such a always exists.

IV. M AIN RESULTS

In this section, we will study some properties exploited by
the path governor formulated in Section II. Lemma 1 will first
prove that an admissible temporary end-pointcan be found
at each time . Lemma 2 will show that cannot jam on a
value between and , in that a better admissible temporary
end-point is always found within a finite time. Lemma 3, on
the other hand, will prove that if the generated converges
to a final value , then after a finite time. Theorem
1 will make use of both lemmas to show that after
a finite time . Theorem 2 will summarize the overall PG
properties.

Lemma 1: there exists a temporary end-point
which is admissible from the current state .

Proof: The proof easily follows by induction. Assump-
tion 2 states that an admissible can be found at least
for . Assume that an admissible temporary end-point

has been found at time . Now notice that
and hence

Furthermore, , , in particular
. Since also after seconds the state has moved

exactly to , it follows that

Therefore, at least is admissible at time
from .

Lemma 1 has proved that the sequence is defined
and nondecreasing. Next Lemma 2 shows that such a sequence
cannot assume a constant value less or equal than.

Lemma 2: Let be admissible at time , .
Then, by applying , there exists a
time and such that is admissible at
time .

Proof: See Appendix A.
Lemma 2 proved that, if at time , then after a

finite time another admissible can be found. Next
Lemma 3 shows that if , than this limit value is
reached by in a finite time.

Lemma 3: Let . Then, there
exists a finite time such that is admissible at time.

Proof: See Appendix A.
Next Theorem 1 proves that the path governor generates a

desired-path parameterization such that is reached in
a finite time .

Theorem 1: There exists a finite time such that
.

Proof: Assume by contradiction that , .
Since , is a real monotonically increasing and
upper-bounded function of the time, and hence there exists

. By Lemma 3 there exists a time
such that , . Then, by Lemma 2, there

exists a time such that for there exists
which is admissible. This contradicts the optimality of .
Therefore, by continuity of , the proof follows.

Next Theorem 2 summarizes the properties of the proposed
path governor.

Theorem 2: Let be selected according to the path
governor (Algorithm 1) formulated in Section II. Then

1) there exists a finite time such that ;
2) the constraints are fulfilled for all while

the robot is driven along the path , ;
3) , .

Proof: Existence of such a is guaranteed
by Theorem 1. Constraint fulfillment follows by the
selection criterion for the temporary end-points ,
in that

, . Convergence of ,
follows by Assumption 5.

V. OPTIMIZATION ALGORITHM

In order to implement the PG described in the previous
sections, the optimization problem (6), (24) is solved by using
a bisection algorithm over the interval .
Let denote the number of parameters which can be
evaluated during the selected period. Because is generic
and the model of the robot is nonlinear, no convexity properties
of the set of admissible can be invoked. Then, the adopted
bisection algorithm only provides local minima. By following
an approach similar to [14], it can be proved that this does not
affect the convergence results proved in Section IV. However,
it is clear that if global minimization procedures were adopted
in selecting , a smaller traversal time might be achieved,
at the expense of an increased computational effort. Testing
the admissibility of a given requires the evaluation of
(5), and consequently the numerical integration of the closed-
loop equations (1) from initial state . In Appendix B we
describe how to translate this in a form which is more suitable
for algorithmic implementation for general structures of (1).
When instead feedback linearization is adopted as primal
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control strategy, the numerical integration can be carried out on
a discrete-time version of the resulting linear system, verifying
the (nonlinear) constraints at sample steps.

VI. DEALING WITH SWITCHING COMMANDS

AND PARTIALLY KNOWN DESIRED PATHS

We present some slight modifications of Algorithm 1 which
allow the application of the PG when higher level commands
are added to the (autonomous) tracking task, and/or the whole
desired path is not completely known in advance.

A. Switching Commands

We wish to take into account higher level commands, which
consist of switching the autonomous operation among the
following: 1) stop the motion along the trajectory, for example
because an unexpected obstacle has been detected; 2) slow
down the motion; 3) invert the motion; and 4) resume the
normal (autonomous and as fast as possible) execution of the
tracking task. This commands can be taken into account by
different options in the optimization involved in Algorithm 1,
as follows.

• STOP: minimize , .
• SLOW DOWN : find the maximum admissible

and set
, where is proportional to how much

the tracking must be slowed down.
• GO BACK : minimize , .
• GO, RESUME: maximize ,

.

Each option also includes (5), and therefore the guarantee of
fulfilling the constraints is preserved.

B. Partially Unknown Desired Paths

Assume that the desired path is not completely known in
advance, i.e., is known at time only for ,
. We distinguish two situations: , which corresponds

to a task where the end-effector for instance has to track an
object whose motion is not known in advance; , for
example if new pieces of trajectory are appended before the
completion of the tracking task. These modes of operations
can be both taken into account by dynamically redefining the
desired path. Define recursively, for ,

if
otherwise

where is a function which is constructed on-line on
the basis of the data available at time , and satisfies the
following properties:

1) (continuity);
2) , , if no admissible

temporary end-point can be found otherwise.

For instance, by assuming that the desired path is only known
for , consider for

, if an
admissible can be found
otherwise.

Constraint fulfillment is preserved for all , and, in the
worst case, as , the robot joint coordinates will
jam on for some .

VII. EXPERIMENTAL RESULTS

The PG scheme has been implemented and experimentally
tested on a PUMA 560, 6-DOF robot arm, in the Center
for Robotics and Automation at Washington University. The
planning and control algorithms have been implemented in
a Silicon Graphics SGI 4D/340 VGX workstation, which
has four symmetric processors. A multiprocessor SGI IRIX
4D/340VGX allows the parallel real-time computation of the
parameter at the PG rate Hz, and path
generation and primal feedback control at the sampling rate

Hz. It is interfaced to a Universal Motor
Controller (UMC) through a shared memory. The sampling
rate for position and velocity measurements is 1000 Hz.

In order to simplify the experiment, only three degrees of
freedom have been used. By incorporating the end-effector in
the third link, the dynamics is given by the following equation:

(8)

where is three vector of joint torques, is the three vector
of joint displacements (with and the first and second
derivatives), is the three-by-three inertia matrix,
is the three vector of centripetal and Coriolis terms, and
is the three vector of gravity terms [17].

The Cartesian task space position of the end-effector
is related to the joint coordinates by the direct/inverse
kinematic equations reported in [18]. The end-effector has to
track the desired path

(9)

which is depicted in Fig. 4, where is the quarter of
circle defined as

if

if

if

if

, and (units are given
in the MKS system where unspecified). The desired path

in the joint-space is obtained
by inverse kinematics, and satisfies Assumption 1.

In order to allow the end-effector’s Cartesian position
to track the reference signal in (9), the nonlinear
feedback task controller (NFTC) reported in [19]

(10)

is adopted as primal controller, with ,
, As a general rule to design controllers to be used
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Fig. 4. Desired geometric pathYd(s). Units are expressed in MKS.

in connection with a PG, in order to maximize the tracking
properties one should try to select a primal controller which
provides a fast closed-loop response of system (1). Usually
this corresponds to large violations of the constraints, which
therefore can be enforced by inserting a PG. The closed-loop
equations (1) resulting from (8) and (10)

(11)

are linear, and therefore it is easy to show that Assumptions 3
and 5–8 are satisfied. However, these are fulfilled for a wider
class of closed-loop systems. Consider for instance simple
individual joint PD controllers with gravity compensation

(12)

let , , and consider the following
function:

which is a Lyapunov function for (8)–(12) [20]. Since its
derivative along the trajectories of the system

and iff , the first part of Assumption
5 is satisfied. Uniform stability is proved as follows. By
contradiction, suppose that there exists an such that,

, there exists and with and
. Since for some positive

, , by denoting by , the minimum and
maximum eigenvalue of , respectively, and by setting

, , it follows
that

for any arbitrary positive , a contradiction. More-
over, in practice, the reference is expressed by a finite
numerical precision, and therefore, if tends toward ,
after a finite time , and Assumption 6 is verified.
It is easy to check that Assumptions 3, 7, and 8 are satisfied
as well.

We wish to impose the following constraint on the absolute
position error:

mm (13)

Fig. 5. Absolute tracking error, generateds(t) (thick line), sk
1

(thin line),
and
(t) (dashed line). Units are expressed in MKS.

on the Cartesian velocity

m/s (14)

and on the motor voltages

V (15)

where the values of armature resistance, gear ratio ,
torque constant , and back EMF constant are reported
in [19]. Notice that, because of the choices (9) and (13)–(15),
the constrained vector fulfills
Assumption 4.

On-line optimization has been performed by using the
bisection method mentioned in Section V. For numerical in-
tegration of (1), the linear system (11) has been discretized
with sampling period s in order to predict

, and s for constraint
checking. The resulting program is executed on one CPU in
0.06 to 0.28 s, thus allowing the selection of the PG period

s. The initial condition , , and
satisfies Assumption 2. The parameters ,

, and evaluations per period have
been selected. No switching command was issued during the
experiment.

The trajectories recorded during the experiment are depicted
in Figs. 5 and 6.1 The traversal time is about 11 s. The voltage
constraints are slightly violated, because of the mismatching
between the predictive model and the real system. However,
it is clear that one can easily assign more stringent limitations
in order to still guarantee constraint fulfillment. Since the
derivatives are only piece-wise continuous, has
been smoothed out by a low-pass filter before being used
to parameterize the reference . The resulting filtered
signal is also depicted in Fig. 5. Notice that, because

1A real-time movie of the experiment can be retrieved at
http://control.ethz.ch/˜bemporad/dsi/images/puma560.mov.
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Fig. 6. Motor voltageVi, i = 1; 2; 3, and Cartesian velocityk _Y k for the
trajectories of Fig. 5. Units are expressed in MKS.

of the adopted receding horizon strategy and the particular
structure (4), the resulting path parameterization is only
near-minimum time. The performance is also affected by the
available computational power, which sets a lower bound on

, and therefore on how often the PG can receive feedback
and provide new temporary end-points.

Finally, we point out that the complexity of the PG mainly
depends on the complexity of the numerical method adopted
to integrate the differential equations of the robot. Although a
thorough investigation of the numerical complexity of the PG
is beyond the scope of the paper, one should expect that the
complexity of the PG and the complexity of integrating the
differential equations of the robot scale in the same way with
the number of degrees of freedom.

VIII. C ONCLUSIONS

For robotic systems, this paper has addressed the problem
of tracking a given geometric path while satisfying constraints
on the variables of the system. A time-parameterization of the
path is generated on-line by performing at fixed intervals a
scalar constrained optimization based on the integration of the
robot’s dynamic equations, and the method has been shown to
be implementable in real-time.

The proposed strategy introduces a new design approach.
Tedious trial-and-error sessions to tune the primal controller
parameters in order to satisfy physical constraints—e.g., on
motor voltages—are no longer required: Once the primal
controller’s design knobs have been roughly selected, the
constraints are automatically enforced by the PG. Because
of the general class of robot models, primal controllers, and
physical constraints considered in this paper, we believe that
the proposed approach is versatile enough to cope with many
different practical robotic applications.

APPENDIX A

Proof of Lemma 2:Let , . Since
as , by Assumption

1 , and, by Assumption 6, . By

Assumption 4, , and also
such that, , satisfying

Assumption 1, , ,

(16)

implies , where , and
. We wish to find a time and a

parameter such that (16) holds for ,
, and , in order to claim that

is admissible from . In order to accomplish this task, let
such that

for all , where the function is defined in (7). By
virtue of Assumption 5 (continuity of with respect to )
and Assumption 1 (continuity of ), let such that

the corresponding equilibrium state satisfies

. By continuity of , there exists a
such that

for all . Because ,
take such that for all . Since,
for every temporary end-point and time ,
monotonically increases from to as increases, the
conditions and imply

Consider now

since , one can find and such that
, , , and

. Similarly, since by Assumption 1
, , one can select and so that

, , ,
, . Then, by selecting

and
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one has

and thus , . By Assumption
8, , , follows. Then, is
admissible at time.

Proof of Lemma 3:Since

it follows that

By setting , , , and
following arguments similar to those used in the proof of
Lemma 2, we can find a time such that:

(17)

for all , or equivalently .
By Assumption 8, , follows, or,
equivalently, is admissible at time.

APPENDIX B

At each time the PG must solve the optimization
problem (6). Despite the simple structure of the cost function
(3), the problem involves continuous state constraints (5) over
an infinite horizon. We translate (6) in a general form which is
more suitable for algorithmic implementation via Runge–Kutta
methods. Let the set be defined as

Then, the constraints in (5) can be expressed in the form

(18)

where the functions derive from the composition of ,
, the desired path , and its derivatives ,

. For the sake of simplicity, we assume that the
constrained vector does not depend on the derivatives of
the reference , , which allows us to drop the
dependence on the derivatives ofin (18). At a fixed time

, system (1), (4) can be rewritten as

(19)

Then, the constraints in (5) become

(20)

According to the procedure in [21], the condition (20) is
equivalent to the scalar constraint equality

(21)

By defining for a small the function
if

if

if
the fulfillment of the constraint (21) is guaranteed by the
condition

(22)

which ensures better numerical conditioning, and allows the
derivative to be analytically computed, when
this is required by gradient-based optimization algorithms.
However, the evaluation of still requires the integration
of (19) over an infinite horizon. This can be avoided by
integrating the differential equations

(23)

over the finite interval . Similarly, (22) is
transformed in the finite integral

(24)

Notice that, as a consequence of Assumption 8, convergence
of the integral (21) or, equivalently, (24), can be guaran-
teed by choosing sufficiently small so that

. In this case, after a finite

time , where
, the function to be integrated is zero.
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