
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 31, NO. 6, NOVEMBER 2023 2871

Co-Design of a Controller and Its Digital Implementation: The MOBY-DIC2
Toolbox for Embedded Model Predictive Control

Alessandro Ravera , Student Member, IEEE, Alberto Oliveri , Member, IEEE, Matteo Lodi, Member, IEEE,
Alberto Bemporad , Fellow, IEEE, W. P. M. H. Heemels , Fellow, IEEE,

Eric C. Kerrigan , Senior Member, IEEE, and Marco Storace , Senior Member, IEEE

Abstract— Several software tools are available in the literature
for the design and embedded implementation of linear model
predictive control (MPC), both in its implicit and explicit (either
exact or approximate) forms. Most of them generate C code
for easy implementation on a microcontroller, and the others
can convert the C code into hardware description language
code for implementation on a field programmable gate array
(FPGA). However, a unified tool allowing one to generate efficient
embedded MPC for an FPGA, starting from the definition of the
plant and its constraints, was still missing. The MOBY-DIC2
toolbox described in this brief bridges this gap. To illustrate
its functionalities, the tool is exploited to embed the controller
and observer for a real buck power converter in an FPGA. This
implementation achieves a latency of about 30 µs with the implicit
controller and 240 ns with the approximate explicit controller.

Index Terms— Embedded model predictive control (MPC),
field programmable gate array (FPGA), hardware–software
co-design.

I. INTRODUCTION

L INEAR model predictive control (MPC) [1], [2] is a
model-based approach for the regulation and tracking

of linear systems with multiple inputs and outputs, sub-
ject to affine inequality constraints. The traditional (implicit)
formulation requires solving a quadratic programming (QP)
optimization problem at each sampling time, which can be
time-consuming and then not applicable for systems with
very fast dynamics [3]. For piecewise-affine (PWA) systems
subject to mixed linear/logical constraints, the MPC optimiza-
tion problem can be formulated as a mixed-integer QP [4].
Explicit MPC [5] moves most of the computation offline,
and the online computation of the control action (both for
linear and PWA systems) reduces to the evaluation of a PWA

Manuscript received 26 July 2022; revised 14 February 2023;
accepted 3 March 2023. Date of publication 15 March 2023; date of
current version 23 October 2023. Recommended by Associate Editor
U. V. Kalabic. (Corresponding author: Alberto Oliveri.)

Alessandro Ravera, Alberto Oliveri, Matteo Lodi, and Marco Storace
are with the Department of Electrical, Electronic, Telecommunica-
tions Engineering and Naval Architecture, University of Genoa, 16145
Genoa, Italy (e-mail: alessandro.ravera@edu.unige.it; alberto.oliveri@unige.it;
matteo.lodi@unige.it; marco.storace@unige.it).

Alberto Bemporad is with the IMT School for Advanced Studies Lucca,
55100 Lucca, Italy (e-mail: alberto.bemporad@imtlucca.it).

W. P. M. H. Heemels is with the Control Systems Technology Section,
Department of Mechanical Engineering, Technische Universiteit Eindhoven,
5600 MB Eindhoven, The Netherlands (e-mail: m.heemels@tue.nl).

Eric C. Kerrigan is with the Department of Electrical and Electronic
Engineering, Department of Aeronautics, Imperial College London, SW7 2AZ
London, U.K. (e-mail: e.kerrigan@imperial.ac.uk).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TCST.2023.3254133.

Digital Object Identifier 10.1109/TCST.2023.3254133

function, which significantly reduces the computational effort.
Many approximate explicit control functions have also been
proposed [6], [7], [8], [9], [10], which can contribute to further
increase the controller update rate. The common drawback of
all the explicit solutions is the rapid growth of the number
of parameters as the dimension of the system increases, due
to the so-called curse of dimensionality [11]. Some solutions
have been proposed in the last decade for fast and efficient
implementation of implicit [12], [13], [14] and explicit [15],
[16], [17], [18] MPC on different platforms, including micro-
controllers and field programmable gate arrays (FPGAs).

In the control literature, the implementation aspects and the
corresponding support tools for creating real-time embedded
controllers receive rather limited attention, while for prac-
tical applications these are of course crucial. In this brief,
we present a second release of the MOBY-DIC1 toolbox
(briefly, MOBY-DIC2),2 which extends the functionalities of
the former version (MOBY-DIC1) [19]. This toolbox supports
the co-design process of a controller and its digital implemen-
tation, enabling easy deployment of MPC-based control solu-
tions for real-time applications. MOBY-DIC2 is a MATLAB
toolbox based on object-oriented programming, which allows
carrying out the entire MPC design flow, from the definition
of system dynamics and constraints to the embedded architec-
tures, including implicit/explicit, exact/approximate MPC, and
supporting both the microcontroller and FPGA implementa-
tions of the controllers and observers. The main strength of
MOBY-DIC2 is the automatic generation of efficient VHDL3

code, by setting the level of parallelism, the number of
bits for the fixed-point representation of inputs, outputs, and
coefficients, and the scalings to automatically interface with
analog-to-digital and digital-to-analog converters (ADCs and
DACs). To demonstrate all the functionalities of MOBY-
DIC2, embedded architectures implementing implicit, explicit,
approximate MPC controllers, and Kalman filters are gen-
erated for a switching buck converter. Processor-in-the-loop
(PIL) simulations and tests on a real converter prototype are
provided, showing the strengths and capabilities of the tool.

II. SURVEY ON AVAILABLE TOOLS

Several free and commercial tools are available to
help the user in designing and/or implementing linear

1Acronym of the FP7 European Project “MOdel-Based sYnthesis of DIgital
electronic Circuits for embedded control” FP7-ICT-2009-4 (2010–2012).

2Available online at https://github.com/COMPsys-UNIGE/MOBY-DIC
3Very high-speed integrated circuit hardware description language.

© 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0009-0006-0484-4958
https://orcid.org/0000-0002-2000-6851
https://orcid.org/0000-0001-6761-0856
https://orcid.org/0000-0003-3440-8007
https://orcid.org/0000-0002-3967-1544
https://orcid.org/0000-0003-4958-074X

2872 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 31, NO. 6, NOVEMBER 2023

Fig. 1. Functionalities of available tools. Commercial tools are marked with an asterisk. MPC toolbox is part of MATLAB.

implicit/explicit MPC. The main ones are summarized in
Fig. 1, which lists all the steps necessary to generate and simu-
late an embedded MPC controller. Starting from the definition
of the system and constraints, an implicit MPC controller can
be designed, for linear or PWA systems. An explicit (either
exact or approximate) solution can then be computed. When
the system state is not completely measurable, a state observer
must also be designed. C and VHDL code must then be
created for implementation of the controller and observer on
a microcontroller or an FPGA, respectively, or to perform
PIL simulations involving a computer running the plant model
(not in real-time) and an embedded device implementing the
controller and/or the observer. We now briefly describe the
tools listed in Fig. 1 from left to right.

The following tools generate C code that can be exploited
for microcontroller implementation of QP solvers: CVX-
GEN [20], FiOrdOs [21], FORCES [21], qpOASES [22],
QPGEN [23], ODYS QP Solver [24], and OSQP [25].

PROTOIP [26] provides a MATLAB interface to Xilinx
Vitis high-level synthesis (HLS), allowing for the generation
of an embedded circuit on a heterogeneous (microcontroller +

FPGA) computing platform (in particular, Xilinx Zynq Sys-
tem on Chip) starting from an algorithm described in the
C language. PROTOIP allows performing PIL simulations,
using MATLAB and a Zynq board, and evaluating the circuit
performances within MATLAB environment.

SPLIT [27] is a tool with a MATLAB interface for the
generation of embedded implicit linear MPC, based on split-
ting algorithms, including the alternating direction method of
multipliers (ADMM). Based on the matrices and constraints
defining the QP optimization problem, a C code is generated
for implementation on the microcontroller or, through PRO-
TOIP [26], on heterogeneous computing platforms.

µAO-MPC [28] is a Python tool (with MATLAB interface)
that allows generating C code for embedded implicit MPC
starting from the definition of the system to regulate.

The hybrid toolbox [29] and multiparametric toolbox
(MPT3) [30] are MATLAB tools that allow generating explicit
MPC for linear and PWA systems. The hybrid toolbox also
provides C files that can be deployed on the microcontroller.

ODYS Embedded MPC [31] uses a specific version of
ODYS QP Solver [24] optimized for MPC applications and
allows generating C code with industrial standards for very
fast embedded implementation of implicit linear, linear time-
varying, and nonlinear MPC and related state observers. PIL
simulations can also be carried out.

MOBY-DIC1 allows designing, simulating, and implement-
ing on FPGA explicit exact and approximate MPC, whereas
the MATLAB MPC Toolbox [32] allows auto-generating
C code from Embedded MATLAB functions for microcon-
troller implementation of both implicit and explicit (exact
and approximate) MPC, based on the multiparametric solver
described in [33]. State estimators can also be designed and
implemented, and PIL simulations are available. However, the
MPC toolbox does not support code generation for FPGA
implementation. MOBY-DIC2 fills this gap, by extending the
functionalities of MOBY-DIC1. It embeds a top-level interface
for the following tools, whose invocation is transparent to
the user: MPT3 for the design of explicit MPC, Xilinx Vitis
HLS for the generation of VHDL code of the implicit MPC,
and Xilinx model composer and system generator for the
PIL simulations, including Simulink and an FPGA. MOBY-
DIC2 is compatible with both MPT3 and MPC toolbox,
since an MPC controller previously generated with one of
these tools can be easily imported in MOBY-DIC2 for FPGA
implementation or PIL simulation.

III. LINEAR MPC

In this section, we briefly describe the formulation of
MPC [1], [2] used within the MOBY-DIC2 toolbox for linear
time-invariant (LTI) systems. We consider a dynamical system
whose states, inputs, measurable parameters, unmeasurable
disturbances, and outputs are denoted as x ∈ Rnx , u ∈

Rnu , p ∈ Rn p , d ∈ Rnd , and y ∈ Rny , respectively. The
MPC controller aims at bringing the system state or output
to a constant (regulation problem) or time-varying (tracking
problem) reference r . All these variables are gathered in a
vector z = [xT uT pT dT yT r T

]
T . We use a subscript k to

indicate the value of a variable at a discrete time instant kTs ,
where Ts is the sampling period, and a subscript k + i |k to
indicate the predicted value of a variable at time (k + i)Ts ,
based on its value at time kTs , k ∈ N, i ∈ N. Starting from
measurements or estimations of xk , pk , dk , and rk, . . . , rk+N

(only for tracking problems), the MOBY-DIC2 toolbox allows
generating linear MPC by solving the following optimization
problem with a receding horizon approach:

min
Ek

eT
k+N |k Pek+N |k+ (1a)

+

N−1∑
i=0

(
eT

k+i |k Qek+i |k + ϵT
k+i Rϵk+i

)
+

Nc∑
i=0

ρσ T
i σi

s.t. xk+i+1|k = Axk+i |k + Buk+i + Ex pk + Fx dk + Gx

IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 31, NO. 6, NOVEMBER 2023 2873

(i = 0, . . . , N − 1) (1b)
yk+i |k = Cxk+i |k + Duk+i + Ey pk + Fydk + G y

(i = 0, . . . , N) (1c)

Hi zT
k+i |k ≤ Ki + �iσi (i = 0, . . . , Nc) (1d)

uk+i = 01xk+i |k + 02 (i = Nu, . . . , N − 1). (1e)

Within MOBY-DIC2, p and d are measured/estimated at
every sampling instant and assumed to remain constant within
the prediction horizon (i.e., pk+i |k = pk , and the same holds
for d). In this optimization problem, expression (1a) contains
the quadratic cost function to be minimized at time kTs , where
Ek = [uT

k , . . . , uT
k+Nu−1, xT

k|k, . . . , xT
k+N |k, σ

T
0 , . . . , σ T

Nc
]
T ; N is

the prediction horizon, Nu ≤ N is the control horizon, Nc ≤ N
is the time horizon where the constraints are imposed, Q =

QT and P = PT are the positive-semidefinite weight matrices,
and R = RT is a positive definite weight matrix. The terms σi

(i = 0, . . . , Nc) are slack vectors of soft constraints. We have
ek+i |k := xk+i |k − rk+i for state regulation/tracking problems,
whereas ek+i |k := yk+i |k − rk+i for output regulation/tracking.
Finally, ϵk+i := uk+i − ru , where ru is the input reference.
For tracking problems, an augmented model is automatically
generated to achieve offset-free tracking [34], in which uk−1
becomes a system state with dynamics uk = uk−1 + 1uk ,
where 1uk is the new system input. Therefore, ru = 0.

The affine time-invariant prediction model is given in
(1b)–(1c), whereas inequality (1d) represents the affine
inequality constraints at each time (k + i)Ts . Matrix �i is
diagonal and contains zeros or ones, indicating whether the
corresponding constraint is hard or soft, respectively. Finally,
(1e) fixes the input (control) for time instants outside the
control horizon.

Within MOBY-DIC2 toolbox, MPC and state observers can
also be designed and implemented for PWA systems, with
a switching approach, i.e., a different controller/observer is
designed for each system dynamics [35], [36].

IV. MOBY-DIC2 FUNCTIONALITIES

Fig. 2 shows the main design flow of the MOBY-DIC2 tool-
box for LTI systems. The green boxes represent the toolbox
inputs, whereas the orange ones the outputs.

A. Controller Design

The first step for MPC design is to define the prediction
model (1b)–(1c) and the affine inequality constraints. The
model can be represented either in discrete or continuous
time. In the latter case, it is automatically converted into
a discrete-time model with a sampling time Ts , specified
by the user. If the controller latency is higher than Ts , the
update time Tctrl of the controller can be set as a multiple
of Ts . This means that only for the prediction phase, the LTI
system is re-discretized with sampling time Tctrl. Both hard
and soft constraints can be imposed for any variable at any
prediction instant. The MPC parameters appearing in problem
(1) are then set within a MATLAB structure, and an object
representing either an implicit or an explicit MPC controller

Fig. 2. MOBY-DIC2 project flow. Green boxes: toolbox inputs; orange boxes:
outputs.

is created. We remark that the controllers can also be created
using MPT3 or MPC toolbox and then converted into MOBY-
DIC2 objects.

With the implicit controller, problem (1) is recast as a
standard constrained QP with a sparse formulation, i.e.,

min
Ek

1
2
ET

k FEk + f TEk

s.t. AinEk ≤ bin, AeqEk = beq. (2)

Additional details regarding the construction of the matrices
can be found in [37]. MOBY-DIC2 solves problem (2) at
each control interval Tctrl by resorting to either the MATLAB
function quadprog or the ADMM algorithm [38]. As better
described in the following sections, code generation is sup-
ported only for ADMM, whereas quadprog can be used for
software simulation purposes.

The explicit MPC controller is generated by invoking the
MPT3 toolbox, which solves problem (1) through multipara-
metric QP. Then, the control action uk is represented as
uk = fpwa(xk, pk, dk, rk, . . . , rk+N), where fpwa is a PWA
function defined over a generic polytopic partition, like the one
shown in Fig. 3 (left). MOBY-DIC2 allows also approximating
the function fpwa with another PWA function defined over a
regular simplicial domain partition [6] (Fig. 3, right), to obtain
lower computational effort and allowing to decrease the sys-
tem sampling time. An object representing an approximate
MPC controller can be created by specifying the number of
partitions for each domain dimension.

B. Observer Design

Kalman filters and predictors can be easily created to
estimate the system state and unmeasurable disturbance of
an LTI system, by providing a process covariance matrix
QK , a measurement covariance matrix RK , and an observer
sampling time Tobs, which, for the reasons explained in
Section IV-A, can be a multiple of the system sampling
time Ts . Summarizing, the relationship between the system
sampling time Ts , observer sampling time Tobs, and controller
sampling time Tctrl is Tctrl = αTobs = αβTs , where α and
β are positive integer numbers. The Kalman observers are
designed through the MATLAB function kalman, to obtain

2874 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 31, NO. 6, NOVEMBER 2023

Fig. 3. Two-dimensional domain partitioned into generic polytopes (left)
and regular simplices (right), with seven and four partitions along the first
and second dimensions, respectively.

either a current (Kalman filter) or a delayed (Kalman predictor)
estimator. In the first case, the estimation at time k is also
based on measurements at time k; in the second case, only
measurements up to time k − 1 are used.

C. Embedded System Design

This functionality represents the main strength of the tool.
The designed controller and observer can be set as internal
properties of the LTI system object, to create a closed-loop
system including the Kalman filter. An embedded system
object can then be created, representing the circuit to be
implemented in a microcontroller or FPGA. The block scheme
of the embedded system is shown in Fig. 4; the green rectangle
represents the hardware architecture generated by MOBY-
DIC2, to be implemented in an FPGA or microcontroller
(red rectangle). The controller and the observer can also
be implemented individually. The circuit is thought to get
the reference rk, . . . , rk+N (in case of tracking problems),
the parameter pk , and the outputs yk through ADCs in a
given range, which can be set within MOBY-DIC2, typically
[0 4095] for 12-bit ADCs. These values are converted into the
correct range through linear scalings, performed by SCALE
blocks, and provided to the controller and observer, as shown
in the figure. The control output uk is scaled to the DAC range.

For implicit MPC, the ADMM algorithm [38] is exploited
by the circuit. ADMM steps are simple to implement and
computationally very cheap, which makes this algorithm par-
ticularly suitable for implementation in embedded devices with
limited computing resources [12]. The main linear algebraic
operation in each step is matrix–vector multiplication. In addi-
tion, there is no data dependence between the optimization
variables in an iteration; this allows for the processing of each
optimization variable in parallel, thus making ADMM particu-
larly suitable for FPGA implementations [38], [39], [40]. Also,
QPGEN, OSQP, and SPLIT tools use the ADMM algorithm
for the generation of C code. For FPGA implementation, two
architectures can be generated: a fast one, which exploits
parallelism to perform matrix–vector products, thus achieving
a low latency at the cost of more hardware resources, and a
small one, with higher latency and lower resource utilization.
A fixed-point representation of data is chosen, where the user
can set the number of bits. Also, the number of bits of ADC
and DAC can be arbitrarily set. The toolbox creates C++ code,
which is automatically converted into VHDL code through
Vitis HLS, without any user intervention. In this case, also
the VHDL code of the observer is generated through Vitis
HLS.

For explicit and approximate MPC, the circuit architectures
described in [16] are implemented. Also in this case, for FPGA

Fig. 4. Block scheme of the MOBY-DIC2 embedded system (green box) to
be implemented on a digital device (red box).

implementation, a serial architecture and a parallel architecture
are available, to trade off circuit size and latency. In this case,
the code is generated directly in VHDL language.

C code can also be generated for microcontroller implemen-
tation of all kinds of controllers and observers, by exploiting
the same algorithms used for the FPGA, with a floating point
data representation. In this case, it is not possible to choose
between serial (small) and parallel (fast) architectures.

D. Simulations

The MOBY-DIC2 toolbox allows performing different kinds
of simulations of the closed-loop systems including all types
of controllers and observers. The simplest simulation runs
directly in MATLAB. The plots of the time evolution of all the
measured and estimated variables are automatically generated.
A Simulink model can be created for interactive simulations,
where references and parameters can be varied online. Also,
the plant model can be replaced by a more accurate one,
which is often useful (as in the example shown in this brief)
since the prediction model used to design the MPC controller
may be simpler than the plant model used for simulation.
MOBY-DIC2 interfaces also with Xilinx Model Composer and
System Generator to generate the Simulink models for PIL
simulations, as the one shown in Fig. 5, where the embedded
system (controller and observer) runs on an FPGA connected
to the computer. The scaling blocks for adapting the signals
to the ADC and DAC ranges are also generated. This allows
evaluating the effects of delays and quantization errors due to
ADCs and DACs and fixed-point representation of data. The
snippet of code in Fig. 6 shows how the main MOBY-DIC2
functionalities can be invoked with a few commands.

V. CASE STUDY

A. Experimental Results on a Buck Converter

The MOBY-DIC2 toolbox was used to generate different
embedded systems (including different types of MPC con-
trollers and a Kalman predictor) to be implemented on FPGA
to regulate a real buck converter. A buck converter (see Fig. 7)
is a switching DC–DC converter that allows transforming an
input DC voltage vin to a lower DC output voltage vout. The
circuit is composed of an inductor with voltage v and current
i , a diode with voltage drop vd , an MOS transistor operating
as a switch, an output capacitor, and a load absorbing a current
iout. RL indicates the parasitic resistance of the inductor. The

IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 31, NO. 6, NOVEMBER 2023 2875

Fig. 5. Automatically generated Simulink model for PIL simulation.

Fig. 6. Portion of the MOBY-DIC2 MATLAB code.

Fig. 7. Circuit model of a DC–DC buck converter.

MOS transistor is driven by a pulsewidth modulation (PWM)
signal with frequency f and duty cycle δ ∈ [0, 1].

The buck converter is a switching system, consisting of
two states: when the PWM signal is high, the MOS conducts
current (on phase); when the PWM signal is low, the MOS
does not conduct (off phase). We assume that the converter
always works in continuous conduction mode, i.e., with i > 0,
with state equations as follows:

di
dt

=
s(vin + vd) − vd − RL i − vout

L
dvout

dt
=

i − iout

C

(3)

TABLE I
CONVERTER PARAMETERS AND CONSTRAINTS

where s = 1 in on phase and 0 in off phase. The goal of
the controller is to set the duty cycle δ of the switch such
that the average value of the output voltage (which is subject
to some ripple) tracks a reference value v̄out,ref, by fulfilling
hard constraints i ≤ imax and δmin ≤ δ ≤ δmax. The values of
parameters and constraints are summarized in Table I.

The nonlinear model (3) can be used to simulate the
converter, but is not suitable as a prediction model for linear
MPC. To this aim, a linear averaged model can be derived
[41], [42]. By considering an augmented system, the averaged
linear model can be written in discrete-time version as follows: ı̄ k+1

v̄out,k+1
δk

=

1 +

Ts RL

L
− Ts/L

Ts(vin + vd)

L
Ts

C
1 0

0 0 1

 ı̄ k

v̄out,k

δk−1

+

0
0
1

1δk +

 0

−
Ts

C
0

iout,k +

−
Tsvd

L
0
0

(4)

where Ts = 1/ f ≈ 33.3 µs.
By assuming vin as a constant, this model is in the same

form as model (1b)–(1c), where x = [ı̄ v̄out δ], u = 1δ, p =

iout, and y = v̄out, which can be assumed to be equal to vout
(small-ripple approximation [42]) and then easily measured on
the circuit. The average current ı̄ must be instead estimated
through a Kalman filter.

The inductor current i does not appear in model (4),
and then the constraint on the inductor current must be
reformulated in terms of the variables available in the pre-
diction model. The inductor current is subject to a rip-
ple, which can be evaluated, based on circuit equations,
as δ(vin − vout)/(2 f L) [42]. The constraint i ≤ imax can then
be approximated as ı̄ + δ(vin − v̄out)/(2 f L) ≤ imax. If δ is
replaced by its maximum value δmax, the constraint becomes
more conservative, but can be written as in expression (1d).

2876 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 31, NO. 6, NOVEMBER 2023

TABLE II
CIRCUIT RESOURCE USAGE, LATENCY, AND POWER WITH ALL DIFFERENT CONTROLLERS

This state constraint is imposed only at the prediction instant
(k +1)Ts , whereas input constraint δmin ≤ δ ≤ δmax is imposed
only at the current instant kTs .

The tracking problem can now be formulated as in (1),
by setting N = 5, Nu = 3, Nc = 1, 01 = [0 0 1], 02 = 0,
P = Q = diag(0, 2, 0), and R = 1.

Implicit, explicit, and approximate MPC controllers were
designed with Tctrl = Ts , i.e., with α = β = 1. The PWA
function defining the explicit controller is defined over a 5-D
domain partitioned into six polytopes. The approximate con-
troller was generated by partitioning the domain into regular
simplices, with nine partitions along the state and reference
dimensions and one partition along the parameter dimension.

The Kalman predictor for the estimation of ı̄ was designed
with Tobs = Ts starting from the averaged model (4), by setting
a process covariance matrix QK = diag(0.1, 0.1) and a
measurement covariance RK = 0.1.

B. Circuit Design

Three embedded system objects were created, including the
Kalman predictor and the three designed MPC controllers.
For each of them, available circuits were generated and
implemented on a Zynq-7000 XC7Z020-1CLG484C FPGA,
with a clock frequency of 50 MHz.

Explicit controllers use a 12-bit fixed-point representation,
implicit controllers use an 18-bit fixed-point representation,
whereas 12 bits were set for ADC and DAC. Table II shows
the number of used look-up tables (LUTs), flip-flops (FFs),
block random access memories (BRAM), and digital signal
processors (DSPs) for all the circuit architectures. The percent
values are relative to the total available resources in the Zynq
board. Also, the circuit latency and estimated average power
are listed. As expected, the approximate explicit MPC con-
troller has the lowest latency, about two orders of magnitude
lower than the sampling time Ts , with a very low resource
utilization. An even smaller, but slower, circuit is obtained
with the explicit MPC controller. Due to the high level of
parallelism, the latency of the fast implicit solution is still
lower than Ts at the cost of a much higher resource occupation
(especially DSP) and power consumption. If parallelism is not
exploited (see the last row of Table II), the latency is much
higher than Ts and the architecture cannot be exploited in real
experiments. We remark that the latency value shown in the
table is only related to the embedded system computation;
a further delay of 1.46 µs must be added due to the ADC
conversion of measurements.

C. PIL Simulations

A Simulink model was generated with MOBY-DIC, com-
bined with the Xilinx Model Composer and System Generator,

to perform PIL simulations (see Fig. 5). The state-space
model automatically generated by MOBY-DIC2 is the linear
prediction model used for MPC design. We replaced it with
the nonlinear model (3) to get a more accurate simulation
of the converter. The Zynq board implementing the implicit
fast architecture was connected to the PC, and the simulation
results are shown in Fig. 8. The top panel of the figure shows
the time evolution of vout (blue), the value of v̄out estimated
by the observer (red), and the reference output voltage (black,
dashed). The middle panel shows i (blue), the estimated value
of ı̄ (red), and the bound imax (gray). Note that the current
ripple visible in the blue profile is not estimated by the
observer, which is designed based on the averaged model. The
black dashed line is the output current iout. The bottom panel
shows the evolution of δ (blue) and its bounds (gray).

The digital circuit correctly estimates ı and vout through the
Kalman predictor and regulates vout to the variable reference
vout,ref, even if the parameter iout changes. At the beginning,
the controller brings vout to 1.8 V in about 4 ms. After 7.5 ms,
the reference voltage is set to 3.3 V (left black boxes), and
after 12.5 ms, the output current iout is varied from 0.8 to 1.2 A
(right black boxes). The constraints are always satisfied.

D. Experiments

The FPGA implementing the fast implicit controller was
connected to a real buck converter and we used the same
scenario as for the PIL simulation. The constant input voltage
is applied through a BREMI BRS 55 power supply, whereas
the time-varying output current is set through a PEL 3031E
DC electronic load. The output voltage and load current are
acquired through ADCs, whereas the output voltage reference
is changed from 1.8 to 3.3 V through a switch in the Zynq
board and is, therefore, an internal digital signal. The con-
troller’s output δ is provided to a block described in VHDL
code generating the PWM signal to be applied to the MOS of
the buck converter. An LTS 6-NP Hall-effect probe was used
to acquire the inductor current through an RIGOL DS1000Z
oscilloscope, together with the output voltage vout and the
PWM signal. Fig. 9 shows portions of the experimental results
corresponding to the black rectangles in Fig. 8, i.e., during the
changes in operating conditions. The experiment was repeated
using two different control systems generated by MOBY-DIC2
and implemented on the FPGA: in one case, implicit MPC was
used, and in the other, approximate explicit MPC was used.
A Kalman predictor generated by MOBY-DIC2 was also used.
The top panels show vout and vout,ref, the middle panels i , iout
and imax, and the bottom panels δ, which is reconstructed in
MATLAB starting from the measured PWM signal and its
bounds. Note that in all the cases, the regulation is successful
and the measured results are similar to the simulated ones.

IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 31, NO. 6, NOVEMBER 2023 2877

Fig. 8. PIL simulation results with implicit MPC: output voltage (top), inductor current (middle), and duty cycle (bottom).

Fig. 9. Experimental results with implicit (green) and approximate MPC (magenta). Top panels: output voltage vout and its reference vout,ref (black dashed);
middle panels: inductor current i , output current iout (black dashed), and constraint imax (gray); bottom panels: duty cycle δ and its bounds (gray). Cases 1
(left panels) and 2 (right panels) correspond to the black rectangles in Fig. 8. (a) Case 1. (b) Case 2.

VI. CONCLUSION

Controllers based on implicit, explicit, and approximate
MPC, including a state observer, were designed and imple-
mented on a Zynq-7000 FPGA for the regulation of a real
switching buck converter. Explicit MPC controllers need lim-
ited hardware resources and achieve latencies of hundreds of
nanoseconds, whereas the parallel implicit version requires
much more resources (especially DSPs) with a latency of tens
of microseconds. A smaller, yet too slow, circuit implementing
implicit MPC has also been designed.

Without MOBY-DIC2, the same experiments would have
required multiple tools (e.g., the MPC toolbox and PROTOIP),
which are not guaranteed to be fully compatible and possibly
require some manual modification to the generated code.
MOBY-DIC2 allowed instead to carry out the whole design,
simulation, and implementation process, by generating differ-
ent control strategies and circuit architectures and comparing
their performances. MOBY-DIC2 has proven to be an effective
tool for control-circuit co-design and co-simulation.

Different QP solvers can possibly be added to MOBY-
DIC2 for simulation and/or implementation purposes. The
functionalities could also be extended to nonlinear MPC,
which is possible due the fact that several circuit architectures
are already available in the literature for the solution of
nonlinear constrained optimization problems [43], [44], [45].

ACKNOWLEDGMENT

The authors thank the consortium of European FP7 Project
MOBY-DIC (ID: 248858) and Tomaso Poggi who actively
worked on the toolbox.

REFERENCES

[1] D. Q. Mayne, “Model predictive control: Recent developments and
future promise,” Automatica, vol. 50, no. 12, pp. 2967–2986, Dec. 2104.

[2] J. B. Rawlings, D. Q. Mayne, and M. Diehl, Model Predictive Con-
trol: Theory, Computation, and Design. Madison, WI, USA: Nob Hill
Publishing, 2017.

[3] Y. Wang and S. Boyd, “Fast model predictive control using online
optimization,” IEEE Trans. Control Syst. Technol., vol. 18, no. 2,
pp. 267–278, Mar. 2010.

[4] F. Torrisi and A. Bemporad, “HYSDEL—A tool for generating com-
putational hybrid models,” IEEE Trans. Contr. Syst. Technol., vol. 12,
no. 2, pp. 235–249, Mar. 2004.

[5] A. Bemporad, M. Morari, V. Dua, and E. N. Pistikopoulos, “The explicit
linear quadratic regulator for constrained systems,” Automatica, vol. 38,
no. 1, pp. 3–20, Jan. 2002.

[6] A. Bemporad, A. Oliveri, T. Poggi, and M. Storace, “Ultra-fast stabi-
lizing model predictive control via canonical piecewise affine approxi-
mations,” IEEE Trans. Autom. Control, vol. 56, no. 12, pp. 2883–2897,
Dec. 2011.

[7] B. A. G. Genuit, W. P. M. H. Heemels, and L. Lu, “Approximation
of explicit model predictive control using regular piecewise affine
functions: An input-to-state stability approach,” IET Control Theory
Appl., vol. 6, no. 8, pp. 1015–1028, May 2012.

[8] C. Wen, X. Ma, and B. E. Ydstie, “Analytical expression of explicit
MPC solution via lattice piecewise-affine function,” Automatica, vol. 45,
no. 4, pp. 910–917, 2009.

[9] L. H. Cseko, M. Kvasnica, and B. Lantos, “Explicit MPC-based RBF
neural network controller design with discrete-time actual Kalman filter
for semiactive suspension,” IEEE Trans. Control Syst. Technol., vol. 23,
no. 5, pp. 1736–1753, Sep. 2015.

[10] S. Chen et al., “Approximating explicit model predictive control using
constrained neural networks,” in Proc. Annu. Amer. Control Conf. (ACC),
Milwaukee, WI, USA, Jun. 2018, pp. 1520–1527.

[11] R. E. Bellman, Dynamic Programming. Princeton, NJ, USA: Princeton
Univ. Press, 1957.

[12] I. McInerney, G. A. Constantinides, and E. C. Kerrigan, “A survey of
the implementation of linear model predictive control on FPGAs,” IFAC-
PapersOnLine, vol. 51, no. 20, pp. 381–387, 2018.

2878 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 31, NO. 6, NOVEMBER 2023

[13] E. N. Hartley, J. L. Jerez, A. Suardi, J. M. Maciejowski, E. C. Kerrigan,
and G. A. Constantinides, “Predictive control using an FPGA with
application to aircraft control,” IEEE Trans. Control Syst. Technol.,
vol. 22, no. 3, pp. 1006–1017, May 2014.

[14] G. Cimini, D. Bernardini, S. Levijoki, and A. Bemporad, “Embedded
model predictive control with certified real-time optimization for syn-
chronous motors,” IEEE Trans. Control Syst. Technol., vol. 29, no. 2,
pp. 893–900, Mar. 2021.

[15] F. Bayat, T. A. Johansen, and A. A. Jalali, “Combining truncated binary
search tree and direct search for flexible piecewise function evaluation
for explicit MPC in embedded microcontrollers,” IFAC Proc. Volumes,
vol. 44, no. 1, pp. 1332–1337, Jan. 2011.

[16] A. Oliveri and M. Storace, “Hardware-in-the-loop simulations of circuit
architectures for the computation of exact and approximate explicit MPC
control functions,” in Proc. IEEE Int. Conf. Circuits Syst., Seville, Spain,
Dec. 2012, pp. 380–383.

[17] M. Gulan, G. Takacs, N. A. Nguyen, S. Olaru, P. Rodriguez-Ayerbe, and
B. Rohal’-Ilkiv, “Efficient embedded model predictive vibration control
via convex lifting,” IEEE Trans. Control Syst. Technol., vol. 27, no. 1,
pp. 48–62, Jan. 2019.

[18] C. Jugade, D. Ingole, D. N. Sonawane, M. Kvasnica, and J. Gustafson,
“A memory efficient FPGA implementation of offset-free explicit model
predictive controller,” IEEE Trans. Control Syst. Technol., vol. 30, no. 6,
pp. 2646–2657, Nov. 2022.

[19] A. Oliveri et al., “MOBY-DIC: A MATLAB toolbox for circuit-
oriented design of explicit MPC,” IFAC Proc. Volumes, vol. 45, no. 17,
pp. 218–225, 2012.

[20] J. Mattingley and S. Boyd, “CVXGEN: A code generator for embedded
convex optimization,” Optim. Eng., vol. 13, no. 1, pp. 1–27, Mar. 2012.

[21] C. N. Jones, A. Domahidi, M. Morari, S. Richter, F. Ullmann, and
M. Zeilinger, “Fast predictive control: Real-time computation and cer-
tification,” IFAC Proc. Volumes, vol. 45, no. 17, pp. 94–98, 2012.

[22] H. J. Ferreau, C. Kirches, A. Potschka, H. G. Bock, and M. Diehl,
“qpOASES: A parametric active-set algorithm for quadratic program-
ming,” Math. Program. Comput., vol. 6, no. 4, pp. 327–363, 2014.

[23] P. Giselsson and S. Boyd, “Diagonal scaling in Douglas–Rachford
splitting and ADMM,” in Proc. IEEE Conf. Decis. Control, Los Angeles,
CA, USA, Dec. 2014, pp. 5033–5039.

[24] G. Cimini, A. Bemporad, and D. Bernardini. (Sep. 2017). ODYS QP
Solver. [Online]. Available: https://odys.it/qp

[25] B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd, “OSQP:
An operator splitting solver for quadratic programs,” Math. Program.
Comput., vol. 12, no. 4, pp. 637–672, Dec. 2020.

[26] A. Suardi, E. C. Kerrigan, and G. A. Constantinides, “Fast FPGA
prototyping toolbox for embedded optimization,” in Proc. Eur. Control
Conf. (ECC), Linz, Austria, Jul. 2015, pp. 2589–2594.

[27] H. A. Shukla, B. Khusainov, E. C. Kerrigan, and C. N. Jones, “Software
and hardware code generation for predictive control using splitting
methods,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 14386–14391, 2017.

[28] P. Zometa, M. Kögel, and R. Findeisen, “µAO-MPC: A free code
generation tool for embedded real-time linear model predictive control,”
in Proc. Amer. Control Conf., Washington, DC, USA, Jun. 2013,
pp. 5320–5325.

[29] A. Bemporad. (Dec. 2004). Hybrid Toolbox—User’s Guide. [Online].
Available: http://cse.lab.imtlucca.it/bemporad/hybrid/toolbox

[30] M. Herceg, M. Kvasnica, C. N. Jones, and M. Morari, “Multi-parametric
toolbox 3.0,” in Proc. Eur. Control Conf. (ECC), Jul. 2013, pp. 502–510.

[31] ODYS Srl. (Oct. 2019). ODYS Embedded MPC. [Online]. Available:
https://odys.it/embedded-mpc

[32] A. Bemporad, M. Morari, and N. Ricker, Model Predictive Control
Toolbox for MATLAB. The Mathworks, Inc. Accessed: 2004. [Online].
Available: http://www.mathworks.com/help/mpc

[33] A. Bemporad, “A multiparametric quadratic programming algorithm
with polyhedral computations based on nonnegative least squares,” IEEE
Trans. Autom. Control, vol. 60, no. 11, pp. 2892–2903, Nov. 2015.

[34] G. Pannocchia, “Offset-free tracking MPC: A tutorial review and com-
parison of different formulations,” in Proc. Eur. Control Conf. (ECC),
Jul. 2015, pp. 527–532.

[35] S. Di Cairano, H. E. Tseng, D. Bernardini, and A. Bemporad, “Steering
vehicle control by switched model predictive control,” IFAC Proc.
Volumes, vol. 43, no. 7, pp. 1–6, Jul. 2010.

[36] A. Oliveri, M. Lodi, and M. Storace, “Design and circuit
implementation of approximate switched MPC,” in Proc. Eur.
Conf. Circuit Theory Desing, Dresden, Germany, Sep. 2013,
pp. 1–4.

[37] J. M. Maciejowski, Predictive Control for Linear and
Hybrid Systems. Upper Saddle River, NJ, USA: Prentice-Hall,
2007.

[38] T. V. Dang, K. V. Ling, and J. M. Maciejowski, “Embedded ADMM-
based QP solver for MPC with polytopic constraints,” in Proc. Eur.
Control Conf. (ECC), Linz, Austria, Jul. 2015, pp. 3446–3451.

[39] J. L. Jerez, P. J. Goulart, S. Richter, G. A. Constantinides, E. C. Kerrigan,
and M. Morari, “Embedded online optimization for model predictive
control at megahertz rates,” IEEE Trans. Autom. Control, vol. 59, no. 12,
pp. 3238–3251, Dec. 2014.

[40] P. Zhang, J. Zambreno, and P. H. Jones, “An embedded scalable linear
model predictive hardware-based controller using ADMM,” in Proc.
Int. Conf. Appl.-Specif. Syst. Archit. Process. Proc., Seattle, WA, USA,
Jul. 2017, pp. 176–183.

[41] R. D. Middlebrook and S. Cuk, “A general unified approach to modelling
switching-converter power stages,” in Proc. IEEE Power Electron. Spec.
Conf. (PESC), Cleveland, OH, USA, Jun. 1976, pp. 18–34.

[42] R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics.
New York, NY, USA: Springer, 2007.

[43] F. Xu, H. Chen, X. Gong, and Q. Mei, “Fast nonlinear model
predictive control on FPGA using particle swarm optimization,”
IEEE Trans. Ind. Electron., vol. 63, no. 1, pp. 310–321,
Jan. 2016.

[44] A. Raha, A. Chakrabarty, V. Raghunathan, and G. T. Buzzard, “Embed-
ding approximate nonlinear model predictive control at ultrahigh speed
and extremely low power,” IEEE Trans. Control Syst. Technol., vol. 28,
no. 3, pp. 1092–1099, May 2020.

[45] D. Tavernini, M. Metzler, P. Gruber, and A. Sorniotti, “Explicit non-
linear model predictive control for electric vehicle traction control,”
IEEE Trans. Control Syst. Technol., vol. 27, no. 4, pp. 1438–1451,
Jul. 2019.

Open Access funding provided by ‘Università degli Studi di Genova’ within the CRUI CARE Agreement

