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Abstract— This paper develops an approach for driver-aware
vehicle control based on stochastic model predictive control
with learning (SMPCL). The framework combines the on-
board learning of a Markov chain that represents the driver
behavior, a scenario-based approach for stochastic optimization,
and quadratic programming. By using quadratic programming,
SMPCL can handle, in general, larger state dimension models
than stochastic dynamic programming, and can reconfigure in
real-time for accommodating changes in driver behavior. The
SMPCL approach is demonstrated in the energy management
of a series hybrid electrical vehicle, aimed at improving fuel
efficiency while enforcing constraints on battery state of charge
and power. The SMPCL controller allocates the power from
the battery and the engine to meet the driver power request.
A Markov chain that models the power request dynamics
is learned in real-time to improve the prediction capabilities
of model predictive control (MPC). Because of exploiting the
learned pattern of the driver behavior, the proposed approach
outperforms conventional model predictive control and shows
performance close to MPC with full knowledge of future driver
power request in standard and real-world driving cycles.

Index Terms— Automotive controls, driver-machine interac-
tion, energy management, model predictive control (MPC),
optimization, real-time learning, stochastic control.

I. INTRODUCTION

WHILE modern vehicles are complex systems composed
of mechanical, electrical, and electronic subsystems,

the primary element that affects the vehicle operation is still
the driver. Thus, vehicle control strategies that seek highly
optimized performance need to optimize the system composed
of the vehicle and the driver, hence explicitly accounting for
the driver behavior.
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Driver information is not easily exploited by classical con-
trol strategies, but model predictive control (MPC) appears
to be suitable for this purpose. MPC repeatedly optimizes
a control sequence over a receding horizon by exploiting
a model to predict the future system behavior. Because of
the capability of achieving high performance in multivariable
systems subject to constraints, MPC has attracted considerable
interest in the automotive industry (see, [1]–[9] and references
therein).

To optimize the overall system composed of vehicle and
driver, the MPC prediction model must capture the driver
behavior. Although detailed models are available for the
dynamics of the vehicle components [10], [11], suitable frame-
works for modeling the driver behavior are less established.
In some cases, the driver is modeled as a feedback controller
that seeks to achieve a certain control goal, such as tracking a
reference [12], [13]. In other cases, the driver is represented by
an autonomous system, often driven by a random process. For
instance, [14] proposes a linear model with additional nonlin-
earities such as actuator saturation, slew-rate, and time delays,
[15] proposes a hidden Markov model, and [16] proposes
nonlinear ARMAX models. In [17], a hybrid driver model
is proposed, which consists of discrete modes and continuous
control functions.

In this paper,1 we consider a discrete stochastic model
of the driver where the actions are correlated in time. The
model takes the form of a Markov chain, similarly to [15].
Markov chains have been previously shown to be effective
for capturing certain driver behaviors, see for instance [15],
[20], [21], and the discrete state space makes them good can-
didates for use within numerical control algorithms. Because
of the Markov chain, the optimization of the vehicle-driver
model requires a stochastic control approach. Stochastic con-
trollers have been used in automotive applications to tackle
the uncertainty that arises from the environment around the
vehicle, and to generate optimal control solutions taking
into account the statistics of the disturbances. For instance,
[20]–[23] apply stochastic dynamic programming (SDP) to
optimize fuel economy and emissions, and [24] applies lin-
ear stochastic optimal control to chassis control. As it is
known, curse of dimensionality limits the application of SDP
to low-order models. In addition, the large computational

1Preliminary studies related to this paper were presented in [18] and [19].
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effort required to compute the SDP solution results in the
impossibility of rapidly updating the control policy in real-
time in reaction, for instance, to changes of the stochastic
model. On the other hand, linear stochastic control meth-
ods, although computationally simpler, are based on assump-
tions that usually do not allow to fully capture the driver
behavior. In this paper, we define a strategy based on MPC
that exploits system theory and numerical algorithms to effi-
ciently achieve the stochastic optimization of the vehicle-driver
system.

In recent years, various stochastic model predictive control
(SMPC) algorithms have been proposed, based on different
prediction models and control problem formulations, see for
instance [25]–[30]. In this paper, we build upon the SMPC
originally proposed in [29] based on scenario enumeration
and quadratic programming. The relevant driver behaviors
are modeled by a Markov chain and the stochastic vehicle-
driver model is used in a finite horizon optimal control
problem, where the average of the performance objective
over different scenarios is optimized subject to constraints on
state and input variables. The scenarios represent the driver
actions that, according to the Markov chain, are most likely
to realize. In this paper, we introduce online learning of the
Markov chain, which allows to adjust to variations of the
driver behavior. By updating the Markov chain in the SMPC,
the controller adapts with minimal computational effort to
changes in the driver behavior, for instance due to varying
traffic conditions, road types, or driver emotional states and
objectives.

The proposed control approach is demonstrated in energy
management of a hybrid electric vehicle (HEV). Indeed, the
driver behavior strongly affects fuel consumption, and hence
HEV energy management. The energy management control
system [11], [31] selects the power flows from the energy
sources and storages to satisfy the driver power request,
while accounting for constraints in power flows and energy
storages. Indeed, an improved prediction of the driver actions
allows for a better prediction of the future power request,
and hence for more informed decisions on the power flows.
The control design proposed in this paper uses statistical
information on the driver that is updated in real-time to adjust
to changes in the driver behavior, possibly in response to
environment changes. Besides the specific application to the
HEV energy management, the framework developed in this
paper is useful for addressing general vehicle control prob-
lems where the overall vehicle behavior optimization requires
real-time estimation of the statistical driver action patterns,
as demonstrated, for instance, for adaptive cruise control
in [19].

This paper is organized as follows. Section II describes the
Markov chains as models for the driver and a Markov chain
learning algorithm to adapt to changes in driver behavior.
In Section III, we introduce the stochastic model predictive
control algorithm and we combine it with the learning algo-
rithm to obtain SMPC with learning (SMPCL). Then, we
apply the SMPCL approach to energy management of a series
hybrid electric vehicle. In Section IV, we introduce the series
HEV (SHEV) architecture and the simulation model used to

validate our control algorithm, and in Section V we design
the SHEV energy management by SMPCL. In Section VI,
we present the simulation results of the control strategy in
closed-loop with the SHEV simulation model in standard
and real-world driving cycles. The SMPCL performance is
compared with a standard MPC and a MPC with perfect
driver preview along the entire horizon. The conclusions are
summarized in Section VII.

Notation: R, R0+, R+, Z, Z0+, Z+ denote the set of real,
nonnegative real, positive real, integer, nonnegative integer,
and positive integer numbers, respectively, and R(a,b) = {c ∈
R : a < c < b}, where a similar interpretation is given also
to R[a,b], Z(a,b), etc. For a set A, |A| denotes the cardinality.
For a vector a, [a]i is the i th component. For a matrix A,
[A] j is the j column, [A]i j is the element of the i th row
and j th column. We denote a square matrix of size s × s
entirely composed of zeros by 0s , and the identity matrix
by Is , where subscripts are dropped when clear from the
context.

II. STOCHASTIC MODEL LEARNING OF

DRIVER BEHAVIOR

We start by introducing a model of the driver based on
Markov chains, where the states capture the possible driver
actions and where the transition probabilities are updated in
real-time to adapt to changes in driver behavior.

A. Markov Chain-Based Driver Models

Let the driver actions be modeled by a stochastic process
w(·) where w(k) ∈ W̃ ⊂ R for all k ∈ Z0+. Even though
we consider a scalar w(k) for simplicity, the extension to
vector-valued process w(·) is straightforward. With a little
abuse of notation, we denote by w(k) the realization of the
disturbance at k ∈ Z0+. Depending on the application, w(k)
may represent quantities such as power request, acceleration,
velocity, steering wheel angular rate, or a combination of the
above. All these quantities are actually measured in the vehicle
through standard sensors, and hence we assume that w(k) is
measured at time k but is unknown for t > k.

For prediction purposes, the random process generating w is
modeled (with some approximation) by a Markov chain with
values in W = {w1, w2, . . . , ws} ⊂ R, where wi < wi+1 for
all i ∈ {1, . . . , s − 1}. The cardinality |W| defines the tradeoff
between the complexity of the stochastic model and its ability
to capture the driver behavior. The Markov chain is defined
by a transition probability matrix T ∈ Rs×s , such that

[T ]i j = Pr[w(k + 1) = wi | w(k) = w j ] (1)

for all i, j ∈ {1, . . . , s}. Given p(k) ∈ Rs where [p(k)] j =
Pr[w(k) = w j ], the probability distribution of w(k + 1) is
described by

p(k + 1) = T p(k). (2)

B. Driver Model Learning

While first principles vehicle models can be derived from
physics and plant parameters, stochastic models of the driver
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are identified from data. Identifying a Markov chain requires
estimating the transition probabilities [T ]i j , which amounts to
estimating the transition frequencies.

Consider first the case of identification from a batch of L
measurements, {wm(k)}L

k=0. For given W , W̃ , define w0 =
2 inf{w, w ∈ W̃} − w1, and ws+1 = 2 sup{w, w ∈ W̃} − ws .
Then, let Ii = {w ∈ R : (wi−1 +wi )/2 < w ≤ (wi +wi+1)/2}
denote the interval associated with the state wi of the Markov
chain, for all i ∈ {1, . . . , s}. Define

Ki j = {k ∈ Z[1,L] : wm(k + 1) ∈ Ii , wm(k) ∈ I j } (3)

ni j = |Ki j |, i.e., the number of transitions from w j to wi ,
and n j = ∑s

i=1 ni j , i.e., the number of transitions from w j .
The transition matrix T is estimated by

[T ]i j = ni j

n j
, ∀i, j ∈ {1, . . . , s}. (4)

Proposition 1: Consider W = W̃ , and the measurements
{wm(k)}L

k=0. Assume Pr[w(k) = w j ], j ∈ {1, . . . , s}, is
defined by the Markov chain (2), and let the transition prob-
ability matrix T be estimated by (4). Then, if each state
of the Markov chain is positive recurrent, limL→∞[T ]i j =
Pr[w(k + 1) = wi | w(k) = w j ]. !

The proposition is an immediate consequence of the law
of large numbers [32]. Indeed, the correct estimation requires
data that span the entire state-space of the Markov chain,
according to the positive recurrence assumption.

While (4) identifies the transition probability matrix from
a batch data set, since the driver behavior changes over time,
the Markov chain needs to be updated online by a recursive
algorithm. Let δ j ∈ {0, 1}s , for all j ∈ {1, . . . , s}. At time k ∈
Z0+, [δ j ]i (k) = 1 if and only if w(k) ∈ Ii and w(k −1) ∈ I j .
Hence, the vectors δ j define which transition has occurred,
and T is recursively estimated by

n j (k) = n j (k − 1) + ∑s
i=1[δ j (k)]i (5)

λ j (k) = 1
n j (k)

∑s
i=1[δ j (k)]i (6)

[T (k)] j = (1 − λ j (k))[T (k − 1)] j + λ j (k)δ j (k) (7)

for all j ∈ {1, . . . , s}, where the initialization n j (0) = n̄ j
and T (0) = T̄ may be obtained, for instance, from (4) based
on data available a priori. Equation (5) updates the number
of transitions from state w j , (6) stores the total number of
transitions from each state observed so far, and (7) updates the
transition matrix. Note that only one column of T is actually
updated at each time step, since each transition provides new
information only on the state from which the transition was
observed. Indeed, the estimator (5)–(7) is equivalent to batch
estimation (4).

The limitation of (5)–(7) is that the sensitivity to new data
decreases with the amount of data, due to (6). This would not
be a problem if the driver behavior was stationary. However,
in real driving conditions the driver behavior may change
significantly over time due to factors such as traffic conditions,
road type, time of the day, driver’s physical/emotional status,
etc. To overcome such limitation we apply an estimator
for which the sensitivity to data remains constant [32], by

replacing (5) and (6) with

λ j (k) = λ̄
s∑

i=1

[δ j (k)]i (8)

for all j ∈ {1, . . . , s}, where λ̄ ∈ (0, 1) is a constant parameter.
Equations (7) and (8) define an exponential averaging where
λ̄ trades off convergence rate for sensitivity to new data.

In Fig. 1 the effect of learning by (7) and (8) is shown
on the Markov chain that is used later in Section VI. The
Markov chain models the driver’s power request while driving
a small HEV along the new European driving cycle (NEDC).
The Markov chain (2) is initialized by T (0) = Is , n j (0) = 0,
for all j ∈ {1, . . . , s}, and s = 16. In total, the NEDC cycle
was repeated three times with λ̄ = 0.01. After the second
execution of the NEDC cycle, the transition probabilities do
not change significantly.

III. STOCHASTIC MODEL PREDICTIVE CONTROL

WITH LEARNING

When the driver model proposed in Section II is considered
in an MPC framework, the MPC optimal control problem
results in a stochastic finite horizon optimal control problem.
We solve such a problem by the scenario enumeration and
multistage stochastic optimization originally proposed in [29].
Consider the linear discrete-time system

x(k + 1) = Ax(k) + B1u(k) + B2w(k) (9a)

y(k) = Cx(k) + D1u(k) + D2w(k) (9b)

where x(k) ∈ Rnx is the state, u(k) ∈ Rnu is the input,
y(k) ∈ Rny is the output, and w(k) ∈ W is a scalar
stochastic disturbance, whose distribution p(k) is modeled by
the Markov chain (2). By (1)

p(k + 1) = [T (k)] j , if w(k) = w j , j ∈ {1, 2, . . . , s} (10)

where it is assumed that w(k) is known at time k. In automo-
tive applications, the assumed knowledge on w(k) is realistic
because the driver actions are measured by vehicle sensors.2

The state, input, and output vectors in (9) are subject to the
pointwise-in-time constraints

x(k) ∈ X , u(k) ∈ U, y(k) ∈ Y ∀k ∈ Z0+ (11)

where X ⊆ Rnx , U ⊆ Rnu , and Y ⊆ Rny are polyhedral
sets. Because of w(k) in (9), the MPC problem minimizes
a risk measure of a given performance index. We consider a
quadratic function of the state and the input as the performance
index, and the expected value as the risk measure

E{w( j )}N−1
j=0

[∑N
j=1 (x(k + j) − xref)

′ Q (x(k + j) − xref)

+ ∑N−1
j=0 u(k + j)′Ru(k + j)

]
(12)

where xref is a given state reference, N is the prediction hori-
zon, and Q, R are weight matrices of appropriate dimensions.
Since |W| is finite, (12) can be optimized by enumerating

2If w(k) is not directly measured, w(k −1) can be estimated from x(k) and
x(k − 1). Hence, p(k + 1) = T [T (k)] j , if w(k − 1) = w j , j ∈ {1, 2, . . . , s},
i.e., one additional open-loop prediction step is required.
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Fig. 1. Effect of Markov chain learning in the application in Section VI along several execution of NEDC cycle for T (0) = Is , λ̄ = 0.01. (a) Transition
probabilities after half NEDC cycle. (b) Transition probabilities after two NEDC cycles.

all the admissible realizations (the scenarios) of the stochas-
tic disturbance sequence, and then solving an optimization
problem with a control sequence per scenario, and appropriate
constraints that enforce causality. However, the optimization
problem obtained in this way is large, because it considers
even disturbance sequences with arbitrarily small probability.

In our approach, (9)–(11) are used to construct a variable
horizon optimization problem where only the disturbance
sequences that are more likely to realize are accounted for,
and hence the optimization problem is simplified. Instead of
considering all possible scenarios by using (10) to compute
the disturbance probability, we construct a scenario tree with
variable depth. The scenario tree describes the most likely
scenarios of future disturbance realizations, and is updated at
every time step using newly available measurements of the
state x(k), the disturbance w(k), and the updated estimate
T (k), according to the receding horizon philosophy of MPC.

The scenario tree is computed from the Markov chain model
of the disturbance introduced in Section II. Let us define the
following quantities.

• T = {N1,N2, . . . ,Nn}: the set of the tree nodes. Nodes
are indexed progressively as they are added to the tree
(i.e., N1 is the root node and Nn is the last node added);

• pre(N ) ∈ T : the predecessor of node N ;
• succ(N , w) ∈ T : the successor of node N for w ∈ W ;
• πN ∈ [0, 1]: the probability of reaching N (from N1);
• xN ∈ Rnx , uN ∈ Rnu , yN ∈ Rny , wN ∈ W : the

state, input, output, and disturbance value, respectively,
associated with node N , where xN1 = x(k), yN1 = y(k),
and wN1 = w(k);

• C = {C1, C2, . . . , Cc}: the set of candidate nodes, defined
as C = {N ̸∈ T | ∃(i, j) : N = succ(Ni , w j )};

• S ⊂ T : the set of leaf nodes, S = {N ∈ T |
succ(N , w j ) ̸∈ T , ∀ j ∈ {1, . . . , s}}, whose cardinality
is denoted by nleaf = |S|.

Every path from the root node to a leaf node represents
a disturbance realization scenario that is considered in the
optimization problem. The procedure to construct the scenario
tree is listed in Algorithm 1 and described next.

Starting from the root node N1, which is associated with
w(k), a list C of candidate nodes is evaluated considering
all the possible s future values of the disturbance in W and

Fig. 2. Graphical representation of a multiple-horizon optimization tree.
Some roof-to-leaves paths have length 2; others have length 3. Hence, different
scenarios may have different prediction horizons.

their realization probabilities. The candidate with maximum
probability Ci∗ is added to the tree and removed from C.
The procedure is repeated by generating at every step new
candidates as children of the last node added to the tree, until
the tree contains nmax nodes. Algorithm 1 expands the tree
in the most likely direction, so that the paths with higher
probability are extended longer in the future, since they may
have more impact on performance. This leads to tree with a
flexible structure where the paths from the root to the leaves
may have different lengths and hence different prediction
horizons (see Fig. 2). Thus, we call the tree a multiple-horizon
optimization tree. The reader is referred to [29] for further
details on the scenario-based SMPC approach and on the tree
construction algorithm.

For the sake of shortness, in what follows we use xi , ui ,
yi , wi , πi , and pre(i) to denote xNi , uNi , yNi , wNi , πNi , and
pre(Ni), respectively. At time k, based on the tree constructed
from w(k) and T (k), the following stochastic MPC problem
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Algorithm 1 SMPC Tree Generation Procedure
1: At any step k:
2: set T = {N1}, πN1 = 1, n = 1, c = s;
3: set C = ⋃s

j=1
{
succ(N1, wj)

}

4: while n < nmax do
5: for all i ∈ {1, 2, . . . , c}, do
6: compute πCi according to (10);
7: end for
8: set i∗ = arg maxi∈{1,2,...,c} πCi ;
9: set Nn+1 = Ci∗ ;

10: set T = T ∪ {Nn+1};
11: set C = ⋃s

j=1 {succ(Ci∗, w j )} ∪ (C \ Ci∗);
12: set c = c + s − 1, n = n + 1;
13: end while

is solved:

min
u

∑

i∈T \{N1}
πi (xi − xref)

′ Q(xi − xref) +
∑

i∈T \S
πi u′

i Rui

(13a)

s.t. x1 = x(k) (13b)

xi = Axpre(i) + B1upre(i) + B2wi , i ∈ T \{N1} (13c)

yi = Cxpre(i) + D1upre(i) + D2wi , i ∈ T \{N1} (13d)

xi ∈ X , yi ∈ Y, i ∈ T \{N1} (13e)

ui ∈ U, i ∈ T \S (13f)

where u = {ui : Ni ∈ T \S} is the multiple-horizon input
sequence. Eq. (13) is a quadratic program (QP) with nu(nmax−
nleaf) optimization variables. Once the problem is solved, the
decision vector u1 associated with the root node N1 is used
as the control input u(k). Causality in prediction is enforced
by allowing only one control action for every node, except for
leaf nodes where there are no control actions.

Equation (13) is an approximation of the optimization of the
expected value (12). If the scenario tree T is fully expanded,
i.e., all the leaf nodes are at depth N and all parent nodes
have s successors, the objective function (13a) is equivalent
to (12). Otherwise, (13a) is an approximation of (12) based
on the largest probability scenarios. The representativeness-
complexity tradeoff of the approximation is defined by the
number of nodes in the tree nmax, and possibly by a maximum
depth for the tree. The stability of the closed-loop system
can be addressed by including a stochastic control Lyapunov
function in the form of constraints in (13), as discussed in [29].
The complete SMPCL strategy is summarized in Algorithm 2.

Remark 1: In (9), the disturbance with statistics defined
by Markov chain (2) is additive. This is motivated by the
application considered next. However, it is straightforward to
apply the same approach with other types of disturbances, as
long as the system dynamics for an assigned disturbance value
is linear in the state and in the input, such as in the case of
parametric uncertainties in (9). !

In the next section, we demonstrate the effectiveness of
Algorithm 2 in automotive applications, by showing its capa-
bilities in energy management of HEVs.

Algorithm 2 Stochastic MPC With Learning
1: for all k ∈ Z0+ do
2: get measurements x(k), w(k);
3: update T (k) from T (k − 1) and w(k) by (7), (8);
4: construct the scenario tree by Algorithm 1;
5: solve the SMPC problem (13) and obtain u1;
6: apply u(k) = u1;
7: end for

IV. SHEV ENERGY MANAGEMENT

In recent years, HEVs have been increasingly introduced in
the market because of their improved fuel efficiency, which
is obtained by coupling the internal combustion engine with
an electric drivetrain usually composed of an electric motor, a
generator, and a battery. The electric and internal combustion
drivetrains produce mechanical energy, and the electrical drive-
train can also convert mechanical energy into chemical energy
stored in the battery. HEV energy management addresses the
decision on how much power is generated/drained/stored in
the different components to maximize fuel efficiency while
providing the power that the driver requests and enforcing
operating constraints on the powertrain. Indeed, the power
request depends on the vehicle speed and the acceleration
that the driver wants to achieve, and thus it is in general
an expression of the driver behavior, also in reaction to the
surrounding environment.

HEV energy management has been addressed in several
ways, see for instance [11], [20], [23], [31], [33]–[38], and
the references therein. Optimal solutions are based on dynamic
programming (DP) [11], [33], [34] and assume full knowledge
of the future power request, which ultimately defines the
vehicle speed. These techniques provide the fuel economy
ceiling (i.e., the upper bound) on an a priori known driving
cycle, but they are unsuitable for normal real world driving,
when the driving cycle is not known. DP also results in time-
varying control laws that are memory-expensive to implement.

More recently, SDP has been proposed to enable the
implementation of DP-based energy management in real
driving [20], [23], [39]. In SDP, the knowledge of the future
power request is substituted by its statistics obtained from data
sets of potential driving cycles. SDP results in time-invariant
control laws that depend on data statistics. However, the SDP
computation is still time and resource expensive,3 and hence
the control law cannot be adjusted directly on the vehicle in
response to changes to the power request statistics.

In this paper, we propose the approach developed in
Section III that allows for the statistics of the power request
to be updated in real-time, and hence adapts to the different
styles of the driver (relaxed, performance, economical, etc.), to
the driver’s standard routes (city, highway, mixed, etc.), and to
the traffic patterns that the driver commonly encounters (light

3The precise calculation of the DP policy for a standard driving cycle may
take several days even in large-scale computing environments. This is due to
the need for simulating high-fidelity inverse models on fine state space grids.
The computation of the SDP policy may take (significantly) longer due to the
need for performing multiple (value or policy) iterations.



DI CAIRANO et al.: SMPCL FOR DRIVER-PREDICTIVE VEHICLE CONTROL 1023

Fig. 3. Schematics of a series hybrid electric powertrain.

traffic, high-speed traffic, traffic jams, etc.). By learning the
power request statistics and optimizing the energy efficiency
in a SMPCL framework, we expect to achieve benefits sim-
ilar to SDP, with the additional capability of adjusting the
control strategy to the specific conditions with significantly
lower computational effort. In particular, we expect the pro-
posed approach to provide fuel economy improvements in
everyday driving. Everyday driving performance is becoming
significantly important for the automotive industry. In fact,
the upcoming corporate average fuel economy (CAFE) stan-
dards [40] include provisions for “off-cycle driving,” referred
to as features that provide improvements of fuel efficiency and
reduction of emissions that are not measurable on standard
environmental protection agency (EPA) test cycles, but have
effects in everyday driving. This is the case for optimizing the
fuel economy in the commonly driven routes for the primary
driver of the vehicle. Next, we discuss the physical architecture
of the HEV considered in this paper, and the simulation model
used for validating the SMPCL energy management strategy.

A. SHEV Powertrain Architecture

We consider the series hybrid electric vehicle (SHEV) [11],
[20], [38] whose powertrain is shown schematically in Fig. 3.
In SHEV, the electric motor is the unique source of traction
at the wheels. The motor receives electric power from a DC
bus to which a battery and a generator are connected. The
generator converts the mechanical power from the engine into
electrical power in the DC bus. Compared with the powersplit
configuration [37] where the power flow coupling involves
mechanical powers and is obtained by a planetary gear set,
the electrical bus of the series configuration has a higher
efficiency and fewer constraints [20], [41]. On the other hand,
the mechanical power is always converted to electrical power,
with power losses as a consequence. Series hybrid electric
powertrain have been in marketed HEV passenger cars, are
currently in marketed extended range electric vehicles (or
plug-in HEV), are of interest for fuel-cell and diesel hybrid
vehicles, and are used in military and commercial trucks and
buses, also because of the more flexible packaging since the
power can be transferred through the electrical bus instead of
through the drivetrain.

According to Fig. 3, in the SHEV configuration the electric
motor is the unique source of traction at the wheels

Pwh(t) = ηwh(t)Pmot(t) (14)

where Pwh[W] is the power at the wheels, Pmot[W] is the
power output of the electric motor, and ηwh ∈ R+ is the (time-
varying) drivetrain efficiency.

Remark 2: In (14) and in all the subsequent power flow
equations, we follow the convention that for generators and
storages the power is positive when provided and nega-
tive when acquired, while for consumers (the wheels) the
power is positive when acquired and negative when pro-
vided. Because of the bidirectionality of the power flows,
the efficiency variables can assume values larger than 1.
In particular, the efficiency variables in the equations are
smaller than 1 if the power is positive, and greater than 1
otherwise.

The motor power results from the generator power and the
power provided from the battery as

Pmot(t) = ηmot(t)(Pgen(t) + Pbat(t)) (15)

where Pgen[W] is the generator power, ηmot ∈ R+ is the (time
varying) motor efficiency, and Pbat[W] is the power flow from
the battery to the electrical bus, and then to the motor.

The electrical generator is powered by the internal combus-
tion engine

Pgen(t) = ηgen(t)Peng(t) (16)

where ηgen ∈ R(0,1) is the (time varying) generator efficiency,
and Peng[W] is the engine brake power. Finally, the engine
power determines the fuel consumption through the relation

Pfuel(t) = Peng(t)
ηeng(t)

(17)

where Pfuel[W] is the amount of net power that can be
extracted from the fuel burnt in the cylinders, ηeng(t) ∈ (0, 1)
is the engine efficiency, and from (17) the fuel mass flow
w f [kg/s] is w f = Pfuel/H f , where H f [J/kg] is the specific
lower heating value of the fuel [11].

The battery power flow in (15) changes the amount of
charge stored in the battery. Given the battery power flow to
the bus Pbat = ibusVbus, where ibus[A] is the current in the bus
and Vbus[V] is the (controlled) DC bus voltage, the battery
charge Qbat[C] evolves according to

d
dt

Qbat(t) = −ibus(t) = − Pbat(t)
ηbat(t)Vbus(t)

(18)

where ηbat ∈ R+ is the (time varying) battery efficiency, which
accounts for power losses in power electronics and battery.

While (14)–(17) are formulated in the power domain, the
time varying efficiencies in (14)–(17) depend on the rotational
speed and torque at which the components are operating.
The efficiencies are usually described by static maps of the
corresponding rotational speed and torque, mainly obtained
from experimental data. In the SHEV, the generator and engine
speeds are coupled, possibly through a reduction gear, and so
are the electric motor and wheel speeds, usually through a
gearbox or continuously variable transmission (CVT).

Thus, the electric motor speed is assigned by the wheel
speed (i.e., the current vehicle speed) and the CVT/gearbox
reduction ratio, which is usually not under direct control of
the energy management strategy in the powertrain software
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Fig. 4. Quasi-static SHEV model for closed-loop simulations.

architecture. On the other hand, the engine and generator
speeds are decoupled from the electric motor and wheel speeds
by the electrical bus. The optimal engine speed ωeng[rad/s] and
torque τeng[Nm] can be selected as functions of the generator
power output, independently from the electric motor and wheel
speeds, by a map [ωeng τeng] = γ (Pgen). A proper selection
of such a map, together with an appropriate control of the
powertrain and battery dynamics, are the key for improving
SHEV fuel efficiency.

B. Quasi-Static Simulation Model of SHEV

For closed-loop simulations of the SHEV, we use a quasi-
static simulation (QSS) model in the QSS Toolbox [42], which
implements a reversed causality quasi-static approach.

The simulation is quasi-static in the sense that the dynamic
evolution is broken into a sequence of stationary states
at discrete-time instants. Reversed causality means that the
simulation is executed by reversing the classical causal-
ity relations. In causal simulations, torques and forces are
causes that generate rotational speeds and velocities as
effects. Hence, given the current speed and a selected
force, the acceleration and the updated velocity are com-
puted. In the reversed causality approach, from the current
velocity and (desired) acceleration, the needed force and
the updated velocity are computed. For instance, in the
SHEV model, from the (desired) acceleration and current
vehicle velocity, the vehicle longitudinal force is computed
as

F(k) = m(v(k + 1) − v(k))

Tm
+ c2v(k)2 + c1v(k) + c0

where c0, c1, c2 are coefficients of the load model representing
the rolling resistance, bearings friction, and airdrag, and Tm [s]
is the simulation stepsize.

The major advantage of QSS, when compared with causal
high-fidelity industrial simulation models (see [38]), is compu-
tational. Also, the model used here is open source and freely
available [42].

The SHEV simulation model implemented in the QSS
toolbox is a small fuel-efficient vehicle described in [11,
Ch. 3] and augmented with an electrical motor and a battery.
The efficiency maps of the components are obtained from
experimental data and validated, see [11, Ch. 3, 4] and [42].

As shown in Fig. 4, in the SHEV simulation model, the
rotational dynamics of the drivetrain and electrical motor

are obtained, from the vehicle speed v(k) and acceleration
at the current step (a(k) = (v(k + 1) − v(k))/Tm ) by
reversed causality applied at each component. The mechanical
couplings that impose kinematics and torque relations resolve
the signal values in the powertrain components. Thus, from the
current and next vehicle velocity, the required motor power
Pmot(k) is computed. Because of the quasi-static approach,
the efficiencies in (14)–(17) are considered constant during
each step, i.e., computed for the current torque and speed at
the beginning of the step itself, and applied as multiplicative
gains to the components’ torques.

The free variable for the controller to manipulate in (15)
is the generator power Pgen(k). Let the generator power
Pgen(k) and the generator setpoint be assigned, from Pmot(k)
and Pgen(k) the battery power Pbat(k) is computed by (15),
and the battery charge is updated by (22) integrated for the
simulation stepsize Tm . Thus, the controller selects the engine
operating point (weng(k), τeng(k)), which determines the
generator speed and torque, and hence the generator power
Pgen(k). At the same time, (weng(k), τeng(k)) determines
the engine efficiency ηeng(k) = ηeng(weng(k), τeng(k)),
and by (17) the fuel consumption during the simulation
step, w f (k)Tm . To better capture the impact of the engine
dynamics on the efficiency, a triangular approximation
of the engine efficiency is used, i.e., ηeng(k) = 1/2(
ηeng(weng(k), τeng(k)) + ηeng(weng(k − 1), τeng(k))

)
, which

is based on the rationale that first the torque is changed, then
the engine speed changes, see [38, Fig. 3].

V. SHEV ENERGY MANAGEMENT

BY SMPCL

Next we apply the SMPCL approach developed in
Section III to the SHEV energy management described in
Section IV. Deterministic MPC has been previously applied
to energy management of hybrid electric vehicles for different
powertrain configurations; see, for instance, [36]–[38].

For the SHEV whose powertrain schematics is shown in
Fig. 3 and that was described in Section IV, the energy
management strategy can be structured as composed of two
parts. An algorithm that, given the current state of the hybrid
powertrain and the power request, selects the generator power
Pgen, and a map that given Pgen selects the engine operating
point that maximizes the combined engine-generator efficiency
and provides the desired generator power

[ωeng τeng] = γ ∗(Pgen).

For the engine to actually operate along γ ∗, the generator
power transitions need to be “smoothed” by using the battery
as a constrained energy buffer, as experimentally demonstrated
in [38]. MPC is a natural candidate for such a control
strategy since it is capable of enforcing the constraints on
battery charge, battery power, and the tradeoff between power
smoothing and charge regulation. However, in [38], it was
also remarked that with deterministic MPC a short horizon
needs to be used because an increase in the prediction horizon
resulted in increased computational load without performance
gain, the latter due to the absence of reliable information on the
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Fig. 5. Control-oriented model of SHEV for energy management.

future driver power request. Here we show that, by learning
the driver behavior in terms of power request and by using
such information in the MPC strategy, the SMPCL approach
developed in this paper can obtain further improvements in
fuel economy.

To design the SMPCL controller, we obtain a control-
oriented prediction model from the SHEV powertrain model
described in Section IV, according to schematics in Fig. 5,
where

Preq(k) = 1
ηwh(k)ηmot(k)

Pwh(k) (19)

is the power request at time k as seen from the DC bus, and

(P(k) = Pgen(k) − Pgen(k − 1) (20)

is the step-to-step generator power variation. The power bal-
ance at the DC bus requires that

Pbat(k) = Preq(k) − Pgen(k) + Pbr(k), ∀k ∈ Z0+ (21)

where Pbr(k) ≥ 0 is the power drained by conventional friction
brakes (in case regenerative braking is not sufficient).

In [38], it was shown that with the state of charge (SoC)
maintained in a 40%–60% range, an integrator model for the
battery dynamics is appropriate for use as a prediction model.
Thus, the battery state of charge is normalized with respect to
the battery capacity (SoC(k) = 1 fully charged, SoC(k) = 0
fully discharged), and its dynamics are modeled as

SoC(k + 1) = SoC(k) − κTs Pbat(k) (22)

where Ts = 1s is the sampling period and κ > 0 is
a scalar parameter identified from simulation data of the
model in Section IV-B. By collecting (20)–(22), the powertrain
dynamics for SHEV energy management is formulated as
the linear system (9), where x(k) = [SoC(k) Pgen(k − 1)]′,
u(k) = [(P(k) Pbr(k)]′, w(k) = Preq(k), y(k) = Pbat(k), and

A =
[ 1 κTs

0 1

]
, B1 =

[
κTs −κTs

1 0

]
, B2 =

[ −κTs
0

]

C = [ 0 −1 ] , D1 = [ −1 1 ] , D2 = 1. (23)

To guarantee a prolonged battery life and to enforce the
operating ranges of powertrain components and electro-
mechanical limitations, the state, input and output vectors of
system (9), (23) are subject to constraints (11), where

X " {x : SoC ≤ [x]1 ≤ SoC, 0 ≤ [x]2 ≤ Pmec} (24a)

U " {u : (P ≤ [u]1 ≤ (P, [u]2 ≥ 0} (24b)

Y " {y : Pbat ≤ y ≤ Pbat} (24c)

Fig. 6. Quadratic approximation Jη−1 (red dashed line) of the inverted
optimal efficiency curve (blue solid line) as function of generator power.

where SoC = 0.4, SoC = 0.6, Pmec = 20 kW, (P = −(P =
1 kW, and Pbat = −Pbat = 40 kW.

In (23), (P and Pbr are commanded by the energy man-
agement system, while w = Preq is commanded by the driver
and thus modeled as the Markov chain (2), according to what
discussed in Section II-A. The use of Markov chains to model
the driver power request has been applied also in [20] and [21],
where real-time learning was, however, not considered.

The SMPCL cost function needs to account for three terms:
1) the power smoothing effect; 2) the battery state of charge
regulation; and 3) the steady-state efficiency for the chosen
engine-generator power. To account for 3), we construct a
quadratic approximation of the inverse of the engine-generator
efficiency on the optimal efficiency curve

Jη−1(Pgen) = φ(Pgen − P∗
gen)

2 + γ (25)

obtaining a sufficient approximation, as shown in Fig. 6.
The SMPCL cost function is implemented by (13a), where

xref =
[

SoCref
Pref

]
, Q =

[
QSoC 0

0 Q J φ

]
, R =

[
R(P 0

0 Rbr

]
(26)

where SoCref = 0.5 is the reference state of charge, Pref =
P∗

gen is the engine-generator (absolute) maximum efficiency
power, QSoC > 0 penalizes deviations from battery state of
charge setpoint, Q J > 0 pushes the engine to operate close
to maximum efficiency power, R(P > 0 enforces smooth
mechanical power variations, and Rbr > 0 penalizes the use of
friction brakes. After calibration through multiple simulations,
the values of the weights are set to QSoC = 102, Q J = 10φ,
R(P = 1, and Rbr = 103. The constraints on (P are
softened [8], so that problem (13) for the SHEV energy
management is always feasible.

In addition, we define an engine shutdown threshold Pdn, so
that if Pgen(k) < Pdn, the powertrain operates in purely electric
mode. To avoid conflict with the objective of maximizing
the engine efficiency, we vary the setpoint on the generator
power Pref by defining a threshold Pth and imposing that if
Preq(k) < Pth, Pref (k) = 0, while Pref(k) = P∗

gen otherwise.
For the designed controller, we implemented Pth = 5 kW and
Pdn = 0.5 kW.

The optimization tree defining the optimal control problem
is generated with nmax = 100 nodes. The value for nmax has
been chosen as a tradeoff between computational complexity
and prediction capability. For predicting Preq, a Markov chain
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with s = 16 states is used. The Markov Chain transition
probabilities are initialized by (4), using power request profiles
(Preq) from standard driving cycles (NEDC, FTP-75, FTP-
Highway, Mode 10-15), and online learning (7), (8) is executed
with λ̄ = 0.01, which implies that 99.2% of the memory
vanishes in approximately 8 min. In the SMPCL problem, the
prediction of Preq implies the prediction of Pref as well, which
then varies along the prediction horizon, so that the disturbance
modeled by the Markov chain is actually vector valued.

VI. SIMULATION RESULTS ON STANDARD AND

REAL-WORLD DRIVING CYCLES

The SMPCL controller for energy management designed in
Section V is connected to the SHEV QSS simulation model
described in Section IV for closed loop simulations on several
driving cycles. Indeed, the simulation model and the MPC
prediction model are not the same. For instance, the simulation
model of the battery is nonlinear and the inverse efficiency
function in (25) is only an approximation of the actual inverse
efficiency. Thus, the closed-loop simulations also assess the
SMPCL robustness to modeling errors and uncertainties.

According to what we described in Section IV, the power
request, that is the main disturbance for the energy man-
agement controller, is obtained from the velocity profile of
the cycles. We have used standard driving cycles where the
velocity profile is specified, and real-word driving cycles
where velocity data have been recorded by an acquisition
system during regular driving. In what follows we compare
the SMPCL controller with a prescient MPC (PMPC) that
knows the future power request along the entire prediction
horizon, and with a frozen-time MPC (FTMPC) where the
power request is assumed constant over the prediction horizon.
A FTMPC solution has been tested experimentally on a fully
functional vehicle in [38], and it has shown significant fuel
economy improvement with respect to baseline strategies. The
cost functions of PMPC and FTMPC are the same as the one
of SMPCL, and their predictions horizons are set to nmax.

A. Simulations on Standard Driving Cycles

We report simulations on three standard driving cycles,
NEDC, FTP 75, and FTP-Highway. Even though fuel con-
sumption is not explicitly minimized, the cost function (13a),
with weights as in (26), forces the engine to operate close
to its optimal operation point by using the battery power
for smoothing the aggressive engine power transients that are
inefficient. This results in improved fuel economy.

The results of SMPCL, FTMPC, and PMPC are shown
in Table I, in terms of norm of variations of generator
power (i.e., engine operation smoothness), fuel consumption,
battery charge difference ((SoC) between the end and the
beginning of the driving cycle, equivalent fuel consumption,
and equivalent fuel consumption improvement with respect to
FTMPC. The equivalent fuel consumption is computed by con-
verting (SoC into fuel and adding it to the fuel consumption.
Specifically the equivalent fuel consumption ED,C is

ED,C = FD,C − αD(SoCD,C (27)

TABLE I

SHEV ENERGY MANAGEMENT SIMULATION RESULTS ON

STANDARD DRIVING CYCLES

P

where FD,C and (SoCD,C are the fuel consumption and the
difference of SoC from initial condition at the end of the
cycle D obtained with controller C, respectively. In (27),
αD ∈ R+ is the cycle-dependent coefficient that maps battery
charge into fuel, computed as

αD = FD,PMPC

βD + (SoCD,PMPC
(28)

where βD is the battery consumption obtained on cycle D when
no mechanical power is provided by the ICE, i.e., Preq(k) =
Pbat(k), for all k ∈ Z0+. For testing the SMPCL algorithm,
the Markov chain is initialized by batch estimation (4) using
data from four standard driving cycles (FTP-75, FTP-Highway,
NEDC, Mode10-15), then each cycle is run twice before
measuring the performance, so that the controller has the
possibility of learning the pattern of the cycle. Plots related to
NEDC, FTP 75, and FTP-Highway are reported in Figs. 7–9,
respectively.

The results show that SMPCL improves fuel economy
with respect to FTMPC by taking advantage of the learned
power request patterns to perform more accurate predictions.
The advantage of the SMPCL strategy over FTMPC is smaller
for the NEDC cycle. This is due to the “piecewise linear”
nature of the NEDC velocity profile, which makes the predic-
tion of the power request often straightforward or alternatively
extremely difficult.

Larger fuel economy improvements with SMPCL over
FTMPC are noticeable in FTP-75 and FTP-Highway cycles.
In these cases, the vehicle velocity, and as a consequence
the power request, has a more varied pattern that cannot
be predicted by FTMPC, while its statistics is learned and
exploited by SMPCL.

B. Simulations on Real-World (Off-Cycle) Driving

SMPCL appears capable of outperforming standard deter-
ministic MPC and gets close to PMPC when tested on
standard driving cycles. However, we want to verify the
same capabilities in off-cycle driving, that is, in real-world
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Fig. 7. SMCL for HEV energy management: results on NEDC driving cycle. (a) Vehicle velocity. (b) Driver power request and generator power. (c) Battery
state of charge. (d) Generator power variation.

Fig. 8. SMCL for HEV energy management: results on FTP-75 driving cycle. (a) Vehicle velocity. (b) Driver power request and generator power. (c) Battery
state of charge. (d) Generator power variation.

driving conditions, where the decision on the driving style
is strongly dependent on the driver. We consider two data
sets of regular urban driving with different driving styles
obtained by recording data from GPS: the first (Trace 1)

shows smooth accelerations and the second (Trace 2) shows
steep accelerations. The acquired velocity profiles are fed into
the simulation model that generates the power request, which
is the stochastic disturbance for SMPCL, according to what
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Fig. 9. SMCL for HEV energy management: results on FTP-Highway driving cycle. (a) Vehicle velocity. (b) Driver power request and generator power.
(c) Battery state of charge. (d) Generator power variation.

Fig. 10. SMCL for HEV energy management: results on real-world Trace 1. (a) Vehicle velocity. (b) Driver power request and generator power. (c) Battery
state of charge. (d) Generator power variation.

discussed in Section V. The obtained results are reported in
Table II, and shown in Figs. 10 and 11 for Trace 1 and Trace 2,
respectively. The results demonstrate the capability of SMPCL
to adapt to different driving styles, by learning the stochastic

model of the driver and exploiting it in the construction of
the scenario tree. On the considered driving routes, the fuel
economy yielded by SMPCL is notably improved with respect
to FTMPC and it is almost equivalent to the one obtained with
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Fig. 11. SMCL for HEV energy management: results on real-world Trace 2. (a) Vehicle velocity. (b) Driver power request and generator power. (c) Battery
state of charge. (d) Generator power variation.

TABLE II

SIMULATION RESULTS ON REAL-WORLD DRIVING CYCLES

TABLE III

PERCENTAGE IMPROVEMENT OF SMPCL STRATEGY DUE TO

ONLINE LEARNING OF THE MARKOV CHAIN

PMPC that exploits full knowledge of the future power request.
Also in this case, the advantages of PMPC and SMPCL are
more evident in the driving profile with steeper accelerations
(Trace 2), which is expected according to the power smoothing
objective of the control strategy.

Finally, in Table III we provide an indication of the com-
ponent of the SMPCL improvement that is exclusively due to

TABLE IV

COMPUTATION TIME OF SMPCL IN THE SHEV ENERGY

MANAGEMENT SIMULATIONS

online driver model learning. The reported percentage is the
ratio of the difference between the equivalent fuel consumption
of SMPCL and FTMPC and the difference between equivalent
fuel consumption of SMPCL with (λ̄ = 0.01) and without
(λ̄ = 0) online learning. In some cases, the benefits exclusively
due to learning are small, because the initial Markov chain is
already representative of the driving pattern, whereas in the
case of more varied driving cycles the benefits of the learning
algorithm are significant, indicating that overall learning is
useful in driving conditions with complex patterns.

C. Complexity and Computational Issues

Algorithm 2 requires the solution of (13), which is a QP
with nu(nmax − nleaf) variables and nmax(3nx + 3ny + 2nu) −
2nunleaf − 3ny − 2 constraints. Thus, the computational load
of (13) depends also on the transition matrix T (k), which
determines the structure of the scenario tree at each time
step k. In a case where there are few transitions with high
probability, the tree will include few scenarios with long
prediction horizons, and a small number of leaf nodes, which
results in more variables and constraints. On the other hand,
if the transitions are almost equiprobable, the tree has a large
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average branching factor with more leaf nodes and fewer
variables and constraints.

In Table IV, the average and maximum computational times
needed to solve an instance of problem (13) are reported, as
obtained from simulations on a MacBook Pro 2.7 GHz with
MATLAB 7.9 and BPMPD [43] as QP solver. The NEDC
cycle, having a piecewise-linear profile, results in highly
diagonally dominant transition matrix T (k), thus yielding a
smaller set of leaf nodes in the related scenario tree and
requiring more computational effort than other cycles, as
expected. The requested CPU time observed in simulation
(always sufficiently smaller than the sampling period Ts =
1 s) indicates that with relatively simple code optimizations,
SMPCL execution in ECU is not impossible, especially when
considering recent developments on low complexity fast QP
solver MPC [44]–[46].

VII. CONCLUSION

We have proposed a stochastic MPC with learning approach
for automotive controls that explicitly considers the driver
behavior. In the proposed approach, the pattern of driver
behavior is learned online in the form of Markov chains,
that are subsequently used in scenario-based stochastic model
predictive control. Thus, the closed-loop system adjusts to
changes in driving style and different traffic conditions.

We have applied the SMPCL approach to energy manage-
ment of a SHEV, where the driver model predicts the future
power request that relates to the driving cycle and to the
driving style. We have evaluated the SMPCL controller in
simulations on standard and real-world driving profiles, and
we have shown that SMPCL improves the performance of
classical MPC (FTMPC), and is often close to MPC with
full anticipative action (PMPC). Future research will focus on
improving the flexibility of the stochastic models of the driver,
and on devising quadratic programming algorithms optimized
for the structure of SMPCL problems.
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