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Abstract—Idle speed control is a landmark application of
feedback control in automotive vehicles that continues to be of
significant interest to automotive industry practitioners, since im-
proved idle performance and robustness translate into better fuel
economy, emissions and drivability. In this paper, we develop a
model predictive control (MPC) strategy for regulating the engine
speed to the idle speed set-point by actuating the electronic throttle
and the spark timing. The MPC controller coordinates the two
actuators according to a specified cost function, while explicitly
taking into account constraints on the control and requirements
on the acceptable engine speed range, e.g., to avoid engine stalls.
Following a process proposed here for the implementation of MPC
in automotive applications, an MPC controller is obtained with
excellent performance and robustness as demonstrated in actual
vehicle tests. In particular, the MPC controller performs better
than an existing baseline controller in the vehicle, is robust to
changes in operating conditions, and to different types of distur-
bances. It is also shown that the MPC computational complexity is
well within the capability of production electronic control unit and
that the improved performance achieved by the MPC controller
can translate into fuel economy improvements.

Index Terms—Automotive control, engine control, model predic-
tive control (MPC), real-time control.

I. INTRODUCTION

I N recent years, the fuel economy and emissions standards
for automotive vehicles grew stricter, while the competi-

tive pressures to deliver improved fuel economy and driveability
have been also increasing. With every aspect of the automotive
systems being scrupulously optimized to satisfy these demands,
the interest in control solutions which can improve performance
and robustness with zero variable-cost has been rising. In this
regard, model predictive control (MPC) [3], [4], that has been
successfully applied in chemical process industry for years, is
increasingly seen as an attractive technology due to its capa-
bility to directly handle various specification requirements, in-
cluding the coordination of multiple actuators through the op-
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timization of an appropriately defined cost function while en-
forcing pointwise-in-time constraints on state and control vari-
ables. Recent applications of MPC for powertrain control in-
clude control of diesel engines [5], [6], catalyst control [7], [8],
transmission control [9], powertrain actuator control [10], [11],
and hybrid electric powertrain energy management [12], [13].
Explicit MPC techniques [14] can be used to synthesize the con-
troller as a piecewise affine function. With this approach appro-
priately applied, the MPC can be implemented in the micro-con-
troller without the need for an optimization solver and satisfying
limitations on memory and computational power characteristic
of automotive electronic control units (ECUs).

In this paper, we demonstrate the design, synthesis, and
in-vehicle validation of a model predictive controller for idle
speed control (ISC) [15], [16]. While ISC is related to one of
the oldest regulation mechanisms in history (Watt’s governor,
1787), it still represents a challenging problem for industry
practitioners, where improvements in performance and ro-
bustness can directly translate into better fuel economy and
emissions. For instance, it is desirable to set the idle speed
set-point as low as possible, since with lower idling speed, fuel
consumption is reduced [15]. However, lowering idle speed
increases the possibility of engine stalls, and requires the con-
trol strategy to be fast enough to counteract disturbances. An
excessive reduction of idle speed may also increase noise, vi-
bration, and harshness (NVH). While simple regulators can be
implemented by PID loops or pole-placement linear controllers
(see, e.g., [15]) actuating an electronic throttle (or an air bypass
valve in older engines), advanced designs, based on more
sophisticated control algorithms and capable of coordinating
several actuators, can provide better performance.

The spark ignition timing can be used as a second actuator
[17] to complement the electronic throttle. At nominal, close to
steady-state conditions, the ignition timing is retarded relative to
the optimal timing for minimum fuel consumption. Even though
this somewhat degrades fuel economy, it also creates a torque
reserve that can be quickly utilized for disturbance rejection, by
changing the spark timing up to the optimal value when needed.
As a consequence, the idle speed controller relies on two actu-
ators, the throttle, with large steady-state authority and slow re-
sponse (because of throttle time constant, intake-to-torque delay
and manifold filling dynamics), and the spark timing, with small
steady-state authority and fast response [16]. Both actuators are
constrained, and obviously, if a given controller can operate with
smaller spark reserve, the efficiency of the engine operation can
be improved.

In this paper, we discuss the development and experimental
vehicle implementation of two model predictive controllers for
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Fig. 1. Structure of the idle speed controller architectures discussed in this paper. (a) Multi-input ISC structure. The throttle and spark are controlled in a single
loop, and are coordinated. (b) Single-input ISC structure. Two separated loops control the throttle and spark without coordination.

engine speed regulation. The first controller uses MPC to ac-
tuate both throttle and spark timing in a single control function,
as shown in Fig. 1(a). The second controller uses MPC to ac-
tuate only the throttle, with the spark timing being convention-
ally controlled, hence using two separated channels as shown
in Fig. 1(b). The second controller is of interest in the view of
idle speed control implementation within the existing modular
partitioning of the ECU software and for evaluating the perfor-
mance/robustness advantages and computational disadvantages
of the controller which uses two actuators over the one that uses
a single actuator.

The idea of applying MPC to idle speed control was first pro-
posed in [18], but most of the modern MPC tools which facili-
tate implementation and closed-loop analysis were not available
at the time, hence the controller could not be implemented in
real-time and tested in the vehicle. Here, explicit implementa-
tion of our MPC controllers will be demonstrated to enable their
closed-loop analysis and implementation in the vehicle. Several
advanced techniques have been considered in the literature for
idle speed control: [19], synthesis [20], neural networks
[21], optimal control [22], estimator-based control [23], output
feedback stabilization [24], variable structure control [17], [25],
and adaptive control [26]. See also the references therein. The
attractiveness of MPC over these and other approaches to idle
speed control includes the capability to handle systematically a
significant variety of closed-loop requirements, and to respond
optimally in presence of limits on actuator ranges and engine
speed range, while predictively accounting for the effects of en-
gine dynamics and time-delay. This ensures fast recovery of
engine speed in response to disturbances that cannot be easily
achieved with conventional linear or robust controllers. These
observations are confirmed with our vehicle tests, in which the
MPC controllers exhibited excellent performance and robust-
ness. While the computational complexity of the MPC con-
trollers may be higher than of other control techniques, as we
will demonstrate, it is well within the capability of the produc-
tion ECU.

A. Design Flow

Besides treating a specific application, in this paper we pro-
pose and validate a process flow for design of MPC controllers
that can be used more broadly in automotive applications. The
trend in the automotive industry has been towards increasing
deployment of model-based control system design paradigms,
wherein plant models based on first principles and system

identification are used to facilitate the design, tuning, analysis
and validation of the control system. Model-based develop-
ment framework facilitates controller implementation through
auto-coding. With model-based design, the time, effort, and
cost for control design, calibration, and testing can be reduced,
eventually allowing simultaneous releases of control algorithms
software and calibrations along with hardware.

The design flow of MPC controllers, which we have used for
the idle speed control problem and believe has broader applica-
bility, is synergistic with the model-based development frame-
work. It is composed of the following steps.

1) Based on first principle modeling and already available ex-
perimental data (if any), a full simulation model of the
system is developed, along with a simpler control-oriented
model, which is sufficiently representative to be used as
the MPC prediction model. The model type and order of
the control-oriented model are design parameters selected
at this stage. This step is discussed in Section II.

2) The MPC controller is designed by augmenting the con-
trol-oriented model with additional states to enforce spec-
ifications, and by defining the appropriate cost function
and constraints. The cost function weights and the predic-
tion horizon (the number of integration steps) are the de-
sign parameters selected at this stage. The obtained con-
troller is simulated in closed-loop with the full simula-
tion model to evaluate the performance and the relation
between closed-loop performance and tuning parameters.
This step is discussed in Section III.

3) The MPC controller is synthesized in a suitable way for
implementation in automotive ECUs. We use the explicit
form of the MPC that allows also to assess closed-loop
asymptotic stability and CPU and memory load. The
complexity of the explicit MPC controller depends on the
number of constraints and on the number of the degrees of
freedom that can be tuned by selecting the constraint and
control horizons. Once the computational feasibility of
the controller is verified along with its simulated perfor-
mance, experimental data from the target vehicle can be
obtained, to update the model parameters for the specific
application. This step is discussed in Section IV.

4) Experimental tests are performed to validate the nominal
and non-nominal performance of the closed-loop system,
as illustrated in Section V.

These steps are now discussed in detail, while concluding re-
marks are reported in Section VI.
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II. ENGINE MODEL FOR IDLE SPEED CONTROL

The relevant engine dynamics for the idle speed control
problem are the torque production and the crankshaft rotational
dynamics. The engine crankshaft rotational dynamics are
described by Newton’s second law

(1)

where is the engine speed, is the net engine
torque (engine brake torque), and is the load torque
on the crankshaft.

In port-fuel injection engines, the torque cannot be changed
instantaneously [15], and engine torque production dynamics
have to be considered

(2)

where is the indicated torque delayed by the
intake-to-torque production time delay, , is the
engine friction torque loss, and is the pumping
torque loss. The torque ratio , subject to the (constant) ac-
tuation delay , is function of the spark ignition angle
and of the maximum brake torque ignition angle , in
radians before top dead center (TDC)

(3)

For instance, in [17] the following form for is suggested:

(4)

where is an engine dependent constant parameter,
and is bounded, . The MBT angle is function
of engine speed and of the (mean) mass flow rate into the engine
cylinders

(5)

Function is obtained from engine mapping. In general,
decreases with and increases with . We do not

consider the dependence of on other variables, such as
cam timing, given our interest in the model for near idle oper-
ating conditions.

In (2), is about 360 degrees of the crankshaft revolution

(6)

Additional dynamics are associated with manifold filling.
Under constant manifold gas temperature, the intake manifold
pressure dynamics are

(7)

where is the mass flow rate through the electronic
throttle. In (7), is the intake manifold temperature,

is the intake manifold volume and is the ideal
gas constant in kJ/kg/K. Although constant manifold gas
temperature is a reasonable approximation at this stage, fur-
ther refinements are possible by relaxing this assumption
[27], which can be considered for future work. Assuming

stoichiometric air-to-fuel ratio, the indicated engine torque is
approximately proportional to the cylinder air charge

(8)

where is an engine-speed dependent parameter. The cylinder
flow is a function of the intake manifold pressure and
engine speed

(9)

and , are constant parameters. Near idle, the flow through
the throttle is choked and one can approximate

(10)

where is the throttle position and is an engine de-
pendent constant. From (8) and (9) it follows that

. Differentiating this and using (7), (9),
and (10)

(11)

Thus, the complete engine model near idle is

(12a)

(12b)

(12c)

(12d)

(12e)

where , , , , , and are independent vari-
ables.

A. Control Oriented Models

Starting from the complete model (12) we obtain a simplified
control-oriented model for MPC predictions. The model order
affects the complexity of the MPC controller, hence we look
for the smallest order which represents the relevant dynamics.
To simplify the model and remove the nonlinearity in (12c), we
use the torque ratio as a control variable. The spark ignition
angle is generated by inverting (4) for the current value ,
obtained evaluating (5) at the current operating conditions and
subject to the condition . As a result, the control in-
puts are the throttle position and the torque ratio achieved via
spark retard . The torque pumping losses, friction, and loads
are seen as disturbances, and their nominal values are compen-
sated by feedforward.

Since the idle speed controller will operate for most of the
time in a limited speed and torque range, (12) can be linearized
without introducing excessive modeling errors. Let , be the
nominal idle speed, be the desired nominal torque ratio at
idle, the nominal engine torque at idle, obtained by applying
the nominal idle throttle position . , , and are such
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that the system is at the equilibrium on for nominal
values , , .

The linearized model of (12) can be approximated as in [16]
for the air-bypass valve case, instead of electronic throttle

(13)

where is approximated as constant by computing (6)
for , and the output is the deviation of engine
speed from idle speed setpoint, , in re-
sponse to variations in the throttle position from nominal,

, and to variations in the torque ratio from
nominal, . In what follows, , are
also referred to as throttle (or airflow) input and spark input,
respectively.

By (12) and the results in [16], the transfer functions in (13)
are shown to be of the form

(14a)

(14b)

Model (14) is easily identifiable from both simulation and/or
experimental data, for instance from step-response data. In par-
ticular, we can identify the linearized model from an available
high-fidelity nonlinear simulation model based on (12). Even
if direct identification from data is possible, we prefer to use a
nonlinear simulation model first, because it allows us to evaluate
the closed-loop behavior in simulation without the need of (cost
and time) expensive data collection processes. Through simula-
tions we obtain a feasibility assessment and a qualitative under-
standing of the effects of the tuning knobs on the closed-loop
behavior more rapidly and systematically than possible by ex-
periments. Through simulations we can verify the controller be-
havior even before the hardware is available and even against
disturbances and uncertainties that are difficult to reproduce in
vehicle tests.

The two transfer functions in (14) are converted to state space
form and sampled with period 30 ms (roughly 10 times
less than the plant time constant)

(15a)

(15b)

(16a)

(16b)

where is the sampling step , and ,
are the delay-free torque ratio and throttle command. For

idle speed 600 RPM, 100 ms . The discrete-
time model of signal delayed by steps is

...

(17)

By cascading1 a fourth-order airflow delay model (17) with (15),
and a first-order spark delay model (17) with (16), we obtain the
delayed dynamics

(18a)

(18b)

(19a)

(19b)

where , . Thus, the complete linear model
of the engine is

(20a)

(20b)

(20c)

(20d)

where , and .
Even though the main objective is the development of an

MPC controller to coordinate the throttle and spark actuators,
for comparison we have also designed another MPC controller
that actuates only the throttle, while the conventional controller
is retained to adjust the spark timing. For this single-input con-
troller the plant model is obtained by removing from (13)
and by repeating steps (15)–(20) to obtain the model

(21a)

(21b)

(21c)

(21d)

where now , and .
Remark 1: The physically actuated variable in (14b) is the

spark ignition angle , hence the nominal value of is set
by fixing a nominal value , which is computed based on the
nominal conditions at idle. Since changes as operating
conditions change [see (5)] while is basically kept constant,
the range of (in particular the upper limit) will change. The
limits on the torque ratio range will be introduced next, when
discussing the constraints handled by the controller.

III. MPC DESIGN

MPC is a control strategy based on the receding horizon so-
lution of a constrained finite horizon optimal control problem,
formulated basing on a system prediction model, cost function
and states, inputs, and outputs constraints. At every control cycle
from the current state estimate, the finite horizon problem is

1Although the delay occurs in the airflow dynamics, by model linearity it can
be represented by an equivalent input delay.
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solved, and the first element of the resulting optimal input se-
quence is applied to the system. At the following control cycle,
the optimization is repeated starting from the newly estimated
state and over a shifted horizon. We choose the controller sam-
pling period 30 ms, consistently with the sampling period
of the discrete-time models in Section II-A. This choice is also
based on retaining the real-time task rate of the experimental
platform, which is selected basing on a delicate tradeoff between
performance and computational load.

The single-input and multi-input MPCs are designed from the
prediction models derived in Section II-A. This process involves
the augmentation of the model to enforce the specifications, the
definition of the constraints and of the cost function, and the
selection of the prediction, control and constraint horizons.

We begin with the throttle-only controller based on plant
(21). In idle speed control, steady-state errors due to changes in
load torque caused, for instance, by power steering or air-con-
ditioning compressor, or due to errors in the scheduled airflow
feedforward have to be removed. In order to achieve offset-free
rejection of constant disturbances one can introduce integral
action [28] by adding the dynamics

(22)

where is the discrete-time integral of the output and
is the desired idle speed set-point offset, where 0 offset

corresponds to the nominal idle speed .
When (22) is added to (21), we obtain

(23a)

(23b)

(23c)

which is the prediction model for the single-input controller.
Next, we define the constraints on system inputs and outputs.

Limits on the engine speed, in r/min, are (conservatively) de-
fined to avoid excessive engine flares and dips

(24)

In particular, avoiding large dips, especially below the so called
fishhook point where engine friction increases dramatically,
is critical for avoiding engine stalls. Additional limits on the
throttle angle are imposed as

(25)

where is the scheduled feedforward term in nominal
conditions at idle, and ideally , so that the feedfor-
ward term compensates for the nominal pumping and friction
losses in (12b). The full (feedforward+feedback) throttle input
is .

Finally, the cost function for the finite horizon optimal control
problem in the MPC strategy is specified. Since a non-zero input

can be required at steady state to reject disturbances, we weigh
the input increments in the cost function

(26)

where the notation indicates the value of predicted
steps ahead, from data at sampling instant , is

the prediction horizon, and
are the output and input se-

quences predicted at step , respectively, is
the output setpoint for the single-input controller,

, and . Here, the weight
matrices and are assumed positive definite.

For the multi-input controller that actuates also the spark, ad-
ditional requirements are imposed. The spark retard must return
to its setpoint after disturbance rejection, for the controller to be
able to counteract future disturbances. Hence, at steady state,
the spark torque ratio must be at its nominal value ,
which requires an integrator on the torque ratio command to be
weighed in the cost function

As a consequence, with , , , from (20), the prediction
model used for controlling throttle and spark is

(27a)

(27b)

(27c)

The spark ignition angle range is limited, and as a conse-
quence the torque ratio is constrained. The lower bound of
depends on the engine and aftertreatment operating conditions,
but it is kept constant for simplicity since it is in generally not
reached unless during very short transients. The upper bound
varies since changes while is kept constant, for ECU
functional reasons. Hence, the constraint

(28)

needs to be enforced, the upper bound, , being a non-
linear function of engine speed, load, and temperature. We rep-
resent as a parameter whose current value is known,
and which is assumed constant over the controller prediction
horizon. For the multi-input controller, cost function (26) is
still used, with different sizes for the weighting matrices and
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. Combining (23)–(26) for the throttle con-
troller, or (24)–(28) for the throttle and spark controller, we for-
mulate the MPC finite horizon optimal control problem

(29a)

s.t. (29b)

(29c)

(29d)

(29e)

(29f)

(29g)

(29h)

where is a vector of 1 of appropriate dimensions, is the
state (estimate) at time , is the prediction horizon,
is the constraint horizon, and is the control horizon.
The output constraints (29e) are “softened” by the additional
optimization variable to avoid a situation where (29) be-
comes unfeasible (e.g., due to large unmeasured disturbances)
and no control action is computed since no solution to the finite
horizon optimal control problem exists. Soft constraints viola-
tion results in a large penalty, modelled by weighting in the
cost function by , with at least two orders of magnitude
larger than the other weights.

For the single-input idle speed MPC controller, in (29)

while for the multiple input idle MPC controller

The current values of and are computed by
the software running in the vehicle ECU.

Remark 2: has effect on the input constraints,
while has effect on the output constraints and on the cost
function. Both and are parameters of the opti-
mization problem. Their current values are known and they are
assumed constant over the prediction horizon.

Recall that the basic model predictive control algorithm ex-
ecutes the following steps, at each control cycle : (i)
from available measurements, the state estimate is com-
puted; (ii) the quadratic programming problem (29) is solved,

obtaining the optimal input sequence ; (iii) the first ele-
ment of the optimal input sequence is applied to the plant as
current input .

Since only the engine speed is measured, a state estimator is
required for step (i). For the idle speed controllers, a stationary
Kalman filter has been used for estimating

(30a)

(30b)

where is the stationary Kalman filter gain
and is the solution of

the algebraic Riccati equation
. Kalman filter (30)

is tuned by and , that represent process and mea-
surement noise covariances, respectively, and set the tradeoff
between convergence speed and noise rejection.

Remark 3: We have used integral action to achieve offset-free
constant disturbance rejection. An alternative approach is to use
a disturbance model [29], where the prediction model is aug-
mented by an output additive disturbance state, modelled by in-
tegrated white noise and estimated via the Kalman filter. How-
ever, in early development phases we have found that in ISC
the resulting system is poorly observable and the Kalman filter
is extremely sensitive to the tuning parameters. Hence, for ISC
application we have found integral action simpler to calibrate.

The controller is tuned by selecting the cost function weights
in (26), and possibly the Kalman filter covariances in (30). When
control horizon and constraint horizon are considered, the pre-
diction horizon is a tuning parameter that does not affect the
number of constraints, and hence the complexity of the con-
trol-law, but cost function (26), and hence the closed-loop per-
formance and stability, only. In general, shall be chosen to
cover the significant components of the transients, hence of the
same order of magnitude than the plant time constant.

A. Closed-Loop Simulations

The two MPC controllers are tested in closed loop with a non-
linear simulation model based on (12), and where the parameters
are identified from experimental data as polynomials of the en-
gine operating conditions, namely engine load and speed. The
parameters in(14) are obtained by step response on each channel
(throttle angle and torque ratio). The evolution of the engine
speed as predicted by the linearized model ,

600 r/min is compared to the engine speed evolution for the
nonlinear model, , in Fig. 2. The plot of the error

indicates a satisfactory fit. The controllers are im-
plemented with , , in (29).

We have considered a simulated test in which the controller
has to reject a torque disturbance representing a load change,
caused for instance by power steering, transmission engage-
ment, or air-conditioning compressor activation. The additional
load is engaged and maintained for several seconds, then re-
leased. In these simulations, a load of 20 Nm is used. The main
performance measure of this test is the maximum deviation of
the engine speed from idle. In particular, a large dip following
an increased load may cause the engine to stall, and hence it
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Fig. 2. Validation of the ISC plant model identified from simulation data. Upper
plot: nonlinear model (dashed line), continuous-time linearized model (solid
line), discrete-time linearized model (dashed-dotted line). Lower plot: differ-
ence between continuous-time linearized model and nonlinear model (solid line)
and between discrete-time linearized model and nonlinear model (dashed-dotted
line).

Fig. 3. Simulation of the single-input MPC idle speed controller in closed-loop
with the nonlinear engine model. (a) Underdamped closed-loop dynamics. (b)
Overdamped closed-loop dynamics.

is considered the most critical performance parameter. A large
flare, in the case of a reduction in the load, is also undesirable
for both fuel economy and noise, even though not as critical.
An additional performance parameter is the settling time to the
set-point.

The single-input MPC controller problem (29) is defined
using the identified parameters within (23). Simulation results
for the single-input controller in a disturbance rejection test are
shown in Fig. 3. In this test the spark retard was kept constant at

Fig. 4. Simulation of the multiple-input MPC idle speed controller in closed-
loop with the nonlinear engine model. (a) Underdamped closed-loop dynamics.
(b) Overdamped closed-loop dynamics.

its nominal value and the throttle was the only available degree
of freedom for the controller.

Fig. 3 shows the results obtained for different tunings of the
engine speed tracking error weight. In Fig. 3(a) a more aggres-
sive tuning [achieved by reducing in (29)] is used, so that the
controller is faster in rejecting the disturbances, but exhibits an
underdamped behavior, while in Fig. 3(b) a slower overdamped
behavior is achieved. The knowledge acquired in the simula-
tion phase on how the parameters of the cost function affect the
closed-loop behavior (which is nonlinear and difficult to pre-
dict) is valuable in speeding up the controller calibration during
real experiments.

The simulation results for the multi-input MPC controller
based on prediction model (27) with the identified parameters
for the same disturbances amplitude are shown in Fig. 4, where
once again two closed-loop behaviors are reported. Only a part
of the simulation is shown to improve readability of the re-
sults. Since the nonlinear simulation model does not represent
the variation of the available torque ratio due to varia-
tions, is assumed constant. Note that, in both cases
the controllers achieve better disturbance rejection compared to
the corresponding single-input MPC in terms of maximum de-
viation from the setpoint and settling time.

IV. CONTROLLER SYNTHESIS AND ANALYSIS

The simulation results of Section III-A indicate that satisfac-
tory performance can be achieved. However, before proceeding
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to experiments, three more steps are required. First, the con-
troller complexity must be evaluated and proved computation-
ally feasible in the automotive ECU. Second, the asymptotic sta-
bility of the closed-loop should be assessed. Finally, the predic-
tion model should be refined using experimental data from the
test vehicle. For instance, in our case the simulation model in-
troduced in Section III-A was made available to us prior to the
availability of the experimental vehicle, and that model was pa-
rameterized for a different vehicle.

A. Feedback Law Synthesis and Functional Assessment

Solving the optimal control problem (29) in conventional au-
tomotive microcontrollers may be too demanding from a com-
putational viewpoint. Also, the CPU operations and the memory
requirements of the optimization algorithms are difficult to pre-
dict. To overcome these difficulties, the MPC controller is ex-
plicitly synthesized [14]. Due to the input rate cost term, the ex-
plicit MPC control law (the first element of the solution of (29))
is a piecewise affine function of the current state , ref-

erence2 , and of the past input

(31a)

(31b)

(31c)

where (31c) defines a polyhedral partition of the state-refer-
ence-past input space and is the number of regions. Hence,
for any , (31b) defines the polyhedron

and
for any , , , , where

indicates the interior of a set. Once the explicit MPC law
(31) is synthesized, the control algorithm is as follows. At time

:
(i) from the measurement and previous state estimate

, compute the state estimate by the Kalman
filter (30);

(ii) search for such that (31c) is satisfied for
, , ;

(iii) evaluate (31b) for to compute ;
(iv) apply .

In order to compute the explicit MPC law, the evaluation of
scalar sums, products, and comparisons is required, only. The
most computationally demanding step is to search for the cur-
rently active region [step (ii)] that requires the evaluation of sev-
eral linear inequalities. After the region is found, only one in-
stance of (31b) is evaluated to compute the control input.

Even though a precise and tight bound on the number of re-
gions is difficult to provide a priori [14], since a region rep-
resents an active set of constraints, the number of regions is
bounded by the number of combinations of constraints in the
optimization problem [14], and their dimension is the sum of
the state, input, and reference vector dimensions. Thus, the con-
straint and control horizons may need to be changed to reduce

2The measured limit �� is added to the reference vector, since it does
not change over the prediction horizon.

the complexity of the explicit control law, if this is dictated by
the available computational power. For the idle speed control
optimization problem (29), , , . Thus,
for the single-input controller there are six input constraints and
six output constraints enforced along the horizon. The obtained
explicit controller is composed of 35 regions, and the parame-
ters in function are seven states, two references, one
previous input. The worst case number of operations for both
region search and command computation that have to be exe-
cuted at each control cycle is less than 5000, which amounts to
less than operations per second. The data memory usage
is less than 3 kB. For the multi-input controller with the same
values of , , , the complexity is higher because of the addi-
tional constraints on the torque ratio and the higher dimension of
the prediction model. As a result, the explicit controller is com-
posed of 131 regions, and, since there are now 11 components
in the state vector, 2 in the previous input vector, and 4 refer-
ences3, the maximum number of operations per control cycle is
always less than , implying a maximum of op-
erations per second. The data memory usage for the controller
is less than 50 kB. Note that the computed CPU load represents
a conservative upper bound, while the average CPU load is sig-
nificantly less.

According to the projections in [30], the explicit controller
uses less than 0.05% of the CPU in the worst case for the single-
input controller, and less than 1.5% for the multi-input con-
troller. It shall be noted that at idle the microcontroller is, in
general, underloaded, due to the low rate of engine event trig-
gered tasks, which is a reflection of the low engine speed. Fur-
thermore, the memory occupancy for the single-input and multi-
input controller are in the order of 0.15% and 2.5% of the avail-
able memory, respectively. Further complexity reduction can be
obtained by the techniques surveyed in [31], which however are
not needed here.

B. Closed-Loop Analysis

Contrary to infinite horizon linear quadratic regulators
(LQR), asymptotic stability is not guaranteed for model predic-
tive controllers. Stability can be guaranteed a priori by adding
terminal state or terminal set constraints, and by possibly mod-
ifying the cost function [32]. However, the terminal constraint
requires in general long horizons to be satisfied, and as a
consequence the complexity of the explicit MPC law may grow
too large for automotive applications. A different approach is to
enforce a control Lyapunov function [32] by an additional set of
constraints, but also in this case the complexity of the explicit
MPC law is increased and the recursive feasibility [i.e., the
continued existence of solution of (29)] may not be guaranteed.

Thus, MPC designs with a priori stability guarantee may be
either conservative or impractical for fast automotive applica-
tions. At the same time, once the explicit MPC law is computed,
stability can still be checked a posteriori. The closed-loop dy-
namics where the plant is controlled by (31) are described by

3For simplicity all the references are considered as variable parameters. The
references on the integral actions can be fixed to 0 to reduce the number of pa-
rameters. The bound on the torque ratio has been accounted for in the reference
vector.
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TABLE I
NUMERICAL RESULTS OF MINIMUM, MAXIMUM, AND RMS OF THE ERROR SIGNAL ��� ON THE POWERSTEERING DISTURBANCE REJECTION TEST (PS), AND

IN THE DOUBLE DISTURBANCE REJECTION (DD) TEST. BASELINE CONTROLLER (BASE), SINGLE-INPUT MPC (SI-MPC), MULTI-INPUT MPC (MI-MPC),
MULTI-INPUT MPC WITH REDUCED RESERVE (MRD-MPC)

a piecewise affine (PWA) dynamical system [33]. Let us define
the closed-loop system state

then the closed-loop dynamics are

(32a)

(32b)

If there exists a quadratic or a piecewise quadratic Lyapunov
function for (32), (semi)global asymptotic stability is verified
[34]. The existence of such functions can be proven by solving
linear matrix inequalities (LMIs). While quadratic Lyapunov
functions may be conservative, resulting in overconstrained
LMIs often infeasible, piecewise quadratic Lyapunov functions
require the solution of LMIs whose complexity grows with
the number of regions, and hence may become hard to solve
for PWA systems with many regions. Besides global analysis,
a local stability analysis of (32) can be easily performed. Let

be the equilibrium corresponding to nominal idle speed
and the nominal reference , i.e., engine speed and setpoint
at nominal idle, nominal idle load, and spark and throttle at
nominal values, and let be the index of region such that

. For correctly chosen nominal idle conditions,
, and . Thus, in a region around

the dynamics are defined by (32), where , and the local
stability analysis reduces to the one of a linear system. It is
also important to note that the region of attraction of the stable
equilibrium contains at least [35] the set ,
where is the largest positive invariant set [36] contained
in when for the closed-loop dynamics (32), where

. By the technique described above, for the single-input
controller providing underdamped closed-loop response in the
simulations of Section III-A, we obtain the spectral radius4 of
the closed-loop state transfer matrix while for the
corresponding multi-input controller is . Such an
approach can be used also to analyze the stability margins, and
as a consequence the parametric robustness of the closed-loop
system.

4The spectral radius is defined as the maximum of the magnitude of the eigen-
values � of the state transfer matrix, i.e., � � ��� �� �, For linear dis-
crete-time systems, � � � implies asymptotic stability.

Fig. 5. Validation of the ISC plant model identified from experimental data.
Upper plot: experimental data (solid line), continuous-time linearized model
(dashed line), discrete-time linearized model (dashed-dotted line). Lower plot:
difference between continuous-time linearized model and experimental data
(solid line) and between discrete-time linearized model and experimental data
(dashed-dotted line).

Remark 4: The assumption is justified by
the fact that the PWA regions are defined by the active con-
straints sets. As a consequence, the borders of the regions are
the boundaries where the active set changes. It is a reasonable
assumption that, in a set of conditions around nominal idle,
neither the output, nor the input constraints are active. Hence

. Similar reasons justify the assumption ,
in nominal conditions.

C. Prediction Model Refinement

With controller design, synthesis, analysis, and computa-
tional feasibility assessment now complete, we proceed with
the controller development based on the experimental data and
in the experimental vehicle. The results of the identification
based on the experimental data from a 4.6 L, V8 engine are
shown in Fig. 5, where the identified engine model is validated
with respect to the experimental data in throttle step response
tests. The model error is larger than the one in Fig. 2. However,
since MPC is a feedback strategy, it can handle well this model
uncertainty. The experimental data can be used to evaluate the
measurements and process noise, and the modeling errors. This
allows improved tuning of the Kalman filter (30). Once the
physical model is updated, the explicit MPC controllers can
be synthesized again and the stability analysis of Section IV-B
can be repeated. By changing the prediction model, the cost
function weights may need to be updated as well. The knowl-
edge achieved by the closed-loop simulations of Section IV-A
and automated procedures (e.g., [35]) indicate how to update
the cost function weights to achieve the desired closed-loop
behavior.
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Fig. 6. Power steering disturbance rejection test. Closed-loop response of the
different controllers. (a) Base controller. (b) Single-input MPC controller. (c)
Multi-input MPC controller.

V. EXPERIMENTAL RESULTS

The controllers designed in Section III are tested on a fully
functional production vehicle equipped with the 4.6L V8 en-
gine, whose dynamics have been identified in Section IV-C,
with an electronic throttle, and a 4 gear automatic transmission.
For speeding up the calibration process, the controllers are im-
plemented in a dSPACE MicroAutoBox rapid prototyping unit,
which communicates with the powertrain ECU via CAN pro-
tocol. During the experiments, the MPC controller runs in par-
allel to the standard ECU software. In details, the ECU provides
the engine speed measurements used in the Kalman filter (30) to
the MPC controller and, by estimating the current MBT ignition
angle (5), the torque ratio limits (28). The ECU also converts the
torque ratio in a spark ignition angle by inverting (4), and pro-
vides the low-level interface with the actuators, by issuing the

Fig. 7. Comparison in power steering disturbance rejection test. Base controller
(dotted line), single-input MPC (dashed line), multi-input MPC (solid line).

ISC command to the actuators drivers every 30 ms. Even if it
is executed in a separated computing unit, the explicit MPC is
coded in ANSI C, and it is compatible with the code running
in the standard ECU. The communication via CAN induces a
delay in the data exchange between ECU and MPC controller.
This delay, in the order of 10 ms, is limited when compared to
the controller sampling period, however it still slightly penalizes
the prototype MPC controller versus a realization in the ECU.

The MPC controllers are compared with a baseline con-
troller, which is an error-based feedback controller actuating
throttle and spark torque ratio independently basing on engine
speed measurement, with built-in nonlinearities that counteract
particularly critical situations. The base controller structure
is depicted in Fig. 1(b). The spark controller is of propor-
tional-derivative (PD) type and the throttle controller is of
proportional-integral (PI) type. The commands are saturated a
posteriori in the admissible range, and a classical anti-windup
scheme [37] is implemented in the PI channel. The base con-
troller has been independently tuned to provide a good tradeoff
between performance and robustness throughout all the test
conditions, and the performance limitations are mainly due to
input saturations and to the plant time-delay.

The single-input MPC controller overrides the PI channel
only, while it keeps the base spark controller, including
the a-posteriori command saturation. The multi-input MPC
controller overrides both channels, hence achieving better
coordination between the two actuators.

Several experimental tests have been performed in different
conditions, see Table I for a summary of the results. As men-
tioned before, the most critical performance parameter is the
size of the “dip” in the engine speed following a disturbance.

In Fig. 6 we present a disturbance rejection test where the
power steering is engaged at maximum power (by pushing the
steering wheel at the end of its travel with the cutoff switch dis-
abled) and then disengaged, twice. This causes step changes of
about 22 Nm in the load on the crankshaft, which are larger than
the disturbances encountered in normal conditions. No informa-
tion about the load changes is available to the controller, hence
the load is entirely rejected by feedback control. The power
steering is first engaged at 10 s, released at 30 s, then
engaged again at 50 s and released at 70 s. The perfor-
mance of the base controller is shown in Fig. 6(a). In Fig. 6(b),
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Fig. 8. Double disturbance rejection test. Closed-loop response of the different
controllers. (a) Base controller. (b) Single-input MPC. c) Multi-input MPC.

the response of the single-input MPC is shown, where a notice-
able improvement in disturbance rejection and tracking perfor-
mance can be seen. This is to a significant extent due to the
use of the prediction model to account for the time lag in the
manifold dynamics and for the torque production delay, which
allows one to increase the feedback action without losing sta-
bility. Furthermore, the MPC controller is a (nonlinear) state
feedback that selects a control strategy, rather than a single con-
trol input, based on its prediction model and accounting for the
system constraints. Thus, additional degrees of freedoms can be
exploited to achieve higher performance. However, one can see
that the torque ratio command still does not comply with the
available torque ratio reserve (dashed line in the lowest plot),
which means that it is saturated a posteriori, and not deliv-
ered. As a consequence, we expect that the performance can
be further improved by the multi-input MPC controller which
accounts for the available torque reserve. The performance of

Fig. 9. Comparison in double disturbance rejection tests. Base controller
(dotted line), single-input MPC (dashed line), multi-input MPC (solid line).

that is shown in Fig. 6(c). Note that the requested torque ratio
constraint is now enforced5 (the maximum available is
shown by the dash line) and, as a result, the disturbance rejection
and tracking performance are further improved. A comparison
of the performance of the three controllers in rejecting the first
power steering disturbance is shown in Fig. 7.

A more challenging test is shown in Fig. 8, where, with the
gear in drive, the power steering is engaged at full power at

10 s, and the air conditioning compressor is engaged at full
power at 15 s, then both of them are disengaged at
30 s. The air conditioning compressor causes an additional 16
Nm load on the crankshaft. Indeed, the total disturbance is much
larger than the disturbances that occur in normal conditions [25].
When in drive, the nominal idle speed is 525 RPM, slightly
lower than when in neutral, causing a longer delay (6).

The test shows that the advantage of the MPC controllers is
not only the reduction of the engine speed error after a distur-
bance, but also faster setpoint tracking. When multiple distur-
bances hit in sequence, fast convergence to the setpoint after
each disturbance is important for maintaining disturbance re-
jection capabilities with respect to subsequent disturbances.

The performance of the base controller is shown in Fig. 8(a).
When the second disturbance hits, at around 15 s, the engine
speed is still far from the setpoint. Also, due to the increased
load, a reduced torque ratio from the spark is available, which
causes larger effects from the a posteriori saturation. The result
is a significantly reduced performance. The single-input MPC,
see Fig. 8(b), still presents the problem of neglecting torque
ratio saturation, but thanks to the improved performance of the
throttle control, the closed-loop behavior is certainly improved.
In this test a major advantage is obtained by the multi-input
MPC controller [see Fig. 8(c)], which is aware of the reduced
spark authority, and can coordinate the two actuators. The con-
troller acts more aggressively on the throttle, to compensate for
the reduced spark authority.

A closer, comparative view of the rejection of the second dis-
turbance, the engagement of the AC compressor, is shown in
Fig. 9, where the time axis of the different experiments have
been slightly realigned for better comparison.

5The torque ratio upper bound signal is recorded at a slightly lower rate.
Hence, the small violations in Fig. 7 are only apparent, due to the logging
process.
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Fig. 10. MPC controllers behavior during cold start subject to several different
disturbances. (a) Single-input MPC. (b) Multi-input MPC.

In Fig. 10 we show the behavior of the single-input and multi-
input MPC controllers when operating in non-nominal condi-
tions, namely in cold start conditions. See Fig. 10(a) and (b), re-
spectively. In this case the idle setpoint starts from about 1000
RPM and decreases, while the engine is warming up from ap-
proximately 60 F to the nominal operating engine coolant tem-
perature of 192 F. Several disturbances are introduced during
the tests, including power steering engagement/disengagement,
shifts between neutral and drive (indicated by sharp drops/in-
creases in the setpoint, see Fig. 10(a) at around 200 and 250
s, and Fig. 10(b) at around 280 and 330 s), tip-in/tip-out (indi-
cated by the engine speed that suddenly ramps to large values,
then quickly decreases to idle again). The response to a tip-out
is particularly critical because the idle controller is disengaged
until the engine speed is around idle, and it needs to act quickly,
in order to reduce the engine speed deceleration and to avoid
the engine speed to drop too much below the setpoint, that may
stall the engine. Fig. 10 shows that both the MPC controllers can
perfectly deal with a plant in non-nominal conditions.

Finally, we show that thanks to the improved controller per-
formance, it is possible to reduce the spark reserve at idle, thus
improving fuel economy. In details, we have modified the ECU
configuration so that the spark nominal ignition angle is 5 de-
grees closer to nominal MBT, and as a consequence, the max-
imum available torque ratio is reduced. Since the spark set-
point is closer to the maximum efficiency value, this spark re-
serve reduction translates in approximately a 6.5% improved
fuel economy while idling in neutral, and approximately 4.5%
while idling in drive.

Fig. 11. Performance of the multi-input MPC controller with reduced spark
reserve. Multi-input MPC with reduced reserve (solid line), multi-input MPC
with full reserve (dashed line), base controller with full reserve (dotted line). (a)
Comparison in the power steering disturbance rejection test. (b) Comparison in
the double disturbance rejection test.

We have repeated the test scenarios of Fig. 6–10. Due to
space limitations, we do not report the complete experiments,
but only a comparison of the controllers in Fig. 11. In Fig. 11(a),
we compare the drop caused by the disturbance generated by
power steering motor engagement, similar to Fig. 7. The re-
sponse of the multi-input MPC with reduced reserve (solid line),
the multi-input MPC with full reserve (dashed line), and the base
controller with full reserve (dotted line) are shown. Although
the performance of the MPC with reduced reserve is slightly
worse than the one of the MPC with full reserve, due to reduced
spark actuation authority, the performance is still better than the
one of the base controller. For the double disturbance test, simi-
larly to what is shown in Fig. 9, the response at the engagement
of the second disturbance (A/C compressor), while the power
steering motor is at saturation of the steering wheel range, is
shown in Fig. 11(b). Once again, the MPC with reduced reserve
is slightly worse than the one with full reserve, but significantly
outperforms the base controller. Note that the controller reacts
to the reduced available spark reserve by a stronger action of the
throttle.

Table I summarizes the results of the experiments, by
presenting a set of performance criteria computed on
the error signal for the different
controllers. The performance criteria are the minimum

, the largest engine speed “dip”,

the maximum, , the largest
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engine speed “flare”, and the root mean square error,

, where is the du-
ration of the experiments in steps. For the MPC controller
with reduced reserve, the performance is still better than the
base controller, even though it is worse than the MPC with full
reserve, due to reduced authority of the fast actuator, the spark
timing.

It is worth to point out that during the executed tests, the av-
erage CPU load is less than 10% the worst case computed in
Section IV-A. The reason is that most of the active controller re-
gions are found rapidly, because of the region search order. This
can be further improved by choosing an “optimal” region or-
dering or using advanced search techniques [38]. Furthermore,
for a non-active region, as soon as one violated constraint is
found, the algorithm moves to evaluate the next region, hence
several constraints do not need to be evaluated. However, when
dimensioning a real-time controller, the worst-case CPU load is
the parameter to consider, since the algorithm must always have
the time to execute completely.

VI. CONCLUSION

We have presented the development, implementation,
analysis, and experimental evaluation of model predictive con-
trollers for idle speed control. The overall procedure has been
formalized in a design process flow that aims at minimizing the
development time and effort, by appropriately using simulation
models, controller analysis tools, and experimental data, and
by focusing at each step on the meaningful tuning parameters.

For idle speed control, we have shown improved performance
and robustness of the MPC controllers compared to existing
controllers in an experimental vehicle. We attribute these im-
provements to MPC taking into account the effects of the delay,
thanks to the prediction model, the constraints on the actuators,
and, in the multi-input controller case, the coordination between
throttle angle and spark timing. Our results have also demon-
strated that MPC implementation of the idle speed controller is
computationally feasible in production ECUs, and that because
of the improved disturbance rejection capabilities, engine cali-
brations that provide improved fuel economy may become fea-
sible.
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