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HYSDEL—A Tool for Generating Computational
Hybrid Models for Analysis and Synthesis Problems

Fabio Danilo Torrisi and Alberto Bemporad, Member, IEEE

Abstract—This paper presents a computational framework for
modeling hybrid systems in discrete-time. We introduce the class of
discrete hybrid automata (DHA) and show its relation with several
other existing model paradigms: piecewise affine systems, mixed
logical dynamical systems, (extended) linear complementarity sys-
tems, min-max-plus-scaling systems. We present HYSDEL (hybrid
systems description language), a high-level modeling language for
DHA, and a set of tools for translating DHA into any of the former
hybrid models. Such a multimodeling capability of HYSDEL is
particularly appealing for exploiting a large number of available
analysis and synthesis techniques, each one developed for a par-
ticular class of hybrid models. An automotive example shows the
modeling capabilities of HYSDEL and how the different models
allow to use several computational tools.

Index Terms—Analysis, hybrid systems, modeling, optimal con-
trol, verification.

I. INTRODUCTION

MATHEMATICAL models reproduce the behavior of
physical phenomena. By considering the process at

different levels of detail, different models of the same process
are usually available in applied sciences. Models should not be
too simple, otherwise they do not capture enough details of the
process, but also not too complicated in order to formulate and
efficiently solve interesting analysis and synthesis problems.

In the last years, several computer scientists and control
theorists have investigated models describing the interaction
between continuous dynamics described by differential or
difference equations, and logical components described by
finite state machines, IF–THEN–ELSE rules, propositional and
temporal logic [1]. Such heterogeneous models, denoted as
hybrid models, switch among many operating modes, where
each mode is associated with a different dynamic law, and
mode transitions are triggered by events, like states crossing
prespecified thresholds.

The practical relevance of hybrid models is twofold. The prof-
itability of logic controllers embedded in a continuous environ-
ment is increasing the demand for adequate modeling, analysis
and design tools, for instance in the automotive industry [1].
Moreover, many physical phenomena admit a natural hybrid de-
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scription, like circuits integrating relays or diodes, biomolecular
networks [2], and TCP/IP networks in [3].

Hybrid models are needed to address a number of problems,
like definition and computation of trajectories, stability and
safety analysis, control, state estimation, etc.

The definition of trajectories is usually associated with a sim-
ulator, a tool able to compute the time evolution of the variables
of the system. This may seem straightforward at first, however
many hybrid formalisms introduce extra behavior like Zeno ef-
fects [4], that complicate the definition of trajectories. Although
simulation allows one to probe the model, it certainly does not
permit structural properties of the model to be assessed. In fact
any analysis based on simulation is likely to miss the subtle phe-
nomena that a model may generate, especially in the case of hy-
brid models.

Tools like reachability analysis and piecewise quadratic Lya-
punov stability are becoming a standard in analysis of hybrid
systems. Reachability analysis (or safety analysis or formal ver-
ification) aims at detecting if a hybrid model will eventually
reach an unsafe state configuration or satisfy a temporal logic
formula [5]. Reachability analysis relies on a reach set compu-
tation algorithm, which is strongly related to the mathematical
model of [6].

Piecewise quadratic Lyapunov stability [7] is a deductive way
to prove the stability of an equilibrium point of a subclass of
hybrid systems (piecewise linear systems), the computational
burden is usually low, at the price of a convex relaxation of the
problem which leads to conservative results.

While for pure linear systems there exists a complete theory
for the identification of unknown system parameters, the exten-
sion to general hybrid systems is still under investigation.

Controlling a model (and therefore a process) means
choosing the input such that the output tracks some desired ref-
erence. The control (or scheduling) problem can be tackled in
several ways, according to the model type and control objective.
Most of the control approaches are based on optimal control
ideas [8]. The dual problem of control is state estimation,
which amounts to compute the value of unmeasurable state
variables based on the measurements of output variables. The
main applicative relevance of state estimation is for control,
when direct measurements of the state vector are not possible,
and for monitoring and fault detection problems.

Several classes of hybrid systems have been proposed in the
literature, each class is usually tailored to solve a particular
problem. Timed automata and hybrid automata have proved
to be a successful modeling framework for formal verification
(see [6] and the references contained therein) and have been
widely used in the literature. The starting point for both models
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is a finite state machine equipped with continuous dynamics.
In the theory of timed automata, the dynamic part is the contin-
uous-time flow . Efficient computational tools complete
the theory of timed automata and allow one to perform verifi-
cation and scheduling of such models. Timed automata were
extended to linear hybrid automata [5], where the dynamics is
modeled by the differential inclusion . Specific tools
allow one to verify such models against safety and liveness
requirements. Linear hybrid automata were further extended to
hybrid automata where the continuous dynamics is governed
by differential equations. Tools exist to model and analyze
those systems, either directly or by approximating the model
with timed automata or linear hybrid automata [6].

In this paper, we will focus on discrete hybrid automata
(DHA). DHA result from the connection of a finite state
machine (FSM), which provides the discrete part of the hybrid
system, with a switched affine system (SAS), which provides
the continuous part of the hybrid dynamics. The interaction
between the two is based on two connecting elements: The
event generator (EG) and the mode selector (MS). The EG
extracts logic signals from the continuous part. Those logic
events and other exogenous logic inputs trigger the switch of
the state of the FSM. The MS combines all the logic variables
(states, inputs, and events) to choose the mode ( continuous
dynamics) of the SAS. Continuous dynamics and reset maps
are expressed as linear affine difference equations. DHA
models are a mathematical abstraction of the features provided
by other computational oriented and domain specific hybrid
frameworks: Mixed logical dynamical (MLD) models [9],
piecewise affine (PWA) systems [10], linear complementarity
(LC) systems, extended linear complementarity (ELC) systems,
and max–min–plus-scaling (MMPS) systems [11]. In particular,
as shown in [11] all those modeling frameworks are equivalent
(possibly under some hypothesis) and it is possible to represent
the same system with models of each class.

DHA are formulated in discrete time. Despite the fact that
the effects of sampling can be neglected in most applications,
subtle phenomena such as Zeno behavior do not appear in dis-
crete-time. Although it is possible to consider hybrid automata
in continuous-time, several computational tools profit from the
discretization of time.1 As anticipated DHA generalize many
computational oriented models for hybrid systems and there-
fore represent the starting point for solving complex analysis
and synthesis problems for hybrid systems.

In particular, the MLD and PWA frameworks allow one to
recast reachability/observability analysis, optimal control, and
receding horizon estimation as mixed-integer linear/quadratic
optimization problems. Reachability analysis algorithms were
developed in [12] and [13] for stability and performance anal-
ysis of hybrid PWA systems. In [12], the authors also presented
a novel approach for solving scheduling problems using com-
bined reachability analysis and quadratic optimization for MLD
and PWA models. For feedback control, in [9], the authors pro-
pose a model predictive control scheme which is able to stabilize
MLD systems on desired reference trajectories while fulfilling
operating constraints, and possibly take into account previous

1Also some tools for continuous-time hybrid models perform internally a time
discretization of the model in order to execute the computations [6].

qualitative knowledge in the form of heuristic rules. Similarly,
the dual problem of state estimation admits a receding horizon
solution scheme [14]–[16].

Finally, we mention that identification techniques for piece-
wise affine systems were recently developed [17]–[20], that
allow one to derive models (or parts of models) from input–
output data.

We remark that, among all the equivalent discrete-time mod-
eling framework mentioned above, DHA are the closest to mod-
eling practice in the sense that they provide both convenient sub-
models (like finite state machines and connections) and a con-
venient textual representation as input description for the tool
HYSDEL. On the other hand, MLD and PWA models embed
and conceal the sub-parts in a computational convenient collec-
tion of equalities and inequalities that often are hard to deter-
mine by hand.

In this paper, we present a theoretical framework for DHA
systems. We will go through the steps needed for modeling
a system as DHA. We will first detail the process of trans-
lating propositional logic involving Boolean variables and linear
threshold events over continuous variables into mixed-integer
linear inequalities, generalizing several results available in the
literature [21], [22], [9], in order to get an equivalent MLD form
of a DHA system, which is later used to obtain the equivalent
PWA, LC, ELC, and MMPS system. We will present the tool
HYSDEL (hybrid systems description language), which allows
describing the hybrid dynamics in a textual form, and a related
compiler which provides different model representations of the
given hybrid dynamics. We will detail a complete automotive
case study. We will first derive a model of the car engine and
power train. Then, we will analyze a controller defined using
heuristics, and finally we will synthesize a PWA optimal con-
troller. In order to perform such tasks, we will use the compiler
HYSDEL, the piecewise linear toolbox [19], by applying reach-
ability analysis [13], and by using explicit model predictive con-
trol techniques [23].

The HYSDEL compiler is available at http://control.ee.ethz.
ch/~hybrid/hysdel. Additional related software in Matlab is
available at http://www.dii.unisi.it/hybrid/tools.html.

II. DHA

DHA are the interconnection of a finite state machine and a
switched linear dynamic system through a mode selector and an
event generator (see Fig. 1).

In the following, we will use the fact that any discrete variable
, admits a binary encoding ,

where is the number of bits used to represent .
From now on, we will refer to either the variable or its encoding
with the same name.

A. SAS

An SAS is a collection of linear affine systems

(1a)

(1b)

where is the time indicator, denotes the successor
operator is the con-
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Fig. 1. DHA is the connection of an FSM and an SAS, through an MS and an
EG. The output signals are omitted for clarity.

tinuous state vector, is the exogenous con-
tinuous input vector, is the continuous output
vector, is a collection of matrices of

opportune dimensions, and the mode
is an input signal that chooses the affine state update dynamics.
A SAS of the form (1) preserves the value of the state when a
switch occurs, however it is possible to implement reset maps
on a SAS, as we will show later in Section II.E. A SAS can be
rewritten as the combination of linear terms and IF–THEN–ELSE

rules: The state-update equation (1a) is equivalent to

if
otherwise

(2a)

...
if
otherwise

(2b)

(2c)

where , and (1b) admits a similar
transformation.

B. EG

An EG is a mathematical object that generates a logic signal
according to the satisfaction of a linear affine constraint

(3)

where is a vector of de-

scriptive functions of a linear hyperplane, and
is the set of nonnegative integers. In particular, time events are
modeled as: , where is the sam-
pling time and is a given time, while threshold events are
modeled as: , where
denotes the th component of a vector.

Fig. 2. Example of an FSM.

C. FSM

An FSM2 (or automaton) is a discrete dynamic process that
evolves according to a logic state update function

(4a)

where is the Boolean state,
is the exogenous Boolean input, is the endoge-

nous input coming from the EG, and
is a deterministic logic function. An FSM can be conveniently
represented using an oriented graph. An FSM may also have an
associated Boolean output

(4b)

where and . The
idea of transforming a well-posed FSM into a set of Boolean
equalities was already presented in [24] where the authors per-
formed model checking using (mixed) integer optimization on
an equivalent set of integer inequalities.

Example 1: Fig. 2 shows an FSM where
is the input vector, and is a vector of signals
coming from the event generator. The logic state update function
or state transition function is

Red if Green
Red

Green if Red
Blue
Green

Blue if Red
Green
Blue

(5)

2In this paper, we will only refer to synchronous FSMs, where the transitions
may happen only at sampling times. The adjective synchronous will be omitted
for brevity.
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By associating a Boolean vector to each state

(Red Green , and Blue ), one can rewrite

(5) as

where the time index was omitted for brevity.
Note that since the logic state update function is deterministic,

for each state the conditions associated to all the outgoing arcs
are mutually exclusive.

D. Mode Selector (MS)

The logic state , the Boolean inputs , and the
events select the dynamic mode of the SAS through
a Boolean function , which is
therefore called MS, where is the set of the binary codings of
the elements of . The output of this function

(6)

is called active mode. We say that a mode switch occurs at step
if . Note that, in contrast to continuous-time

hybrid models, where switches can occur at any time, in our
discrete-time setting a mode switch can only occur at sampling
instants.

E. Reset Maps

In correspondence with a mode switch
, instead of evolving

it is possible to associate a reset of the continuous
state vector

(7)

the function is called reset map. The

reset can be considered as a special dynamics that only acts for
one sampling step. Fig. 3(a) shows how a reset affects the state
evolution: At time , the system is in mode , at
time the state enters the
region . This generates an event through the EG,
which in turn causes the MS to change the system dynamics to

. The mode switch resets

. If the state after reset belongs again to

the region where the mode 2 is active, , the successor
state is . It might even happen
that belongs to another region, say a region where mode
3 is active, : In this case, since , a further
reset is applied, .

Fig. 3. Reset maps.

Proposition 1: A DHA with reset conditions can be
rewritten as a DHA without reset conditions.

Proof: Let the superscript denote the variables of .
Let , where
“ ” denotes the concatenation of column vectors,

, ,
, and define the FSM

The SAS dynamics of is defined as in (1) with
, where is the number of

modes of , and is the number of reset maps (we
assume that when the mode switch of does not have an
associated reset map , then defaults to the th state up-

date map). The MS of should internally compute ,
, compare them, and then choose either the th

dynamics (if , or and is not specified) or the

reset dynamics . Since ,

, it follows
that the mode is a function of .

In some circumstances, it is desirable to predict the mode
switch and to anticipate the reset by one sampling step, i.e.,
to reset the state before the guardline is actually crossed. As-
sume that the event triggering the mode switch does not
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depend on the continuous input , and that the logic input
does not affect the mode selector. In this case,

only depends on quantities available
at step , and a mode switch can be predicted al-
ready at step . In this case, we can apply the corresponding
reset directly for where

. This kind of resets will be referred to as
predictive resets, in order to distinguish them from the resets de-
scribed before, that we will call a posteriori resets.

Consider Fig. 3(b). At time the state and the input
are such that which would

generate an event at the next time step. As
a consequence of the predicted mode switch, the state is reset
according to the reset map , i.e.,

.

Proposition 2: Assume that the event does not depend
on the continuous input , and that the mode does not
depend on the logic input . Then a DHA with predictive
resets can be rewritten as a DHA without resets.

Proof: Let again the superscript denote the vari-
ables of . By hypothesis, predictive resets imply that

only depends on and , which is a
function of . Define the EG for system

as , and let

. Let the FSM for system be equal
to the FSM of , and define the SAS dynamics of as
in the proof of Proposition 1. The MS of should inter-
nally compute , compare them,
and then choose either the th dynamics (if , or

and is not specified) or the reset dynamics

. Since

, it follows that
the mode of the SAS dynamics of system is a function
of .

Note that in our discrete-time setting resets only occur at sam-
pling instants, and therefore it cannot account for model artifacts
typical of continuous-time models like live-locks, where infinite
switches/resets occur at the same time instant. Clearly this lim-
itation does not prevent to capture with enough detail most of
systems of interest in the applications.

Example 2: Let us consider a DHA with two modes

if
if ,

if
if

In order to add the predictive reset map to the

model, we first consider the set
of all the state/input pairs that will trigger the event

in one step and add an event in the
EG. If the current mode is and the pair triggers

Fig. 4. Equivalent piecewise affine representation of (8), showing where each
mode is active.

the event then the state should be updated according to the
reset map. Summing up, we can write the following DHA:

if
if
if

(8a)

(8b)

if

if

if

(8c)

As will be described in Section III, (8) admits the piecewise
affine representation depicted in Fig. 4, that clearly shows that
the reset condition is another dynamical mode.

F. DHA Trajectories

For a given initial condition , and input

, the state trajectory

of the system is recursively computed as follows:

1) Initialization: ;

2) Recursion:

a) ;
b) ;
c) ;
d) ;
e) ;
f) .

Definition 1: A DHA is well-posed on

, if for all initial conditions , and

for all inputs , for all , the

state trajectory and output trajectory

are uniquely defined.
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Definition 1 will be used for other types of hybrid models that
we will introduce later. In general a hybrid model may not be
well-posed, either because the trajectories stop after a finite time
(for instance, the state vector leaves the set ) or because
of nondeterminism (the successor may be multiply
defined). We remark that trajectories of DHA are deterministic
as a consequence of their definition.

DHA modes are related to hybrid automata (HA) [5], the
main difference is in the time model, DHA admit time in the
natural numbers, while in HA the time is a real number. More-
over, DHA models do not allow instantaneous transitions, and
are deterministic, opposed to HA where any enabled transition
may occur in zero time. This has two consequences: 1) DHA do
not admit live-locks (infinite switches in zero time), and 2) DHA
do not admit Zeno behaviors (infinite switches in finite time).
Finally, in DHA models, guards, reset maps, and continuous
dynamics are limited to linear affine functions. Moreover, con-
trarily to HA, in DHA the continuous dynamics is not a property
of the state of the automaton but is selected by the MS according
also to discrete inputs and events. However, working with dis-
crete-time models allows the development of several analysis
and synthesis tools, as later reported in Section VII.

III. DHA AND PWA SYSTEMS

This section highlights the relationships between the DHA
introduced above and the class of PWA systems [10]. PWA sys-
tems [11] are defined by partitioning the state space into polyhe-
dral regions, and associating with each region a different affine
state-update equation

(9a)

(9b)

such that (9c)

where
, is a polyhedral partition3 of the set , the

matrices , , are constant and have
suitable dimensions, the inequality in (9c) should be interpreted
componentwise. For PWA systems, well-posedness is defined
similarly to Definition 1. An exact definition is available in [11].

Definition 2: Let be hybrid models, whose inputs are
and outputs

. Let be the
state of and the state of .
The hybrid models and are equivalent on

if for all initial conditions
, and for all , the output

trajectories coincides, i.e., and
at all steps .

Lemma 1: Let be a well-posed PWA model defined
on a set of states , a set of inputs , and a set
of outputs . Then, it can be rewritten as an equivalent
well-posed DHA model on , , .

3The double definition of the state-update function over common boundaries
of the partition (the boundaries will also be referred to as guardlines) is a tech-
nical issue that can be resolved by allowing a part of the inequalities in (9) to be
strict. However, from a numerical point of view, this issue is not relevant.

Proof: Equations (9a)–(9b) are the modes of the SAS, the
constraints are the defining
hyperplanes of the EG, and the MS is defined by (9c),
namely if all the events associated to the hyperplanes of

are satisfied then .
PWA systems can model a large number of physical pro-

cesses, such as systems with static nonlinearities, and can ap-
proximate nonlinear dynamics via multiple linearizations at dif-
ferent operating points.

IV. DHA AND MLD SYSTEMS

This section describes how to transform a DHA into linear
mixed integer equations and inequalities, by generalizing sev-
eral results already appeared in the literature [9], [21], [22], [25],
[26], and the equivalence between DHA and mixed logical dy-
namical (MLD) systems [9].

A. Logical Functions

Boolean functions can be equivalently expressed by inequal-
ities [27].

In order to introduce our notation, we recall here some basic
definitions of Boolean algebra. A variable is a Boolean vari-
able if . A Boolean expression is inductively defined4

by the grammar

(10)

where is a Boolean variable, and the logic operators (not),
(or), (and), (implied by), (implies), (iff) have the

usual semantics. A Boolean expression is in conjunctive normal
form (CNF) or product of sums if it can be written according to
the following grammar:

(11)

(12)

where are called terms of the product, and are the terms
of the sum . A CNF is minimal if it has the minimum number
of terms of product and each term has the minimum number of
terms of sum. Every Boolean expression can be rewritten as a
minimal CNF.

A Boolean expression will be also called Boolean func-
tion when is used to define a literal as a function of

as follows:

(13)

In general, we can define relations among Boolean variables
through a Boolean formula

(14)

where . Note that each Boolean
function is also a Boolean formula, but not vice versa. Boolean
formulas can be equivalently translated into a set of integer
linear inequalities. For instance, is equivalent
to [21]. The translation can be performed either
using an symbolical method or a geometrical method.

4For the sake of simplicity, we are neglecting precedence.
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1) Symbolical Method: The symbolical method consists
of first converting (13) or (14) into CNF, a task that can
be performed automatically by using one of the several
standard techniques available. Let the CNF have the form

. Then, the corresponding set of integer linear inequal-
ities is

... (15)

With these inequalities we can define the set for any
Boolean formula as

are satisfied

with (16)

2) Geometrical Method: The geometrical method consists
of two steps (see, e.g., [28]). First, the set of points satisfying
(13) or (14) is computed (for this reason, the method was also
called truth table method in [28]). Each row of the truth table
is associated with a vertex of the hypercube . The ver-
tices are collected in a set of valid points, all the other points

are called invalid. The inequalities representing the
Boolean formula are obtained by computing the convex hull of

, for which several tools are available (see, e.g., [29]). There-
fore, we define

conv (17)

Although and contain the same integer points,
i.e., , in general the set

, since is the smallest set containing all
integer feasible points. However, there exist Boolean formulas,
for which 5 . Conditions for which
are currently a topic of research.

B. Continuous-Logic Interfaces

Events of the form (3) can be equivalently expressed as

(18a)

(18b)

where are upper and lower bounds, respectively, on
. As we will point out in Section IV-D,

sometimes from a computational point of view, it may be
convenient to have a system of inequalities without strict
inequalities. In this case, we will follow the common practice
[21] to replace the strict inequality (18b) as

(18c)

where is a small positive scalar, e.g., the machine
precision, although the equivalence does not hold for

, the numbers in the interval
cannot be represented in a computer.

5For example (X _X ) ^ (X _X ) ^ (X _X ).

The most common logic to continuous interface is the
IF–THEN–ELSE construct

(19)

which can be translated into [13]

(20a)

(20b)

(20c)

(20d)

where are upper and lower bounds on
. Note that when

are zero, (19)–(20) coincide with the product
described in [21].

C. Continuous Dynamics

As already mentioned, we will deal with dynamics described
by linear affine difference equations

(21)

D. MLD Systems

In [9], the authors proposed discrete-time hybrid systems de-
noted as MLD systems. An MLD system is described by the
following relations:

(22a)

(22b)

(22c)

(22d)

where is a vector of continuous
and binary states, are the inputs,

the outputs, represent
auxiliary binary and continuous variables, respectively, and

, and
are matrices of suitable dimensions. Given the current state

and input , the time-evolution of (22) is determined
by solving and from (22c)–(22d), and then updating

and from (22a)–(22b). The equations and inequali-
ties obtained with methods presented in Sections IV-A–C can
be represented using the MLD framework. Since the problems
of synthesis and analysis of MLD models are tackled by
optimization techniques, we have replaced strict inequalities
as in (18b) by nonstrict inequalities as in (18c).6 For MLD
systems, well-posedness is defined similarly to Definition 1.
A formal definition of well-posedness for MLD systems and
a test to assess the well-posedness have been presented in [9].
Finally, we recall that the MLD model is similar to the model
presented in [30] for verification of safety properties as they

6One may also explicitly include in (22) strict inequality constraints
~E �(k) + ~E z(k) < ~E u(k) + ~E x(k) + ~E .
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both aim at translating a hybrid system in a set of mixed integer
linear equalities and inequalities using similar techniques.

Lemma 2: Let be a well-posed DHA model defined
on a set of states , a set of inputs , and a set
of outputs . Then, for any bounded , there exists a
well posed MLD model equivalent to on .

Proof: Directly follows from Sections IV-A–C.

V. OTHER COMPUTATIONAL MODELS AND

FURTHER EQUIVALENCES

In the previous section, we showed the equivalence relations
between DHA and PWA and MLD systems. In this section, we
review other existing models of linear hybrid systems and show
further relationships with DHA.

A. Other Discrete-Time Modeling Frameworks

In [11], the relationships among the model classes mentioned
previously and three others: LC, MMPS, and ELC systems,
were discussed. ELC systems and LC systems are linear systems
where two vectors are linked by an orthogonality constraint,
see [11] for details. MMPS systems are obtained by choosing
the state-update function, the output function, and constraints
as (nested) combinations of the operations maximization, min-
imization, addition and scalar multiplication. More details on
this class can be also found in [11].

Fact 1: PWA, MLD, LC, ELC, and MMPS models are equiv-
alent classes of hybrid models (certain equivalences require as-
sumptions on the boundedness of input, state, and auxiliary vari-
ables or on well-posedness).

Proof: See [11] for full details on assumptions, relation-
ships, and a constructive proof.

Theorem 1: Let be sets of states, inputs, and outputs
respectively, and assume that are bounded. Then DHA,
PWA, MLD, LC, ELC, and MMPS well-posed models are
equivalent to each other on .

Proof: Mutual equivalences among PWA, MLD, LC,
ELC, and MMPS on bounded , follows from Fact 1.
By Lemma 1, any PWA model can be rewritten as
an equivalent DHA model , while any can be
rewritten as an MLD model by Lemma 2. Therefore,
any equivalence relation can be stated for any ordered pairs of
models.

Note that by Propositions 1 and 2 also DHA models with
resets are equivalent to any of the other classes of hybrid models.

We remark once more that all the models are equivalent.
While there is no difference in modeling capability among
the models, the same task can be solved substantially more
efficiently by picking the proper model. Table I summarizes the
advised model for several typical engineering tasks, according
to the authors’ knowledge of the state of the art.

VI. HYSDEL DESCRIPTION OF DHA MODELS

We designed a modeling language to describes DHA models,
called HYSDEL. The HYSDEL description of a DHA is an ab-
stract modeling step. The associated HYSDEL compiler then
translates the description into several computational models, in

TABLE I
ADVISED MODEL FOR EACH TASK

TABLE II
SAMPLE HYSDEL LIST OF SYSTEM (8).

particular into a MLD using the technique presented in Sec-
tion IV, and PWA form using either the direct approach of [31]
or the indirect approach of [32] that translates the MLD into a
PWA. It is also possible to generate LC/ELC/MMPS systems
using the constructive methods reported in [11]. HYSDEL can
generate also a simulator that runs as a function in Matlab.

In this section, we show how a DHA system can be mod-
eled in HYSDEL by analyzing the HYSDEL description of the
DHA (8). A complete description of the syntax of HYSDEL is
available in the manual accompanying the compiler [33], and an
example of realistic size is presented in Section VIII.

Consider the HYSDEL list of Table II. As any HYSDEL list,
it is composed of two parts. The first one, called INTERFACE,
contains the declaration of all variables and parameters, so that
it is possible to make the proper type checks. The second part,
IMPLEMENTATION, is composed of specialized sections where
the relations among the variables are described. These sections
are described next.

AUX SECTION The HYSDEL section AUX contains the
declaration of the auxiliary variables used in the model.
These variables will become the and variables in the
MLD model (22).
AD SECTION The HYSDEL section AD allows one to de-
fine Boolean variables from continuous ones, and is based
exactly on the same semantics of the EG described earlier.
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HYSDEL does not provide explicit access to the time in-
stance, however this limitation can be easily overcome by
adding a continuous state variable such that ,
where is the sampling time.
LOGIC SECTION The section LOGIC allows one to specify
arbitrary functions of Boolean variables: In particular the
mode selector is a Boolean function and therefore it can be
modeled in this section.
DA SECTION The HYSDEL section DA defines contin-
uous variables according to IF–THEN–ELSE conditions on
Boolean variables. This section models part of the SAS,
namely the variables defined in (2a)–(2b). Note that, as
the definition of z3 suggests, HYSDEL can handle com-
pound logic formulas in the DA section, therefore, there is
no need to explicitly define a Boolean variable for each
mode.
CONTINUOUS SECTION The CONTINUOUS section de-
scribes the linear dynamics, expressed as difference equa-
tions. This section models (2c).

An HYSDEL description may have additional sections
that are not part of the sample code of Table II, that we
describe below. For examples and the detailed syntax, we
refer the interested reader to [33].
LINEAR SECTION HYSDEL allows also one to define
a continuous variable as an affine function of continuous
variables in the LINEAR section. This section, together with
the CONTINUOUS and AD sections allows more flexibility
when modeling the SAS. This extra flexibility allows al-
gebraic loops that may render undefined the trajectories of
the model. The HYSDEL compiler integrates a semantic
checker that is able to detect and report such abnormal sit-
uations.
AUTOMATA SECTION The AUTOMATA section specifies
the state transition equations of the FSM as a collection of
Boolean functions

.
OUTPUT SECTION The OUTPUT section allows one to
specify static linear and logic relations for the output vector

.

Finally, HYSDEL allows one more section.

MUST SECTION This section specifies arbitrary linear
and logic constraints on continuous and Boolean variables,
and therefore it allows for defining the sets ,

(more generally, the MUST section allows also
mixed constraints on states, inputs, and outputs).

VII. APPLICATIONS

The hybrid models automatically generated by HYSDEL
can be used for solving several analysis (stability, observability,
safety/reachability) and design (control, state estimation) tasks.
In particular, in this section we focus our attention by recalling
tools for reachability analysis and controller synthesis.

A. Reachability Analysis

The reachability analysis of hybrid dynamical systems is a
tool for the verification of safety properties: For a given set of

initial conditions and exogenous signals, verify that the set of
unsafe states cannot be entered, or provide a counterexample.
More precisely, we define the following.

REACHABILITY ANALYSIS PROBLEM Given a PWA
system , a polyhedral set of initial conditions , a col-
lection of disjoint target polyhedral sets , a
bounded set of inputs , and a time horizon , de-
termine i) if is reachable from within
steps for some sequence of
exogenous inputs; ii) if yes, the subset of initial conditions

of from which can be reached within
steps; iii) for any and , the

input sequence ,
which drives to . The justification for focusing
on finite-time reachability is that states which are not
reachable in less than steps are considered, in
practice, unreachable. Although finite-time reachability
analysis can only guarantee finite-time liveness properties
(for instance, it cannot check if will be ever reached),
the reachability problem stated above is clearly decidable.
Nevertheless, the problem is -hard. An algorithm for
solving this problem was presented in [13].

B. Receding Horizon Control of Hybrid Systems

Receding horizon hybrid optimal control [9], [23], also
known as model predictive control, can be usefully employed
to synthesize control laws for hybrid systems. The main idea is
to setup a finite-horizon optimal control problem for the hybrid
MLD system (22) by optimizing a performance index under
operating constraints:

(23a)

subj. to (23b)

where is the state of the MLD system at step

is the current desired reference,
is the optimization vector, and and

are weighting matrices. The subscript denotes the standard
one-norm for -norm for , and the squared
Euclidean norm for .

In (23), we assume that possible physical and/or logical
constraints on the variables of the hybrid system are already
included in the mixed-integer linear constraints of the MLD
model, as they can be conveniently modeled in the MUST

section of the HYSDEL model. It is in fact extremely useful to
specify constraints over state and output variables that must be
fulfilled by the trajectories of the closed-loop system directly
in terms of the HYSDEL variables.

Receding horizon control (RHC) amounts to repeatedly
computing the optimal solution to (23) at each time , and
applying only the first optimal control move as the input

to the system. In [9] the authors have shown that the
resulting closed-loop system (hybrid model RHC controller)
is asymptotically stable (provided that an end-point constraint
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on the final state and weights on states and auxiliary
variables are present).

Problem (23) can be translated into a mixed integer quadratic
program (MIQP) , or a mixed integer linear program
(MILP) ( or ), i.e., into the minimization of
a quadratic/linear cost function subject to linear constraints,
where some of the variables are constrained to be binary; see
[9] and [23] for details.

1) Implementation as a Piecewise Affine Control Law: In
some cases online mixed-integer optimization may be pro-
hibitive, for example in fast sampling applications. In such
cases, the design of the controller is performed in two steps.
First, the RHC controller based on the optimal control problem
(23) is tuned in simulation using MILP solvers, until the desired
performance is achieved. Then, for implementation, in the
second phase the explicit piecewise affine form of the RHC law
is computed offline by using a multiparametric mixed integer
programming solver as shown in [23]

if (24)

where are the current state and desired reference, re-
spectively, and are matrices of suitable dimension.
We remark that the resulting piecewise affine control action (24)
is identical to the RHC designed in the first phase.

VIII. ANALYSIS AND CONTROL OF A CRUISE CONTROL SYSTEM

In this section we use HYSDEL to obtain a hybrid model of
a car with robotized manual gear shift, and show how such a
model can be directly used i) to formally verify certain safety
and liveness properties of a simple cruise controller based on PI
control and a set of gear-switching rules and ii) to synthesize a
cruise control system that is piecewise affine and optimal with
respect to a certain performance index.

A. Car Model

We focus on a car equipped with manual transmission, and
we assume that the gear command is robotized, namely that a
slave control system takes care of releasing the clutch, shifting
the gear, and engaging the clutch. We only consider the lon-
gitudinal dynamics of the car: the continuous variables are the
scalar position and the speed (m s ). The contin-
uous inputs are the engine torque (Nm), the braking force
(N), and the sinus of the road slope , plus six binary inputs

and , and corresponding to the se-
lected gear. Denoting by the engine speed (rad s ), we have
the kinematic relation

(25)

where is the gear ratio corresponding to the th gear,
is the final drive ratio, is the wheel radius, and is
the drive train efficiency level [34]. Note that by using a kine-
matic relation for the speed engine, we are neglecting the clutch,

Fig. 5. Maximum torque of the engine of the Clio 1.9 DTI RXE (solid line)
and PWL approximation (dotted line).

the motor dynamic behavior, and we are assuming that the time
spent for gear shift is negligible.

The dynamic equation of motion of the car is
where (kg) is the vehicle mass, (N) is the

traction force, is the braking force (N), (N) is the
friction force, and (N) takes into account the slope of the
road. (N), where and is the slope
of the road and as a first approximation, we assume that is
linear in , where (kg m s ) is a constant that takes
into account all the frictions (i.e., aerodynamic, tires deforma-
tion, drive train). From the conservation of mechanical power,
we have , which gives .
The commanded torque is upper-bounded by the maximum
torque deliverable at a certain engine speed
where is a nonlinear function typically reported in the
data sheets of the car and is the maximum braking force
that the engine can provide when the throttle is fully released.
In order to derive a hybrid model of the car as described in Sec-
tion II, we piecewise-linearize into four regions using
the PWL toolbox [35], which requires the introduction of three
event variables and , and as a first ap-
proximation, we assume , cf. Fig. 5.

The engine speed can be written as a SAS, and by (2), as
the sum of auxiliary continuous variables,

, where

if
otherwise

To validate the model, we took the parameters of the Renault
Clio 1.9 DTI RXE from http://www.renault.com/. The simu-
lated acceleration and max speed tests gave the same results
as the experimental counterpart, reported in the technical doc-
umentation. For the reader’s convenience we report the main
parameters of the car under consideration:

m, kg m s kg,
Nm, kg m s . Fig. 5 reports the measured

maximum torque and the piecewise affine approximation, the
maximum error is 5.7 Nm. Finally, the dynamics is discretized
with sampling time s using forward finite differences
to obtain the DHA model. The corresponding HYSDEL model
of the car is reported in Appendix. The resulting MLD model
contains two continuous states (vehicle position and speed

), three continuous inputs (engine torque , breaking force
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Fig. 6. PWA system equivalent to the MLD model obtained through HYSDEL
from the list reported in Appendix in the (velocity,torque) space for position
x = 0, braking force F = 0; gear inputvector = [0 0 0 0 1 0] (4th
gear).

, and slope ), 6 binary inputs (gears ),
one continuous output (speed ), 16 auxiliary continuous
variables (six for the traction force, six for the engine speed,
and four for the piecewise linearization of the maximum engine
torque), four auxiliary binary variables (breakpoints for the
piecewise linearization of the maximum engine torque), and
96 mixed-integer inequalities. The DHA model can be then
transformed into a PWA model using the approach presented
in [31]7 or, equivalently, the MLD model can be converted in
a PWA model by running the algorithm proposed in [32]8 . The
total number of binary variables is , which gives
a worst-case number of possible regions in the PWA system
equals to , while the PWA equivalent to the hybrid
MLD model has 30 regions, and is computed in 7.5 s starting
from the DHA and in 72.66 s starting from the MLD using
Matlab on a Pentium III 650-MHz machine. Fig. 6 shows a
section of the resulting PWA model.

B. Reachability Analysis

We want to show how the HYSDEL model can be success-
fully employed to verify safety properties. To this end, we as-
sume we have a simple cruise controller from a previous design.
We want to verify that the controlled system will never exceed
the target speed by some tolerance, for instance the speed limits
imposed by local authorities. The complete hybrid system under
examination is now composed of two subsystems: the car dy-
namic model described in Section VIII, and the cruise controller.
For a detailed description of compositional DHA models, refer
to [31].

1) Model of the Cruise Controller: The controller com-
mands throttle position, braking force, and selected gear, based
on the desired vehicle speed and measurements of the actual
car speed.

The automaton reported in Fig. 7 selects the gear. If the en-
gine speed is faster than RPM then the gear is
shifted up. Similarly, if the speed is lower than
RPM, the gear is shifted down. The two thresholds are chosen
by looking at the max torque plot in Fig. 5. To track the de-
sired speed reference , the throttle and the brakes are op-

7The corresponding software is available for download from http://con-
trol.ee.ethz.ch/~hybrid/hysdel as a plug-in for HYSDEL.

8The corresponding software is available for download from http://www.dii.
unisi.it/~bemporad/tools

Fig. 7. Gear shift logic controller.

erated by a PI controller. Let be the integral error,
. The controller is

if
(26a)

if
otherwise

(26b)

The control variables and are saturated against the
maximum torque and braking force, respectively. The in-
tegrator in the PI controller uses an anti-windup scheme:

is integrated only when the control inputs and
are not saturated. Note that, the threshold in (26) is 1 ms
over the target speed, therefore the fine tracking of the speed
reference is performed using only the command coming for
the throttle. By fixing the gear ratio in fifth gear we calibrate
the parameters , and on the resulting linear system
( , and ). The HYSDEL model of the
car is reported in the Appendix, and it is available together with
the cruise control system in the HYSDEL distribution [33].
The corresponding MLD model (22) has 173 MLD constraints,

.
2) Verification: The HYSDEL compiler is used to generate

a PWA model of the cruise control system. The verification
is performed using the algorithm presented in [13]. We check
the above mentioned safety requirement, namely that the cruise
control will never accelerate the car over the speed limits. As
the safety specification is independent of the car position we
omit this from the model and we use the following initial set

and target set:

where is a tolerance, in this ex-
ample we set m s (5 km/h) that is for instance
the tolerance of the speed limit enforcement devices adopted in
Switzerland. Moreover, we check the liveness of the controller
by adding the set ,
where we require that the controller reaches the target speed
minus the tolerance in 10 s (a controller that stops the car
would be safe against fines, but not at all desirable!). We perform
parametric verification [13] for a class of constant references

m/s ( km/h). The exploration
horizon is fixed to s (
steps).

3) Verification Results: The result of the verification algo-
rithm is that the controlled system satisfies both the specifica-
tions: It does not enter the unsafe region (over the speed
limit) and guarantees the liveness of the control action (within
10 s the speed is in a bounded set around the target speed .
The verification required 9109 s on a PC Pentium 650 MHz run-
ning Matlab 5.3.

The algorithm was run also for the same initial and target sets
and for an extended range of the parameter km/h.
The algorithm reported the first counterexample in 415 s: for

km/h) the liveness condition is not satisfied.
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Fig. 8. Counterexample to the liveness property.

In fact, by examining the plot of the counterexample reported in
Fig. 8, one can see that the controller fails to reach the requested
vehicle speed within the specified time frame.

C. Cruise Control Design

Now, we replace the heuristic controller with an optimal one.
We use the hybrid model of the car to synthesize a cruise control
system that commands the gear ratio (discrete input) and gas
pedal and brakes (continuous inputs) in order to track a desired
speed and minimize fuel consumption. To this end, we design
a receding horizon controller and derive its equivalent explicit
piecewise affine form [23], so that the cruise controller becomes
a look-up table of affine functions of the measured velocity and
reference signals, that can be easily implemented in real time.
Since the controller does not depend on the position of the car,
we will remove from the model.

The main idea of the approach is to setup a finite-horizon
optimal control problem for the hybrid MLD system (22) by
optimizing a performance index under operating constraints. In
particular, we minimize

(27a)

(27b)

where is the measured velocity of the car at time ,

and is the optimization vector.
As remarked above, the design of the controller is performed

in two steps. First, the RHC controller based on the optimal
control problem (27) is tuned in simulation using MILP solvers
[36], until the desired performance is achieved. The RHC con-
troller is not directly implementable, as it would require a MILP
to be solved on-line, which is clearly prohibitive on standard
automotive control hardware. Therefore, for implementation, in
the second phase the explicit piecewise affine form of the RHC
law is computed off-line by using a multiparametric mixed in-
teger linear programming (mp-MILP) solver, according to the
approach of [23], which provides the optimal control action as
a piecewise affine function of the measured (or estimated) state
vector of the hybrid system and reference signals. As a result,
the state reference space is partitioned into polyhedral sets,
where an affine control law is defined in each polyhedron.

Fig. 9. Maximum acceleration profiles.

Fig. 10. Closed-loop profiles: aggressive control action.

As a first design step, we choose m/rad in (27a).
The corresponding multiparametric mixed-integer linear pro-
gramming has 98 linear inequalities, 19 continuous variables, ten
binary variables, two parameters , and is solved in
27 m on a Sun Ultra 10 running Matlab 5.3 and Cplex. The corre-
sponding piecewise affine control law consists of 49 regions.

For a commanded speed km/h, which cannot be
reached by the car, the cruise controller leads to the maximum
acceleration curves depicted in Fig. 9, that are very close to those
reported in the data sheets.

Fig. 10 shows the closed-loop trajectories for a few changes
of the velocity set-point. During the shift from 0 to 120 km/h, the
cruise controller commands the gears similarly to what shown in
Fig. 9, with fullthrottle and no action on the brakes. When the
set-point changes from 120 km/h to 50 km/h, the cruise con-
troller does its best to slow down the car: switch to second gear,
use full brakes, release the gas pedal. As soon as the set-point
is recovered, the weight on the fuel consumption leads back
to fifth gear. The simulation also includes a nonzero road slope,
which acts as an unmeasured and unmodeled disturbance to be
rejected by the cruise controller.

Clearly, the controller is too aggressive during the set-point
transition. This can be easily fixed by adding in (27) the con-
straint

where is the maximum acceleration tolerated. The
resulting MILP problem has 100 linear inequalities, and is
solved multiparametrically in 28 m, leading to a partition of the

space into 54 regions. The corresponding closed-loop
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Fig. 11. Closed-loop profiles: smoother control action.

trajectories are depicted in Fig. 11, where a better drive comfort
is clearly apparent.

We remark that the cruise control system described in this
section has to be considered as a pure exercise of modeling and
control synthesis for hybrid systems, and there is no claim that
it is sensible, as it is, in a real application. For instance, it is
apparent the rotation speed of the engine rpm depicted
in Fig. 10 would not be realistic for most commercial vehicles.
A more comprehensive study for the synthesis of a supervisor
for automatic gear shifting is currently under investigation in
collaboration with the Fiat Research Center, Italy [37].

IX. CONCLUSION

In this paper, we introduced discrete hybrid automata as a
general modeling framework for obtaining hybrid models ori-
ented to the solution of analysis and synthesis problems. The
language HYSDEL describes DHA at a high level and its as-
sociated compiler generates the corresponding computational
models. This simplifies the use of the whole theory and set of
tools available for different classes of hybrid systems for solving
control, state estimation and verification problems. The effec-
tiveness of HYSDEL was shown on an automotive case study.

HYSDEL has been successfully used in several industrial ap-
plications. In [38], the authors modeled the hybrid behavior of
a vehicle/tyre system and designed a traction controller that im-
proves a driver’s ability to control a vehicle under adverse ex-
ternal conditions such as wet or icy roads. Another automotive
application was presented in [39], where the focus is on the ap-
plication of hybrid modeling and optimal control to the problem
of air-to-fuel ratio and torque control in advanced gasoline di-
rect injection stratified charge (DISC) engines. In both cases, the
control design leaded to a control law that can be implemented
on automotive hardware as a piecewise affine function of the
measured and estimated quantities. In [40], the economic opti-
mization of a combined cycle power plant was accomplished by
modeling the system in HYSDEL (turning on/off gas and steam
turbines, operating constraints, different modalities for starting
up of the turbines), and then using the generated MLD model in
a mixed integer linear optimization algorithm [36].

The HYSDEL compiler is freely available for download at
http://control.ee.ethz.ch/~hybrid/hysdel.

APPENDIX

HYSDEL CODE—CAR MODEL

SYSTEM car {INTERFACE {

STATE {

REAL position [-1000, 1000];

REAL speed [-50 * 1000/3600, 220 * 1000/3600]; }

INPUT {

REAL torque [-300, 300]; /* Nm */

REAL F brake [0,9000]; /* N */

REAL slope [0, 1];

BOOL gear1, gear2, gear3, gear4, gear5, gearR; }

OUTPUT {

REAL position y, speed y, w_y; }

PARAMETER {

Parameters omitted for brevity, full list available in [33].

}}

IMPLEMENTATION {

AUX {

REAL Fe1, Fe2, Fe3, Fe4, Fe5, FeR, w1, w2, w3, w4,

w5, wR, DCe1, DCe2, DCe3, DCe4;

BOOL dPWL1, dPWL2, dPWL3, dPWL4; }

AD {

dPWL1 wPWL1 (w1 w2 w3 w4 w5 wR) 0;

dPWL2 wPWL2 (w1 w2 w3 w4 w5 wR) 0;

dPWL3 wPWL3 (w1 w2 w3 w4 w5 wR) 0;

dPWL4 wPWL4 (w1 w2 w3 w4 w5 wR) 0; }

DA {

Fe1 {IF gear1 THEN torque / sf Rgear1};

Fe2 {IF gear2 THEN torque / sf Rgear2};

Fe3 {IF gear3 THEN torque / sf Rgear3};

Fe4 {IF gear4 THEN torque / sf Rgear4};

Fe5 {IF gear5 THEN torque / sf Rgear5};

FeR {IF gearR THEN torque / sf RgearR};

w1 {IF gear1 THEN speed / sf Rgear1};

w2 {IF gear2 THEN speed / sf Rgear2};

w3 {IF gear3 THEN speed / sf Rgear3};

w4 {IF gear4 THEN speed / sf Rgear4};

w5 {IF gear5 THEN speed / sf Rgear5};

wR {IF gearR THEN speed / sf RgearR};

DCe1 {IF dPWL1 THEN (aPWL2 aPWL1)

(bPWL2 bPWL1) (w1 w2 w3 w4 w5 wR)};

DCe2 {IF dPWL2 THEN (aPWL3 aPWL2)

(bPWL3 bPWL2) (w1 w2 w3 w4 w5 wR)};

DCe3 {IF dPWL3 THEN (aPWL4 aPWL3)

(bPWL4 bPWL3) (w1 w2 w3 w4 w5 wR)};

DCe4 {IF dPWL4 THEN (aPWL5 aPWL4)

(bPWL5 bPWL4) (w1 w2 w3 w4 w5 wR)}; }

CONTINUOUS {

position position Ts speed;

speed speed Ts / mass (Fe1 Fe2 Fe3 Fe4 Fe5

FeR F_brake beta_friction speed) g slope; }

OUTPUT {

position_y position;

speed y speed;

w_y (w1 w2 w3 w4 w5 wR); }
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MUST {

w1 wemin; w1 wemax; w2 wemin; w2 wemax;

w3 wemin; w3 wemax; w4 wemin; w4 wemax;

w5 wemin; w5 wemax; wR wemin; wR wemax;

F brake 0; F brake max brake_force;

torque (alpha1 beta1 (w1 w2 w3 w4 w5

wR)) 0;

torque (aPWL1 bPWL1 (w1 w2 w3 w4 w5 wR)

DCe1 DCe2 DCe3 DCe4) 1 0;

((REAL gear1) (REAL gear2) (REAL gear3) (REAL

gear4) (REAL gear5) (REAL gearR)) ;

(REAL gear1) (REAL gear2) (REAL gear3) (REAL

gear4) (REAL gear5) (REAL gearR) 1.0001;

dPWL4 dPWL3; dPWL4 dPWL2; dPWL4 dPWL1;

dPWL3 dPWL2; dPWL3 dPWL1; dPWL2 dPWL1; }

}}
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