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GPU-Accelerated Stochastic Predictive Control
of Drinking Water Networks

Ajay Kumar Sampathirao, Pantelis Sopasakis, Alberto Bemporad, Fellow, IEEE, and Panagiotis (Panos) Patrinos

Abstract— Despite the proven advantages of scenario-based
stochastic model predictive control for the operational control
of water networks, its applicability is limited by its considerable
computational footprint. In this paper, we fully exploit the
structure of these problems and solve them using a proximal
gradient algorithm parallelizing the involved operations. The
proposed methodology is applied and validated on a case study:
the water network of the city of Barcelona.

Index Terms— Accelerated proximal gradient (APG) method,
drinking water networks (DWNs), graphics processing
units (GPUs), stochastic model predictive control (SMPC).

I. INTRODUCTION

A. Motivation

WATER utilities involve energy-intensive processes,
complex in nature (dynamics) and form (topology of

the network), of rather large scale and with interconnected
components, subject to uncertain water demands from the
consumers and are required to supply water uninterruptedly.
These challenges call for operational management technolo-
gies able to provide reliable closed-loop behavior in the
presence of uncertainty. In 2014, the IEEE Control Systems
Society identified many aspects of the management of complex
water networks as emerging future research directions [1].

Stochastic model predictive control (SMPC) is an advanced
control scheme which can address effectively the above-
mentioned challenges and has already been used for the
management of water networks [2], [3], power networks [4],
and other uncertain systems. SMPC is also accompanied
by a wealth of theoretical results regarding its stability
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and recursive feasibility properties [5], [6]. However, unless
restrictive assumptions are adopted regarding the form of the
disturbances, such problems are known to be computationally
intractable [3], [7]. In this paper, we combine an acceler-
ated dual proximal gradient algorithm with general-purpose
graphics processing units (GPUs) to deliver a computationally
feasible solution for the control of water networks.

B. Background

The pump scheduling problem (PSP) is an optimal control
problem for determining an open-loop control policy for the
operation of a water network. Such open-loop approaches are
known, since the 1980’s [8], [9]. More elaborate schemes
have been proposed, such as [10], where a nonlinear model
is used along with a demand forecasting model to produce
an optimal open-loop 24-h-ahead policy. Recently, the prob-
lem was formulated as a mixed-integer nonlinear program
to account for the ON/OFF operation of the pumps [11].
Heuristic approaches using evolutionary algorithms, genetic
algorithms, and simulated annealing have also appeared in
the literature [12]. However, a common characteristic and
shortcoming of these studies is that they assume to know the
future water demand and they do not account for the various
sources of uncertainty which may alter the expected smooth
operation of the network.

The effect of uncertainty can be attenuated by feedback
from the network combined with the optimization of a per-
formance index taking into account the system dynamics and
constraints as in PSP. This, naturally, gives rise to Model
Predictive Control (MPC) which has been successfully used
for the control of drinking water networks (DWNs) [13], [14].
Recently, Bakker et al. [15] demonstrated experimentally on
five full-scale water supply systems that MPC will lead to
a more efficient water supply and better water quality than
a conventional level controller. Distributed and decentralized
MPC formulations have been proposed for the control of large-
scale water networks [16], [17], while MPC has also been
shown to be able to address complex system dynamics such
as the Hazen–Williams pressure-drop model [18].

Most MPC formulations either assume exact
knowledge of the system dynamics and future water
demands [14], [17] or endeavor to accommodate the worst
case scenario [13], [19]–[21]. The former approach is likely
to lead to adverse behavior in the presence of disturbances
which inevitably act on the system, while the latter turns out to
be too conservative as we will later demonstrate in this paper.

When probabilistic information about the disturbances
is available it can be used to refine the MPC problem
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formulation. The uncertainty is reflected onto the cost function
of the MPC problem deeming it a random variable; in SMPC,
the index to minimize is typically the expectation of such a
random cost function under the (uncertain) system dynamics
and state/input constraints [22], [23].

SMPC leads to the formulation of optimization problems
over spaces of random variables which are, typically, infinite-
dimensional. Assuming that disturbances follow a normal
probability distribution facilitates their solution [7], [24], [25];
however, such an assumption often fails to be realistic. The
normality assumption has also been used for the stochas-
tic control of DWNs aiming at delivering high quality of
services—in terms of demand satisfaction—while minimizing
the pumping cost under uncertainty [2].

An alternative approach, known as scenario-based sto-
chastic MPC, treats the uncertain disturbances as discrete
random variables without any restriction on the shape of their
distribution [26]–[28]. The associated optimization problem in
these cases becomes a discrete multistage stochastic optimal
control problem [29]. Scenario-based problems can be solved
algorithmically; however, their size can be prohibitively large
making them impractical for control applications of water net-
works as pointed out by Goryashko and Nemirovski [20]. This
is demonstrated by Grosso et al. [3] who provide a comparison
of the two approaches. Although compression methodologies
have been proposed—such as the scenario tree generation
methodology of Heitsch and Römisch [30]—multistage sto-
chastic optimal control problems may still involve up to
millions of decision variables.

GPUs have been used for the acceleration of the algorithmic
solution of various problems in signal processing [31], com-
puter vision and pattern recognition [32], and machine learn-
ing [33], [34] leading to a manifold increase in computational
performance. To the best of our knowledge, this paper is the
first work in which GPU technology is used for the solution
of a stochastic optimal control problem.

There have been proposed parallelizable interior point algo-
rithms for two-stage stochastic optimal control problems, such
as [35]–[38], and an ad hoc interior point solver for multistage
problems [39]. However, interior point algorithms involve
complex steps and are not suitable for an implementation
on GPUs which can make most of the capabilities of the
hardware.

C. Contributions

In this paper, we address the above-mentioned challenges
by devising an optimization algorithm which makes use of
the problem structure and sparsity. We exploit the structure of
the problem, which is dictated by the structure of the scenario
tree, to parallelize the involved operations. The algorithm runs
on a GPU hardware leading to a significant speed-up as we
demonstrate in Section V.

We first formulate a stochastic MPC problem using a linear
flow-based hydraulic model of the water network while taking
into account the uncertainty which accompanies future water
demands. We propose an accelerated dual proximal gradient
algorithm for the solution of the optimal control problem and
report results in comparison with a CPU-based solver.

Finally, we study the performance of the closed-loop system
in terms of quality of service and process economics using the
Barcelona DWN as a case study. We show that the number
of scenarios can be used as a tuning parameter allowing us to
refine our representation of uncertainty and trade the economic
operation of the network for reliability and quality of service.

D. Mathematical Preliminaries

Let R̄ = R∪{+∞} denote the set of extended-real numbers.
The set of of nonnegative integers {k1, k1+1, . . . , k2}, k2 ≥ k1
is denoted by N[k1,k2]. For x ∈ R

n , we define [x]+ to be the
vector in R

n whose i th element is max{0, xi }. For a matrix
A ∈ R

n×m , we denote its transpose by A′.
The indicator function of a set C ⊆ R

n is the extended-
real valued function δ(·|C) : R

n → R̄ and it is δ(x |C) = 0
for x ∈ C and δ(x |C) = +∞ otherwise. Indicator functions
are used to encode constraints in the cost function of an
optimization problem. A function f : R

n → R̄ is called
proper if there is a x ∈ R

n so that f (x) < ∞ and
f (x) > −∞ for all x ∈ R

n . A proper convex function
f : Rn → R̄ is called lower semicontinuous or closed if for
every x ∈ R

n , f (x) = lim infz→x f (z). For a proper closed
convex function f : R

n → R̄, we define its conjugate as
f ∗(y) = supx {y ′x− f (x)}. We say that f is σ -strongly convex
if f (x)− σ

2 ‖x‖22 is a convex function. Unless otherwise stated,
‖ · ‖ stands for the Euclidean norm.

II. MODELING OF DRINKING WATER NETWORKS

A. Flow-Based Control-Oriented Model

Dynamical models of DWNs have been studied in depth
the last two decades [14], [17], [40]. Flow-based models are
derived from simple mass balance equations of the network
which lead to the following pair of equations:

xk+1 = Axk + Buk + Gddk (1a)

0 = Euk + Eddk (1b)

where x ∈ R
nx is the state vector corresponding to the volumes

of water in the storage tanks, the manipulated inputs u ∈ R
nu

are the flow set-points, which are provided as references to
the pumping stations and valves of the network, d ∈ R

nd

is the vector of water demands, and k ∈ N indices the
discrete time domain. The above-mentioned dynamical model
is derived on the basis of mass balances: (1a) describes the
transportation of water from the tanks to the demand nodes
over the network topology, while (1b) models the flow at
mixing nodes. Equation (1a) forms a linear time-invariant
system with additive uncertainty and (1b) is an algebraic
input-disturbance coupling equation with E ∈ R

ne×nu and
Ed ∈ R

ne×nd , where ne is the number of junctions in the
network.

The maximum capacity of the tanks, the maximum pumping
capacity of each pumping station, and the limits on the flow
set-points, which correspond to the valves, are described by
the following bounds:

umin ≤ uk ≤ umax (2a)

xmin ≤ xk ≤ xmax. (2b)
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Fig. 1. Collection of possible upcoming demands at a given time instant.
These results were produced using the SVM model and the data in [13].

The above-mentioned formulation has been widely used in
the formulation of MPC problems for DWNs [2], [13], [17].

B. Demand Prediction Model

The water demand is the main source of uncertainty that
affects the dynamics of the network. Various time series
models have been proposed for the forecasting of future water
demands, such as seasonal Holt-Winters, seasonal ARIMA,
BATS, and SVM [13], [41]. Such models can be used to
predict nominal forecasts of the upcoming water demand along
a horizon of N steps ahead using measurements available up
to time k, denoted by d̂k+ j |k . Then, the actual future demands
dk+ j —which are unknown to the controller at time k—can be
expressed as

dk+ j (ε j ) = d̂k+ j |k + ε j (3)

where ε j is the demand prediction error which is a random
variable on a probability space (� j ,F j , P j ) and for conve-
nience, we define the tuple ε j = (ε0, ε1, . . . , ε j ), which is
a random variable in the product probability space. We also
define d̂k = (d̂k|k, . . . d̂k+N−1|k ). A set of possible realizations
of future water demands is shown in Fig. 1 for a demand node
of the water network of Barcelona.

III. STOCHASTIC MPC FOR DWNS

In this section, we define the control objectives for the con-
trolled operation of a DWN and we formulate the stochastic
MPC problem.

A. Control Objectives

We define the following three cost functions which reflect
our control objectives. The economic cost quantifies the
production and transportation cost

�w(uk, k) = Wα(α1 + α2,k)
′uk (4)

where the term α′1uk is the water production cost, α′2,kuk is

the (time-varying) pumping (electricity) cost, and Wα is a
positive scaling factor. The cost for the operation of valves
is negligible compared with the cost of pumping so it has not
been accounted for here.

The smooth operation cost is defined as

��(�uk) = �u′k Wu�uk (5)

where �uk = uk − uk−1 and Wu ∈ R
nu×nu is a symmetric

positive definite weight matrix. It is introduced to penalize
abrupt switching of the actuators (pumps and valves).

The safety storage cost penalizes the drop of water level
in the tanks below a given safety level. An elevation above
this safety level ensures that there will be enough water
in unforeseen cases of unexpectedly high demand and also
maintains a minimum pressure for the flow of water in the
network. This is given by

�S(xk) = Wx dist(xk | Cs) (6)

where dist(x | C) = inf y∈C ‖x − y‖2 is the distance-to-set
function, Cs = {x | x ≥ xs}, xs ∈ R

nx is the safety level, and
Wx is a positive scaling factor.

These cost functions have been used in many MPC for-
mulations in the literature [13], [42]. A comprehensive dis-
cussion on the choice of these cost functions can be found
in [14] and [43].

The total stage cost at a time instant k is the summation of
the above-mentioned costs and is given by

�(xk, uk, uk−1, k) = �w(uk, k)+ ��(�uk)+ �S(xk). (7)

B. SMPC Formulation

We formulate the following stochastic MPC problem with
a prediction horizon N ∈ N, N ≥ 1 and decision variables
π = {uk+ j |k, xk+ j+1|k} j∈N[0,N−1] :

V 
(p, q, d̂k, k) = min
π

EV (π, p, q, k) (8a)

where E is the expectation operator and

V (π, p, q, k) =
N−1∑

j=0

�(xk+ j |k, uk+ j |k , uk+ j−1|k, k+ j) (8b)

subject to the constraints

xk|k = p, uk−1|k = q (8c)

xk+ j+1|k = Axk+ j |k + Buk+ j |k + Gddk+ j |k(ε j )

j ∈ N[0,N−1], ε j ∈ � j (8d)

Euk+ j |k + Eddk+ j |k(ε j ) = 0, j ∈ N[0,N−1], ε j ∈ � j (8e)

xmin ≤ xk+ j |k ≤ xmax, j ∈ N[1,N] (8f)

umin ≤ uk+ j |k ≤ umax, j ∈ N[0,N−1] (8g)

where we stress out that the decision variables {uk+ j |k} j=N−1
j=0

are required to be causal control laws of the form

uk+ j |k = ϕk+ j |k(p, q, xk+ j |k, uk+ j−1|k, ε j ). (8h)

Solving the above-mentioned problem would involve the
evaluation of multidimensional integrals over an infinite-
dimensional space which is computationally intractable. Here-
after, however, we shall assume that all � j , for j ∈ N[0,N−1],
are finite sets. This assumption will allow us to restate (8) as
a finite-dimensional optimization problem.
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Fig. 2. Closed-loop system with the proposed stochastic MPC controller
running on a GPU device.

Fig. 3. Scenario tree describing the possible evolution of the system
state along the prediction horizon. Future control actions are decided in a
nonanticipative (causal) fashion; for example, u2

1 is decided as a function of
ε2

1 but not of any of εi
2, i ∈ N[1,μ(3)] .

C. Scenario Trees

A scenario tree is the structure which naturally follows
from the finiteness assumption of � j and is shown in Fig. 3.
A scenario tree describes a set of possible future evolutions
of the state of the system known as scenarios. Scenario trees
can be constructed algorithmically from raw data as in [30].

The nodes of a scenario tree are partitioned in stages. The
(unique) node at stage k = 0 is called root and the nodes at the
last stage are the leaf nodes of the tree. We denote the number
of leaf nodes by ns . The number of nodes at stage k is denoted
by μ(k) and the total number of nodes of the tree is denoted
by μ. A path connecting the root node with a leaf node is
called a scenario. Nonleaf nodes define a set of children; at a
stage j ∈ N[0,N−1], for i ∈ N[1,μ( j )], the set of children of
the i th node is denoted by child( j, i) ⊆ N[1,μ( j+1)]. At stage
j ∈ N[1,N], the i th node i ∈ N[1,μ( j )] is reachable from a
single node at stage k − 1 known as its ancestor, which is
denoted by anc( j, i) ∈ N[1,μ( j−1)].

The probability of visiting a node i at stage j starting
from the root is denoted by pi

j . For all for j ∈ NN , we

have that
∑μ( j )

i=1 pi
j = 1 and for all i ∈ N[1,μ(k)], it is∑

l∈child( j,i) pl
j+1 = pi

j .

We define the maximum branching factor at stage j , b j ,
to be the maximum number of children of the nodes at this

stage. The maximum branching factor serves as a measure of
the complexity of the tree at a given stage.

D. Reformulation as a Finite-Dimensional Problem

We shall now exploit the above-mentioned tree structure
to reformulate the optimal control problem (8) as a finite-
dimensional problem. The water demand, given by (3), is now
modeled as

di
k+ j |k = d̂k+ j |k + εi

j (9)

for all j ∈ N[0,N−1] and i ∈ N[1,μ( j+1)]. The input-disturbance
coupling (8e) is then readily rewritten as

Eui
k+ j |k + Eddi

k+ j |k = 0 (10)

for j ∈ N[0,N−1] and i ∈ N[1,μ( j+1)].
The system dynamics is defined across the nodes of the

tree by

xl
k+ j+1|k = Axi

k+ j |k + Bul
k+ j |k + Gddl

k+ j |k (11)

for j ∈ N[0,N−1], i ∈ N[1,μ( j )], and l ∈ child( j, i), or,
alternatively

xi
k+ j+1|k = Axanc( j+1,i)

k+ j |k + Bui
k+ j |k + Gd di

k+ j |k (12)

for j ∈ N[0,N−1] and i ∈ N[1,μ( j+1)].
Now, the expectation of the objective function (8b) can be

derived as a summation across the tree nodes

EV (π, p, q, k)

=
N−1∑

j=0

μ( j )∑

i=1

pi
j�

(
xi

k+ j |k, ui
k+ j |k, uanc( j,i)

k+ j−1|k, k + j
)

(13)

where x1
k|k = p and uk−1|k = q .

In order to guarantee the recursive feasibility of the control
problem, the state constraints (8f) are converted into soft
constraints, that is, they are replaced by a penalty of the form

�d (x) = γd dist(x, C1) (14)

where γd is a positive penalty factor and C1 = {x | xmin ≤
x ≤ xmax}. Using this penalty, we construct the soft state
constraint penalty

Vs(π, p) =
N∑

j=0

μ( j )∑

i=1

�d(
xi

k+ j |k
)
. (15)

The modified, soft-constrained, SMPC problem can be now
written as

Ṽ 
(p, q, d̂, k) = min
π

EV (π, p, q, k)+ Vs(π, p) (16a)

s.t. x1
k|k = p, uk−1|k = q (16b)

umin ≤ ui
k+ j |k ≤ umax

j ∈ N[0,N−1], i ∈ N[1,μ( j )] (16c)

and system equations (10) and (12).
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IV. SOLUTION OF THE STOCHASTIC OPTIMAL

CONTROL PROBLEM

In this section, we extend the GPU-based proximal gradient
method proposed in [44] to solve the SMPC problem (16).
For ease of notation, we will focus on the solution of the
SMPC problem at k = 0 and denote x j |0 = x j , u j |0 = u j ,
and d̂ j |0 = d̂ j .

A. Proximal Gradient Algorithm

For a closed, proper extended-real valued function
g : Rn → R̄, we define its proximal operator with parameter
γ > 0, proxγ g : Rn → R

n as [45]

proxγ g(v) = arg min
x∈Rn

{
g(x)+ 1

2γ
‖x − v‖22

}
. (17)

The proximal operator of many functions is available in closed
form [45], [46]. When g is given in a separable sum form,
that is

g(x) =
κ∑

i=1

gi(xi ) (18a)

then, for all i ∈ N[1,κ]
(proxγ g(v))i = proxγ gi

(vi ). (18b)

This is known as the separable sum property of the proximal
operator.

Let z ∈ R
nz be a vector encompassing all states xi

j for
j ∈ N[0,N] and i ∈ N[1,μ( j )] and inputs ui

j for j ∈ N[0,N−1],
i ∈ N[1,μ( j+1)]; this is the decision variable of problem (16).

Let f : Rnz → R̄ be defined as

f (z) =
N−1∑

j=0

μ( j )∑

i=1

pi
j

(
�w

(
ui

j

)+ ��
(
�ui

j

))

+ δ
(
ui

j |�1
(
di

j

))

+ δ
(
xi

j+1, ui
j , xanc( j+1,i)

j |�2
(
di

j

))
(19)

where �ui
j = ui

j − uanc( j,i)
j−1 and �1(d) is the affine subspace

of R
nu induced by (10), that is

�1(d) = {u : Eu + Edd = 0} (20)

and �2(d) is the affine subspace of R
2nx+nu defined by the

system dynamics (12)

�2(d) = {(xk+1, xk, u) : xk+1 = Axk + Bu + Gd d}. (21)

We define the auxiliary variable ζ which serves as a copy
of the state variable xi

j —that is we require ζ i
j = xi

j . The

reason for the introduction of this copy will be clarified
in Section IV-C.

We introduce the variable t = (ζ, x, u) ∈ R
nt and define an

extended-real valued function g : Rnt → R̄ as

g(t) =
N−1∑

j=0

μ( j )∑

i=1

�S(
xi

j+1

)+ �d(
ζ i

j+1

)+ δ
(
ui

j |U
)

(22)

where U = {u ∈ R
nu : umin ≤ u ≤ umax}.

Now the finite-dimensional optimization problem (16) can
be written as

Ṽ 
 = min
z,t

f (z)+ g(t) (23a)

s.t. H z = t (23b)

where

H =
⎡

⎣
Inx 0
Inx 0
0 Inu

⎤

⎦. (24)

The Fenchel dual of (23) is written as [47, Corollary 31.2.1]

D̃
 = min
y

f ∗(−H ′y)+ g∗(y) (25)

where y is the dual variable. The dual variable y can
be partitioned as y = (ζ̃ i

j+1, x̃ i
j+1, ũi

j ), where ζ̃ i
j+1, x̃ i

j+1,

and ũi
j are the dual variables corresponding to ζ i

j+1, xi
j+1,

and ui
j , respectively. We also define the auxiliary variable

ξ̃ i
j := ζ̃ i

j + x̃ i
j .

According to [48, Th. 11.42], since function f (z)+ g(H z)
is proper, convex, and piecewise linear-quadratic, then the
primal problem (23) is feasible whenever the dual prob-
lem (25) is feasible and, furthermore, strong duality holds,
i.e., Ṽ 
 = D̃
. Moreover, the optimal solution of (23) is given
by z
 = ∇ f ∗(−H ′y
), where y
 is any solution of (25).
Applying [48, Proposition 12.60] to f ∗ and since f is lower
semicontinuous, proper and σ -strongly convex—as shown at
the end of Appendix A—its conjugate f ∗ has Lipschitz-
continuous gradient with a constant 1/σ .

An accelerated version of proximal gradient method, which
was first proposed by Nesterov [49], is applied to the dual
problem. This leads to the following algorithm:

wν = yν + θν(θ
−1
ν−1 − 1)

(
yν − yν−1) (26a)

zν = arg min
z
{〈z, H ′wν 〉 + f (z)} (26b)

tν = proxλ−1g(λ−1wν + H zν) (26c)

yν+1 = wν + λ(H zv − tv ) (26d)

θν+1 = 1
2

(√
θ4
ν + 4θ2

ν − θ2
ν

)
(26e)

starting from a dual-feasible vector y0 = y−1 = 0 and
θ0 = θ−1 = 1. In (26), λ > 0 is a constant step length,
which will be discussed in Section IV-D.

It is worth noting that Algorithm 26 may be interpreted as
an accelerated version of [50].

In the first step (26a), we compute an extrapolation of the
dual vector. In the second step (26b), we calculate the dual
gradient, that is zν = ∇ f ∗(−H ′wν), at the extrapolated dual
vector using the conjugate subgradient theorem [47, Th. 23.5].
The third step comprises of (26c) and (26d) where we update
the dual vector y and in the final step of the algorithm, we
compute the scalar θν , which is used in the extrapolation step.

This algorithm has a convergence rate of O(1/ν2) for
the dual iterates as well as for the ergodic primal iterate
defined through the recursion z̄ν = (1 − θν)z̄(ν−1) + θνzν ,
i.e., a weighted average of the primal iterates [51].
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The splitting given in (23), with this particular choice of
f and g, is not unique; for example, Shapiro et al. [29]
have proposed a dual decomposition scheme where the sce-
nario tree is decomposed into a set of independent scenarios,
while the tree structure is imposed through a linear equation
of the form (23b). However, such a splitting may increase
considerably the total number of variables without facilitating
the implementation or offering some advantage in terms of
convergence speed.

B. Computation of Primal Iterate
The most critical step in the algorithm is the compu-

tation of zν , which accounts for most of the computation
time required by each iteration. This step boils down to the
solution of an unconstrained optimization problem by means
of dynamic programming, where certain matrices (which are
independent of wν) can be computed once before we run
the algorithm to facilitate the online computations. These are:
1) the vectors β i

j , ûi
j , ei

j , which are associated with the update
of the time-varying cost (see Appendix A) and 2) the matrices
�,�,�, B̄ (see Appendix B). The latter are referred to as the
factor step of the algorithm and matrices �,�,� , and B̄ are
independent of the complexity of the scenario tree.

The computation of zν at each iteration of the algorithm
requires the computation of the aforementioned matrices and
is computed using Algorithm 1 to which we refer as the
solve step. Computations involved in the solve step are merely
matrix-vector multiplications. As the algorithm traverses the
nodes of the scenario tree stagewise backward (from stage
N − 1 to stage 0), computations across the nodes at a given
stage can be performed in parallel. Hardware such as GPUs,
which enable us to parallelizable such operations lead to a
great speed-up as we demonstrate in Section V.

The dynamic programming approach, which gives rise to
Algorithm 1, is equivalent to taking the KKT optimality
conditions of (26b) and formulating the costate dynamical
equations. Algorithm 1 is also reminiscent of the Riccati-type
recursion in [51].

C. Computation of Dual Iterate

Function g given in (22) is given in the form of a separable
sum

g(t) = g(ζ, x, u) = g1(ζ )+ g2(x)+ g3(u) (27)

where

g1(ζ ) =
N−1∑

j=0

μ( j )∑

i=1

�S(ζ i
j+1

)
(28a)

g2(x) =
N−1∑

j=0

μ( j )∑

i=1

�d(
xi

j+1

)
(28b)

g3(u) =
N−1∑

j=0

μ( j )∑

i=1

δ
(
ui

j | U
)
. (28c)

Functions g1(·) and g2(·) are in turn separable sums of
distance functions from a set, and g3(·) is an indicator func-
tion. Their proximal mappings can be easily computed as in

Algorithm 1 Solve Step
Require: Output of the factor step (See Appendices A and B),

i.e., �,�,�, B̄, ûi
j , β

i
j , ei

j , p, q and wν = (ζ̃ i
j+1, x̃ i

j+1, ũi
j ).

qi
N ← 0, and r i

N ← 0,∀i ∈ N[1,ns ],
for j = N − 1, . . . , 0 do

for i = 1, . . . , μ(k) do {in parallel}
σ l

j ← r l
j+1 + βl

j ,∀l ∈ child( j, i)

vl
j ← 1

2pl
j

(
�l

j (ξ̃
l
j+1 + ql

j+1)+� l
j ũ

l
j +�l

j σ
l
j

)
,

∀l ∈ child( j, i)
r i

j ←
∑

l∈child( j,i) σ l
j + B̄ ′(ξ̃ l

j+1 + ql
j+1)+ Lũl

j

qi
j ← A′

∑
l∈child( j,i) ξ̃ l

j+1 + ql
j+1

end for
end for
x1

0 ← p, u−1 ← q ,
for j = 0, . . . , N − 1 do

for i = 1, . . . , μ(k) do {in parallel}
v i

j ← v
anc( j,i)
j−1 + v i

j

ui
j ← Lv i

j + ûi
j

x i
j+1← Axanc( j,i)

j + B̄v i
j + ei

j
end for

end for
return {xi

j }Nj=1, {ui
j }N−1

j=0

Appendix C and essentially are elementwise operations on the
vector t that can be fully parallelized.

D. Preconditioning and Choice of λ

First-order methods are known to be sensitive to scaling and
preconditioning can remarkably improve their convergence
rate. Various preconditioning method such as [52] and [53]
have been proposed in the literature. Additionally, a paralleliz-
able preconditioning method tailored to stochastic programs
for use with interior point solvers has been proposed in [54].
Here, we employ a simple diagonal preconditioning, which
consists in computing a diagonal matrix H̃D with positive
diagonal entries, which approximates the dual Hessian HD

and use H̃−1/2
D to scale the dual vector [55, 2.3.1]. Since

the uncertainty does not affect the dual Hessian, we take this
preconditioning matrix for a single branch of the scenario tree
and use it to scale all dual variables.

In a similar way, we compute the parameter λ. We choose
λ = 1/L HD , where L HD is the Lipschitz constant of the dual
gradient which is computed as ‖H‖2/σ as in [55]. It again
suffices to perform the computation for a single branch of the
scenario tree.

E. Termination

The termination conditions for the above-mentioned algo-
rithm are based on the ones provided in [51]. However, rather
than checking these conditions at every iteration, we perform
always a fixed number of iterations, which is dictated by
the sampling time. We may then check the quality of the
solution a posteriori in terms of the duality gap and the term
‖H zν − tν‖∞.
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Fig. 4. Structure of the DWN of Barcelona.

V. CASE STUDY: THE BARCELONA DWN

We now apply the proposed control methodology to the
DWN of the city of Barcelona using the data provided
in [2] and [13]. The topology of the network is shown
in Fig. 4. The system model consists of 63 states corresponding
to the level of water in each tank, 114 control inputs, which are
pumping actions and valve positions, 88 demand nodes, and
17 junctions. The prediction horizon is N = 24 with sampling
time of 1 h. The future demands are predicted using the SVM
time series model developed in [13].

In our subsequent analysis, the initial state of the system,
x0 = p, is selected uniformly randomly between xs and xmax.

A. Performance of GPU-Accelerated Algorithm

The accelerated proximal gradient (APG) algorithm was
implemented in CUDA-C v6.0 and the matrix-vector com-
putations were performed using cuBLAS. We compared the
GPU-based implementation with the interior point solver of
Gurobi. Active-set algorithms exhibited very poor performance
and we did not include the respective results.

All computations on CPU were performed on a 4×2.60GHz
Intel i5 machine with 8GB of RAM running 64-b Ubuntu
v14.04 and GPU-based computations were carried out on an
NVIDIA Tesla C2075.

The relative tolerance of Gurobi was set to 2 · 10−2 instead
of the default tolerance of 10−8. The dependence of the
computation time on the size of the scenario tree is reported
in Fig. 5, where it can be noticed that APG running on GPU
compared with Gurobi is 10 to 25 times faster. Furthermore,
the speed-up increases with the number of scenarios as we
may tell by looking at Fig. 5 (inset). The runtimes shown are
averages over 100 random initial points x0.

The optimization problems we are solving here are of
noticeably large size. Indicatively, the scenario tree with
493 scenarios counts approximately 2.52 million dual decision
variables (1.86 million primal variables), and while Gurobi
requires 860 s to solve it, our CUDA implementation solves
it in 58.8 s; this corresponds to a speed-up of 14.6.

In all of our simulations, we obtained a sequence of control
actions across the tree nodes U 


apg = {ui
j } which was,

elementwise, within ±0.029 m3/s (1.9%) of the solution pro-
duced by Gurobi with relative tolerance 10−8. Moreover, we

Fig. 5. Runtime of the CUDA implementation against the number of
scenarios considered in the optimization problem. Comparison with the
runtimes of Gurobi.

should note that the control action u

0 computed by APG with

500 iterations was consistently within ±0.0025 m3/s (0.08%)
of the Gurobi solution. Given that only u


0 is applied
to the system, while all other control actions ui

j for
j ∈ N[1,N−1] and i ∈ N[1,μ( j )] are discarded, 500 iterations
are well sufficient for convergence.

B. Closed-Loop Performance

In this section, we analyze the performance of SMPC with
different scenario-trees. This analysis is carried for a period of
7 days (Hs = 168) from July 1, 2007 to July 8, 2007. Here,
we compare the operational cost and the quality of service of
various scenario-tree structures.

The weighting matrices in the operational cost are chosen
as Wα = 2 · 104, Wu = 105 · I , and Wx = 107, respectively,
and γd = 5 · 107. The demand is predicted using the SVM
model presented in [13]. The steps involved in SMPC using
GPU-based APG in closed-loop is summarized in Algorithm 2.

Algorithm 2 Closed-Loop of DWN With SMPC With Proxi-
mal Operator
Require: Scenario tree, current state measurement x0 and

previous control u−1.
Compute �, �, � and B̄ as in Appendix B
Precondition the original optimization problem and compute
λ as in Section IV-D.
loop

Step 1. Predict the future water demands d̂k using current
and past demand data.
Step 2. Compute ûi

j , β i
j , ei

j as in Appendix A.
Step 3. Solve the optimization problem using APG on GPU
using iteration (26) and Algorithm 1.
Step 4. Apply u1

0 to the system, update u−1 = u1
0

end loop

For the performance assessment of the proposed con-
trol methodology, we used various controllers summarized
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TABLE I

VARIOUS CONTROLLERS USED TO ASSESS THE CLOSED-LOOP
PERFORMANCE OF THE PROPOSED METHODOLOGY. THE

NUMBERS IN THE BRACKETS DENOTE THE FIRST

MAXIMUM BRANCHING FACTORS, b j , OF THE

SCENARIO TREE, WHILE ALL SUBSEQUENT
BRANCHING FACTORS ARE EQUAL TO 1

in Table I. The corresponding computation times are presented
in Fig. 5.

To assess the performance of closed-loop operation of the
SMPC-controlled network, we used the key performance indi-
cators (KPIs) reported in [2], [3], and [56]. For a simulation
time length Hs , the performance indicators are computed by

KPIE = 1

Hs

Hs∑

k=1

(α1 + α2,k)
′|uk | (29a)

KPI�U = 1

Hs

Hs∑

k=1

‖�uk‖2 (29b)

KPIS =
Hs∑

k=1

‖[xs − xk]+‖1 (29c)

KPIR = ‖xs‖1
1

Hs

∑Hs
k=1 ‖xk‖1

· 100%. (29d)

KPIE is the average economic cost, KPI�U measures the
average smoothness of the control actions, KPIS corresponds
to the total amount of water used from storage, that is the
amount of water that is removed from a tank when the volume
in that tank is below the safe level xs , and KPIR is the
percentage of the safety volume xs contained into the average
volume of water.

1) Risk Versus Economic Utility: Fig. 6 shows the tradeoff
between economic and safe operation: The more scenarios
we use to describe the distribution of demand prediction
error, the safer the closed-loop operation becomes as it is
reflected by the decrease of KPIS . Stochastic MPC leads to
a significant decrease of economic cost compared with the
certainty-equivalence approach; however, the safer we require
the operation to be, the higher the operating cost we should
expect. For example, if the designer opts for 30 scenarios,
they will have struck a low operating cost which, nevertheless,
comes with a high value of KPIS , that is, operation under high
risk. In order to decrease this risk, one needs to consider a
higher number of scenarios which comes at a higher operating
cost. We may also observe that for too few scenarios, the
operation of the network will be both expensive and will incur
a rather high risk.

Fig. 6. Tradeoff between risk and economic utility in terms of scenarios.
KPIE represent the economical utility and KPIS shows the risk of violation.

TABLE II

KPIs FOR PERFORMANCE ANALYSIS OF THE DWN WITH DIFFERENT

CONTROLLERS. THE LOWEST AND THE HIGHEST VALUES IN EACH

COLUMN ARE HIGHLIGHTED

2) Quality of Service: A measure of the reliability and
quality of service of the network is KPIS , which reflects the
tendency of water levels to drop under the safety storage levels.
As expected, the CE-MPC controller leads to the most unsafe
operation, whereas SMPC8 leads to the lowest value.

3) Network Utility: Network utility is defined as the ability
to utilize the water in the tanks to meet the demands rather
than pumping additional water and is quantified by KPIR .
In Table II, we see the dependence of KPIR on the number of
scenarios of the tree. The decrease in KPIR one may observe is
because the more scenarios are introduced, the more accurate
the representation of uncertainty becomes and the system does
not need to operate, on average, too far away from xs . Of
course, when operating close to xs , we need to take into
account the value of KPIS to check whether the operation
violates the safety storage limit.

4) Smooth Operation: We may notice that the introduction
of more scenarios results in an increase in KPI�U . Then, the
controller becomes more responsive to accommodate the need
for a less risky operation, although the value of KPI�U is not
greatly affected by the number of scenarios.

In Fig. 7, we show two pumping actions during 168 h
(1 week) of operation. We may observe the tendency of the
controller to be thrifty with pumping when the corresponding
pumping cost is high.
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Fig. 7. Pumping actions using SMPC4 (expressed in % of umax) and the
corresponding weighted time-varying cost Wαα2,k in economic units.

C. Implementation Details

At every time instant k, we need to load onto the GPU
the state measurement and a sequence of demand predictions
(see Fig. 2), that is d̂k . This amounts to 8.4 kB and is rapidly
uploaded on the GPU (less than 0.034 ms). In case we need
to update the scenario-tree values, that is εk , and for the
case of SMPC8, we need to upload 3.52 MB which is done
in 3.74 ms. Therefore, the time needed to load these data on
the GPU is not a limiting factor.

The parallelization of matrix-vector multiplications
required in Algorithm 1 are implemented using method
cublasSgemmBatched of cuBLAS. Vector additions are
performed using cublasSaxpy and summations over the
set of children of a node were done using a custom kernel.

Compared with an MATLAB implementation of APG, the
presented GPU implementation was found to be 60 times
faster for SMPC7 and 95 times faster for SMPC8. How-
ever, we believe that the comparison to an MATLAB
implementation is not totally fair and a comparison to
an optimized C implementation is beyond the scope of
this paper. It is evident that GPU technology enables very
high speed-ups, notwithstanding. The source code of our
implementation is publicly available with an LGPL v3
license at https://github.com/ajaykumarsampath/GPU- APG-
water-network.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have presented a framework for the formu-
lation of an SMPC problem for the operational management of
DWNs and we have proposed a novel approach for the efficient
numerical solution of the associated optimization problem on a
GPU. The proposed algorithm achieves remarkably high speed
as we fully exploit the structure of the optimization problem
and we parallelize its execution to a large extent. At the same
time, it involves only matrix-vector operations and it is easy
to implement.

We demonstrated the computational feasibility of the algo-
rithm and the benefits for the operational management of the
system in terms of performance (which we quantified using
certain KPIs from the literature). Given that the proposed

algorithmic scheme can solve linear stochastic optimal control
problems so fast, future research should focus on the use
of nonlinear dynamical models accounting for the pressure
drops across the network. We believe that the algorithmic
developments presented in this paper pave the way for the
application of SMPC methodologies to DWNs.

APPENDIX A
ELIMINATION OF INPUT-DISTURBANCE COUPLING

In this section, we discuss how the input-disturbance equal-
ity constraints can be eliminated by a proper change of input
variables and we compute the parameters β i

j , ûi
j , ei

j ∀i ∈
N[1,μ( j )], j ∈ N[0,N], which are then provided as input to
Algorithm 1. These depend on the nominal demand forecasts
d̂k+ j |k and on the time-varying economic cost parameters
α2,k+ j for j ∈ N[0,N−1], therefore, they need to be updated at
every time instant k.

The affine space �1(d) introduced in (20) can be written as

�1(d) = {v ∈ R
nv : u = Lv + û(d)} (30)

where L ∈ R
nu×nv is a full rank matrix whose range spans

the nullspace of E , i.e., for every v ∈ R
nv , we have Lv is in

the kernel of E and û(d) satisfies Eû(d)+ Edd = 0.
Substituting ui

j = Lv i
j + ûi

j , ∀i ∈ N[1,μ( j )], j ∈ N[0,N] in
the manifold defined by the system dynamics �2(d) as in (21)
gives

�2(d) = {(x j+1, x j , v) : x j+1 = Ax j + B̄v + e,

B̄ = B L, e = Bû + Gd d} (31)

and we define

ei
j = Bûi

j + Gddi
j . (32)

Now the cost in (19) is transformed as

N−1∑

j=0

μ( j )∑

i=1

pi
j

(
�w

(
ui

j

)+ ��
(
�ui

j

))

=
N−1∑

j=0

μ( j )∑

i=1

pi
j

(
�w

(
v i

j

)+ ��
(
�v i

j , ûi
j

))
(33)

where

R̂ = Wu L (34a)

R̄ = L ′ R̂ (34b)

ᾱ j = Wα(α1 + α2, j+k)L (34c)

�w(v i
j ) = ᾱ′j v i

j (34d)

�v i
j = v i

j − v
anc( j,i)
j−1 (34e)

�ûi
j = ûi

j − ûanc( j,i)
j−1 (34f)

��
(
�v i

j ,�ûi
j

) = �v i
j R̄�v i

j + 2�ûi′
j R̂�v i

j . (34g)
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By substituting and expanding �v i
j and �ûi

j in ��(�v i
j ,�ûi

j )
the cost in (34g) becomes

N−1∑

j=0

μ( j )∑

i=1

pi
j

(
�w

(
ui

j

)+ ��
(
�ui

j

))

=
N−1∑

j=0

μ( j )∑

i=1

p̄i
jv

i′
j R̄v i

j − 2 pi
jv

anc( j,i)′
j−1 R̄v i

j + β i′
j v i

j (35)

where

p̄i
j = pi

j +
∑

l∈child( j,i)

pl
j+1 (36a)

β i
j = pi

j ᾱ j+2 pi
j R̂

⎛

⎝p̄i
j û

i
j−ûanc( j,i)

j−1 −
∑

l∈child( j,i)

pl
j+1ûl

j+1

⎞

⎠.

(36b)

Now ûi
j , ei

j , and β i
j are calculated by (30), (32), and (36b),

respectively. Using our assumption that L is full rank, we
can see that R̄ is a positive definite and symmetric matrix,
therefore, f is strongly convex.

APPENDIX B
FACTOR STEP

Algorithm 1 solves the unconstrained minimization
problem (26b), that is

z
 = arg min
z
{〈z, H ′y〉 + f (z)} (37)

where z = {xi
j+1, ui

j }, y = {ζ̃ i
j+1, x̃ i

j+1, ũi
j } for i ∈ N[1,μ( j )]

and j ∈ N[0,N−1], f (z) is given by (19) and H is given
by (24). Substituting H the optimization problem becomes

z
 = arg min
z

N−1∑

j=0

μ( j )∑

i=1

pi
j

(
�w

(
ui

j

)+ ��
(
�ui

j

))

+ ξ̃ i′
j+1xi

j+1 + ũi′
j ui

j + δ
(
ui

j |�1
(
di

j

))

+ δ
(
xi

j+1, ui
j , xanc( j+1,i)

j |�2
(
di

j

))
(38)

where ξ̃ i
j := x̃ i

j + ζ̃ i
j .

The input-disturbance coupling constraints imposed by
δ(ui

j |�1(di
j )) in the above-mentioned problem are eliminated

as discussed in Appendix A. This changes the input vari-
able from ui

j to v i
j given by (30) and the cost function as

in (35). We, therefore, replace the decision variable z with
z̄ := {xi

j , v
i
j } and the optimization problem (38) reduces to

z̄
 = arg min
z̄

N−1∑

j=0

μ( j )∑

i=1

p̄i
jv

i′
j R̄v i

j − 2 pi
jv

anc( j,i)′
j−1 R̄v i

j

+ β i′
j v i

j + ξ̃ i′
j+1x j

j+1 + ũi′
j Lv i

j

+ δ
(
xi

j+1, v
i
j , xanc(k,i)

j

∣∣�2
(
di

j

))
(39)

where ui
j = Lv i

j + ûi
j .

The above-mentioned problem is an unconstrained opti-
mization problem with quadratic stage cost which is solved
using dynamic programming [57]. This method transforms the

complex problem into a sequence of subproblems solved at
each stage.

Using dynamic programming, we find that the transformed
control actions v i


j have to satisfy the recursive formula

v i

j = v

anc( j,i)
j−1 + 1

2 pi
j

(
�

(
ξ̃ i

j+1 + qi
j+1

)+ � ũi
j

+�(β i
j + r i

j+1)
)

(40)

where

� = −R̄−1 (41a)

� = �B̄ ′ (41b)

� = �L . (41c)

Matrix R̄ is symmetric and positive definite; therefore, we can
compute once its Cholesky factorization so that we obviate the
computation of its inverse.

qi
j+1 and r i

j+1 in (40) correspond to the linear cost terms

in the cost-to-go function at node i of stage j+1. At stage j ,
these terms are updated by substituting v i


j as

r s
j =

∑

l∈child( j−1,s)

σ l
j + B̄ ′

(
ξ̃ l

j+1 + ql
j+1

)+ Lũl
j (42a)

qs
j = A′

∑

l∈child( j−1,s)

ξ̃ l
j+1 + ql

j+1 (42b)

where s = anc( j, i).
Equations (40) and (42) form the solve step as

in Algorithm 1. Matrices �, �, and � are required to be
computed once.

APPENDIX C
PROXIMAL OPERATORS

Function g in (27) is a separable sum of distance and
indicator functions and its proximal is computed according
to (18). The proximal operator of the indicator of a convex
closed set C , that is

χC(x) =
{

0, if x ∈ C
+∞, otherwise

(43)

is the projection operator onto C , that is

proxλχC
(v) = projC(v) = arg min

y∈C
‖v − y‖. (44)

When g is the distance function from a convex closed set C ,
that is

g(x) = μ dist(x | C) = inf
y∈C

μ‖x − y‖
= μ‖x − projC(x)‖ (45)

then proximal operator of g given by [46]

proxλg (v) =
⎧
⎨

⎩
v + projC(v)− v

dist(v | C)
, if dist(v | C) > λμ

projC(v), otherwise.
(46)
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