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Abstract— Preference-based global optimization algo-
rithms minimize an unknown objective function only based
on whether the function is better, worse, or similar for
given pairs of candidate optimization vectors. Such opti-
mization problems arise in many real-life examples, such
as finding the optimal calibration of the parameters of a
control law. The calibrator can judge whether a particular
combination of parameters leads to a better, worse, or
similar closed-loop performance. Often, the search for the
optimal parameters is also subject to unknown constraints.
For example, the vector of calibration parameters must
not lead to closed-loop instability. This paper extends an
active preference learning algorithm introduced recently by
the authors to handle unknown constraints. The proposed
method, called C-GLISp, looks for an optimizer of the prob-
lem only based on preferences expressed on pairs of can-
didate vectors, and on whether a given vector is reported
feasible and/or satisfactory. C-GLISp learns a surrogate of
the underlying objective function based on the expressed
preferences, and a surrogate of the probability that a sam-
ple is feasible and/or satisfactory based on whether each
of the tested vectors was judged as such. The surrogate
functions are used iteratively to propose a new candidate
vector to test and judge. Numerical benchmarks and a
semi-automated control calibration task demonstrate the
effectiveness of C-GLISp, showing that it can reach near-
optimal solutions within a small number of iterations.

Index Terms— Active preference learning, Global Opti-
mization with Unknown Constraints, Model predictive con-
trol

I. INTRODUCTION

Active learning algorithms for black-box global optimiza-
tion problems have been studied since the sixties under dif-
ferent names [1–4]. These algorithms solve the problem by
optimizing a surrogate of the objective function, which is
estimated by exploring the space of the optimization variables.
In particular, nowadays Bayesian Optimization (BO) [5] is
widely used to solve problems in which the cost function
can only be quantified after running an experiment, such as
in experimental controller calibration [6] and in automated
machine learning [7]. The main idea of such methods is to fit a

This paper was partially supported by the Italian Ministry of Univer-
sity and Research under the PRIN’17 project “Data-driven learning of
constrained control systems” , contract no. 2017J89ARP.

M. Zhu and A. Bemporad are with IMT School for Advanced Stud-
ies Lucca, 55100 Lucca, Italy (e-mail: mengjia.zhu@imtlucca.it; al-
berto.bemporad@imtlucca.it).

D. Piga is with IDSIA Dalle Molle Institute for Artificial Intelligence,
SUPSI-USI, 6962 Lugano, Switzerland (e-mail: dario.piga@supsi.ch).

surrogate function to the available observations and iteratively
suggest the next query point by optimizing an acquisition
function. The latter trades off between exploiting the surrogate
function to improve the objective and scouting unexplored
areas of the search domain. An alternative surrogate method
to BO based on estimating the underlying objective by radial
basis functions and inverse distance weighting for exploration,
called GLIS, was recently proposed in [8].

Successful applications of global optimization algorithms
based on active learning for the calibration of Model Predictive
Control (MPC), PID, and state-feedback control laws were
presented in [9–12]. In this context, the tuning parameters of
the controller are the optimization variables, and a quantita-
tive characterization of the resulting closed-loop performance
after running a simulation or experiment is the objective
to optimize. These algorithms were also used for model
selection [13, 14], for controller tuning in robotic manipulation
and trajectory tracking [15–17], in optimizing gait parameters
in robotic bipedal locomotion [18], and for “safe” optimization
of position controller parameters of quadrotors [19].

A limitation of black-box optimizers like BO and GLIS
is that they require quantifying an objective function after
running an experiment. However, many real-world controller
calibration problems involve multiple objectives to optimize,
such as settling time, overshoots, actuation effort, compu-
tational burden, and other performance-related metrics. The
relative weights of such objectives can be hard to assign,
and sometimes even impossible to quantify, as they are the
result of a qualitative judgment. On the other hand, a skilled
calibrator can often assess closed-loop performance of certain
tuning combinations in terms of “this test was better than
the other one,” i.e., by pairwise comparisons. Thus, when
quantifying an objective function is difficult or impossible,
one can instead use these expressed preferences to learn an
underlying surrogate function to be optimized, which leads to
the area of preference-based learning algorithms.

Preference-based Bayesian optimization (PBO) has been
proposed in [20–23]. Preference-based reinforcement learning
(RL) has also drawn much attention in recent years [24]. The
reader is referred to the survey paper [25] for a comprehensive
review. Note that sample efficiency, which is related to the
credit assignment task in RL, is a major challenge in many
preference-based RL methods [25]. A more sample-efficient
active preference learning method, called GLISp (an extension
of GLIS), was proposed in [26]. GLISp learns a surrogate
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of the underlying preference relations by solving a Quadratic
Programming (QP) problem, whose constraints reflect the
expressed preference on whether a specific candidate is better
than the other. Then, the algorithm iteratively proposes a new
candidate for testing to the decision-maker for comparison.
This experiment-driven preference-based approach was tested
in [27] for semi-automated MPC calibration (automatic selec-
tion of control parameters, manual assessment of performance
by comparisons), demonstrating its effectiveness in terms of
the number of experiments needed to reach near-optimal
closed-loop performance.

Real-life control design problems often involve constraints
that are unknown beforehand, or for which it is not possible
to find an explicit analytic expression. This is a challenge
since safe exploration can be essential in many control ap-
plications, and infeasible experiments can be dangerous and
costly. Several methods have been proposed in the literature to
handle unknown constraints and encourage safe exploration.
In [28], Sui et al. presented a stagewise safe BO with Gaus-
sian processes, which they later extended to allow multiple
safety constraints independent of the objective function [29].
A general formulation for constrained BO and a modified
version of the expected improvement acquisition function was
illustrated in [30], which handles noisy constraint observations
and considers cases in which the objective and constraint
functions are decoupled. In [31], a sequential model-based
optimization method was proposed. The unknown feasible
region boundaries are first reconstructed from data through
support vector machines. Then, a global optimization step
is performed via BO. Differently from the aforementioned
methods, GLISp accounts for unknown constraints implicitly
in the preferences expressed by the decision maker by making
the samples that are infeasible lose the pairwise comparisons
against the feasible ones.

This paper extends GLISp to handle unknown constraints
in the active learning phase explicitly, therefore encouraging
safe exploration. Besides expressing preferences, the decision-
maker is asked to label an experiment as feasible and if its
outcome is overall satisfactory (yes/no). Based on such labels,
a surrogate of the probability of constraint feasibility and
experiment’s satisfaction is learned via an Inverse Distance
Weighting (IDW) interpolant function [8]. The surrogates are
properly integrated within the acquisition function to find the
next point to test. We show the efficiency and effectiveness
of the proposed method, called C-GLISp, in three numerical
benchmarks, and on an extension of the case study originally
proposed in [27] on semi-automated MPC calibration for
autonomous driving. MATLAB and Python implementations
of C-GLISp are also provided and available at http://cse.
lab.imtlucca.it/˜bemporad/glis.

The rest of the paper is organized as follows. The problem
of preference-based optimization with unknown constraints is
formulated in Section II. The proposed active-learning algo-
rithm and details for its practical implementation are discussed
in Section III. Numerical benchmarks showing the properties
and the effectiveness of the proposed method are reported in
Section IV, while the case study on semi-automated MPC
calibration for autonomous driving is presented in Section V.

Conclusions and directions for future research are drawn in
Section VI.

II. PROBLEM FORMULATION

Let D ⊆ Rnx be the space of decision vectors x. We
are interested in minimizing an (unknown) objective function
f : D → R subject to the constraint that x belongs to an
(unknown) feasibility set ΩG ⊆ D.

We assume that we cannot represent the set ΩG, but rather
that, given a vector x ∈ D, a decision-maker can assess the
value of the feasibility function G : D → {0, 1} defined as

G(x) =

{
0 if x /∈ ΩG
1 if x ∈ ΩG.

(1)

In other words, a value x outside ΩG will be considered as
“unacceptable” (G(x) = 0) by the decision-maker. For exam-
ple, an unacceptable x can be a set of controller parameters
leading to an unstable closed-loop behavior or to a control law
that is too expensive to compute in real-time.

Furthermore, we assume that the objective function f cannot
be directly quantified, but rather that can be indirectly observed
in two ways:

1. For a given sample x ∈ D, the decision-maker is re-
quested to say whether or not x leads to certain “satisfac-
tory performance”. Formally, we can define a satisfaction
set ΩS ⊆ D and a satisfaction function S : D → {0, 1}
as

S(x) =

{
0 if x /∈ ΩS
1 if x ∈ ΩS ,

(2)

where the set ΩS contains all the vectors x leading to a
performance that the decision-maker judges satisfactory.
An analytic expression of ΩS is therefore not available,
only the value S(x) is provided by the decision-maker
for any given x ∈ D. Note that ΩS may not be a
subset of ΩG, for example when the preference-based
optimization process is carried out in simulation: a sample
may lead to satisfactory performance but would not
be implementable due to hardware limitations. On the
other hand, in cases of assessments based on physical
experiments, ΩS is necessarily a subset of ΩG, as no
performance would be available for evaluation when the
parameters are infeasible.

2. For any pair x1, x2 ∈ D, the decision-maker is requested
to provide the output of the preference function: π : D×
D → {−1, 0, 1}

π(x1, x2) =

 −1 if x1 “better” than x2

0 if x1 “as good as” x2

1 if x2 “better” than x1.
(3)

where the preference in (3) is implicitly defined according
to the underlying hidden function f to be minimized,
namely

π(x1, x2) =

 −1 if f(x1) < f(x2)
0 if f(x1) = f(x2)
1 if f(x1) > f(x2).

(4)

The rationale behind the above problem formulation is that
often one encounters practical decision problems in which a
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function f is impossible to quantify, but anyway it is possible
for a human operator to express a qualitative evaluation (e.g.,
“good” or “bad”) and a preference between the outcome of
two experiments.

Formally, we want to find the optimal solution x? ∈ ΩS ∩
ΩG such that x? is “better” (or “no worse”) than any other x
according to the preference function π:

find x? such that π(x?, x) ≤ 0, ∀x ∈ ΩS ∩ ΩG. (5)

We propose to solve problem (5) iteratively as follows: (i)
suggest a sequence of decision vectors x1, . . . , xN ∈ D to
test, (ii) ask to evaluate the feasibility function G(xi) and the
satisfaction function S(xi) for i = 1, . . . , N , and (iii) ask to
evaluate the preference function π(xi, xj) for M given pairs
(i, j), i, j = 1, . . . , N , i 6= j, where M is the number of
expressed preferences, 1 ≤M ≤

(
N
2

)
. The goal is to propose

candidate vectors xN approaching the optimal solution x? as
N grows.

III. PROPOSED METHOD

The proposed preference-based optimization method to
solve problem (5) is based on an extension of the GLISp
algorithm originally introduced in [26]. We refer to the new
algorithm as C-GLISp, whose aim is to handle unknown
constraints expressed in terms of an approximation of the
feasibility function G in (1) and of the satisfaction function S
in (2).

Similarly to GLISp, C-GLISp involves two main phases: an
initial random sampling and an active learning phase. In both
phases, C-GLISp trains and updates three surrogate functions
approximating, respectively, the feasibility function G, the
satisfaction function S, and the underlying function f . During
the active learning phase, the next point for evaluation is
selected by optimizing an acquisition function which trades
off exploitation (optimization only based on the surrogates
describing the observed preferences and constraints) and ex-
ploration (searching unexplored areas of the domain D). The
goal of C-GLISp is to approach an optimal solution x? as
in (5) within a small number N of experiments.

A. Learning Unknown Constraint Functions

We discuss how to train surrogates of the functions G
and S that approximate, respectively, the feasibility constraint
x ∈ ΩG and the satisfaction constraint x ∈ ΩS . The idea
is to ask the decision-maker to assess, once an experiment
is performed, whether the constraints x ∈ ΩG and x ∈ ΩS
are satisfied or not, and train surrogate functions of G and S
based on the outcome of N ≥ 2 of such queries. These queries
are performed on a set of samples {x1, . . . , xN} iteratively
proposed by C-GLISp.

Compared to unconstrained preference-based optimization
like GLISp, in which an infeasible/unsatisfactory sample only
indirectly reveals itself as such by losing pairwise compar-
isons against feasible/satisfactory ones, C-GLISp exploits the
information on whether x ∈ ΩG and/or x ∈ ΩS to facilitate
the optimization process, in particular, to avoid exploring the

infeasible and/or unsatisfactory region and therefore reduce
the number of samples xi 6∈ ΩG and/or xi 6∈ ΩS .

The surrogate functions for G and S are constructed as
follows. The decision-maker observes the outcome of the per-
formed experiments, and he/she provides a feasibility vector
GF = [G1 . . . GN ]′ ∈ {0, 1}N with

Gi = G(xi), (6)

and a satisfaction vector SF = [S1 . . . SN ]′ ∈ {0, 1}N with

Si = S(xi), (7)

by assessing whether each experiment is feasible and satisfac-
tory. Then, surrogates Ĝ of G and Ŝ of S are constructed from
the observations GF and SF , respectively, as detailed below.

A surrogate function Ĝ : D → R predicting the probability
of satisfying the feasibility constraint x ∈ ΩG is defined as

Ĝ(x) =

N∑
i=1

νi(x)Gi, (8)

where νi(x) : D → R for i = 1 . . . , N is defined as

νi(x) =


1 if x = xi
0 if x = xj , j 6= i

wi(x)∑N
i=1 wi(x)

otherwise.
(9)

Here wi : D\{xi} → R is the following IDW function [32]

wi(x) =
e−d

2(x,xi)

d2(x, xi)
, (10)

where d : D×D → R denotes the squared Euclidean distance

d(x, xi) = ‖x− xi‖22. (11)

The surrogate function Ŝ : D → R is defined similarly.
The approach presented in this paper aims at solving problems
where experiments are expensive to run, so that data efficiency
is essential. IDW interpolation functions are selected in this
case because of their high accuracy. Other binary classification
methods (e.g. logistic regression or random forests) would be
less suitable in this context since their accuracy with a small
number of training data is limited. Support vector machines
(SVMs) [33] can be a potential substitute since they work
well with small and medium-size training sets. However, our
numerical tests have shown that IDW interpolation functions
outperform SVM. In addition, the functions Ĝ and Ŝ gener-
ated by IDW interpolation are always between 0 and 1 by
construction (see [8, Lemma 1-P2]), and can be interpreted as
probabilities of being feasible/satisfactory.

B. Learning The Preference Function
Radial basis functions (RBFs) [34, 35] are flexible and have

been adopted to solve global optimization problems in [8, 34–
37] with success. Therefore, as in [26], we parameterize the
surrogate function f̂ : D → R as a linear combination of
RBFs [34, 35]

f̂(x) =

N∑
k=1

βkφ(εd(x, xi)), (12)
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where φ : R→ R is an RBF, ε > 0 is a scalar hyper-parameter
defining the shape of the RBF, and β = [β1 . . . βN ]T are the
unknown coefficients to be determined. Some RBFs commonly
used are φ(εd) = 1

1+(εd)2 (inverse quadratic), φ(εd) = e−(εd)2

(Gaussian), and φ(εd) = (εd)2 log(εd) (thin plate spline).
Besides the feasibility vector GF and the satisfaction vector

SF , the preference vector B = [b1 . . . bM ]T ∈ {−1, 0, 1}M
is also assumed to be provided by the decision-maker, with

bh = π(xi(h), xj(h)), (13)

for xi, xj ∈ D such that xi 6= xj , ∀i 6= j, i, j =
1, . . . , N . Here, M is the number of expressed preferences,
1 ≤M ≤

(
N
2

)
, h ∈ {1, . . . ,M} is the index enumerating the

preferences, and i(h), j(h) ∈ {1, . . . , N}, i(h) 6= j(h).
The preferences bh expressed by the decision-maker are

used to shape the surrogate objective function f̂ by imposing
the following constraints:

f̂(xi(h)) ≤ f̂(xj(h))− σ if bh = −1

f̂(xi(h)) ≥ f̂(xj(h)) + σ if bh = 1

|f̂(xi(h))− f̂(xj(h))| ≤ σ if bh = 0

(14)

for h = 1, . . . ,M , where σ > 0 is a given scalar that avoids
the trivial solution f̂(x) ≡ 0.

Similarly to SVMs [33], the vector β of coefficients de-
scribing the surrogate f̂ is obtained by solving the following
convex QP problem

minβ,ε

M∑
h=1

chεh +
λ

2

N∑
k=1

β2
k

s.t.

N∑
k=1

βk(φ(εd(xi(h), xk))− φ(εd(xj(h), xk)))

≤ −σ + εh, ∀h : bh = −1
N∑
k=1

βk(φ(εd(xi(h), xk))− φ(εd(xj(h), xk)))

≥ σ − εh, ∀h : bh = 1∣∣∣∣∣
N∑
k=1

βk(φ(εd(xi(h), xk))− φ(εd(xj(h), xk)))

∣∣∣∣∣
≤ σ + εh, ∀h : bh = 0

h = 1, . . . ,M
(15)

that captures the preference relationships in (14) and the
parametrization of f̂ in (12). In (15), ch are positive weights
and εh are positive slack variables used to relax the constraints
imposed by (14). The violation of the imposed constraints
could be caused by an inappropriate selection of the RBF,
leading to poor flexibility in the parametric description of
the surrogate function f̂ , and by inconsistent assessments
provided by the decision-maker. The scalar λ > 0 in the
cost function (15) is a regularization parameter. With λ > 0,
problem (15) is a QP problem that admits a unique solution.

In the constrained preference-based optimization algorithm
detailed in the following section, we will execute K-fold cross-
validation periodically (i.e., when i is in the predefined self-
calibration index set Isc ⊆ {1, . . . , Nmax − 1}) to automat-
ically tune the hyper-parameter ε defining the shape of the

RBF in (12) during the active learning phase, as recommended
in [26].

C. Acquisition Function
Minimizing f̂ greedily to generate the next sample xN+1

may lead the solver to converge to a point that is not the global
optimum of (5). Hence, when selecting the next point xN+1,
besides exploiting the surrogate f̂ , some exploration should
be considered to search regions with limited/no samples to
reduce the uncertainty associated with f̂ . Also, the feasibility
and satisfactory regions are unknown and are only implicitly
included in the surrogate function f̂ . Therefore, we also
include terms to explicitly avoid the exploration in the regions
with low probabilities of being feasible and satisfactory by
penalizing the (estimated) infeasibility x 6∈ ΩG and unsatis-
factory performance x 6∈ ΩS .

The exploration term used in GLISp is the following IDW
function z : D → R

z(x) =

{
0 if x ∈ {x1, . . . , xN}
tan−1

(
1∑N

i=1 ri(x)

)
otherwise, (16)

where ri(x) = 1
d2(x,xi)

. Note that z(x) = 0 for all the decision
variables x already sampled and tested, and z(x) > 0 in D \
{x1, . . . , xN}. The arc tangent function is used to prevent the
new sampled point from getting excessively far away from the
existing ones.

Unlike GLISp, here we modify (16) into

zN (x) =

(
1− N

Nmax

)
tan−1

(∑N
i=1 ri(x

∗
N )∑N

i=1 ri(x)

)

+
N

Nmax
tan−1

(
1∑N

i=1 ri(x)

) (17)

for x /∈ {x1, . . . , xN} and zN (x) = 0 otherwise. In (17), x∗N
is the best decision variable found up to iteration N . In (17),
Nmax is the maximum allowed number of experiments. The
rationale behind (17) is that it encourages the exploration of
regions of D further away from the current best solution in
the early iterations and reduce its effects as the number N of
experiments increases. The exploration function in (17) was
empirically observed to better escape from local minima than
that in (16).

The acquisition function a : D → R is defined as

a(x) =
f̂(x)

∆F̂
− δEzN (x)

+ δG(1− Ĝ(x)) + δS(1− Ŝ(x)),

(18)

where δE ≥ 0 is the exploration parameter, and δG, δS ≥ 0
weight the probability of a sample x to be infeasible and/or
unsatisfactory, respectively. The term ∆F̂ = maxi{f̂(xi)} −
mini{f̂(xi)} is the range of the surrogate function f̂ on
the samples in {x1, . . . , xN}. It is used as a scaling factor
in (18) to make each term in (18) comparable, which eases
the selection of the hyper-parameters δE , δG, and δS .

The exploration parameter δE encourages sampling unex-
plored regions of the domain D. Setting δE = 0 makes C-
GLISp rely heavily on the accuracy of the surrogate functions
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f̂ , Ĝ, and Ŝ, which may easily lead to missing the global
optimum. On the other hand, setting δE � 1 leads C-GLISp
to explore the entire domain D regardless of the decision-
maker’s preferences and feasibility/satisfaction assessments.

Functions Ĝ and Ŝ in (18) aim at discouraging exploration
in regions where the experiment is predicted to be infeasible
(i.e., x /∈ ΩG) and/or unsatisfactory (i.e., x /∈ ΩS). Therefore, a
poor selection of the hyperparameters δG and δS and/or a poor
predictive capability of Ĝ and Ŝ (e.g., due to a limited number
of samples) can prevent finding new vectors that are actually
feasible and/or satisfactory. To alleviate this issue, we suggest
to adaptively tune δG and δS based on the sampled standard
deviation obtained from leave-one-out cross-validation [38] of
Ĝ and Ŝ, respectively. More specifically, each available sample
in the set {x1, . . . , xN} is used once as a testing point and the
remaining ones are used to train Ĝ and Ŝ. The prediction
Ĝ(xi) and Ŝ(xi) on the test sample xi is compared with
the corresponding labels G(xi) and S(xi) assigned by the
decision-maker to compute the following sampled standard
deviations of the error:

σ̂G = min

1,

√∑N
i=1(Ĝ(xi)−G(xi))2

N − 1

 ,

σ̂S = min

1,

√∑N
i=1(Ŝ(xi)− S(xi))2

N − 1

 . (19)

The sampled standard deviations are then used to update,
after each iteration, the weights δG and δS as follows:

δG = (1− σ̂G)δG,default, (20a)
δS = (1− σ̂S)δS,default, (20b)

where δG,default and δS,default are default values set by the
user. Clearly, one should select δG,default > δS,default, so that
infeasibility is penalized more than unsatisfactory behavior.
The updated values of δG and δS are then used to construct
the acquisition function a(x) in (18).

The next sample xN+1 to test is obtained by minimizing
a(x), i.e.,

xN+1 = arg min
x∈D

a(x). (21)

Different optimization methods can be used to solve prob-
lem (21) efficiently either via derivative-free [39], or derivative
based algorithms.

C-GLISp updates the surrogates f̂ , Ĝ, and Ŝ, and the
exploration function zN (x), by iteratively suggesting a new
point xN+1 to test, and by receiving feedback from the
decision-maker in terms of feasibility, overall satisfaction,
and preferences between pairs of experiments. Algorithm 1
summarizes the proposed method.

IV. OPTIMIZATION BENCHMARKS

We test C-GLISp on three constrained global optimization
benchmarks to illustrate its effectiveness in solving optimiza-
tion problems with unknown constraints. Computations are
performed on an Intel i7-8550U 1.8-GHz CPU laptop with
8GB of RAM. The Latin hypercube sampling method [40]

Algorithm 1 C-GLISp: Preference learning algorithm with
unknown constraint handling

Input: Lower and upper bounds (`, u), known constraint
set if available; number Ninit ≥ 2 of initial samples, number
Nmax ≥ Ninit of maximum function evaluations; δE ≥ 0,
δG,default ≥ 0 and δS,default ≥ 0; σ > 0; and ε > 0; self-
calibration index set Isc ⊆ {1, . . . , Nmax − 1}.

1. Generate Ninit random samples X = {x1, . . . , xNinit}
using Latin hypercube sampling method [40];

2. N ← 1, i? ← 1;
3. While N < Nmax do
3.1. if N = 1 then

3.1.1. Observe feasibility GN and satisfaction SN ;
3.2. if N ≥ Ninit then

3.2.1. if N ∈ Isc then recalibrate ε through K-fold cross-
validation;

3.2.2. Solve (15) to obtain β to define the surrogate
function f̂ (12);

3.2.3. Update δG and δS as in (20);
3.2.4. Define acquisition function a as in (18);
3.2.5. Solve optimization problem (21) and get xN+1;

3.3. i(N)← i?, j(N)← N + 1;
3.4. Observe feasibility Gj(N). satisfaction Sj(N) and pref-

erence bN = π(xi(N), xj(N)) ;
3.5. if bN = 1 then set i? ← j(N);
3.6. N ← N + 1;
4. End.

Output: Computed best input x? = xi? .

(lhsdesign function of the Statistics and Machine Learning
Toolbox of MATLAB [44]) is used in the initial sampling
phase of C-GLISp. Particle Swarm Optimization (PSO) [45]
is used to minimize the acquisition function as in (21).

C-GLISp is compared to the original GLISp and to PBO
(with expected improvement as acquisition function) [21, Sec-
tion 2.3]. For numerical benchmarks, C-GLISp, GLISp, and
PBO assign the preferences on pairwise comparisons based
on the combined assessments of the objective function value,
feasibility, and performance satisfaction. For each test func-
tion, depending on the problem formulation, a maximum of
three types of queries is obtained when using C-GLISp, which
are the preference relation (B), the feasibility label (GF ), and
the satisfaction label (SF ). In contrast, GLISp and PBO only
rely on the preference relation B. The goal of the comparison
between C-GLISp and GLISp is to check if accounting the
feasibility and/or satisfactory information explicitly in the
acquisition function can encourage safe exploration from the
comparisons. It is worth noting that the exact evaluation
of the objective function and the constraints (feasibility and
satisfactory outcomes) for these numerical benchmarks are
unknown to the algorithms and are only used to construct a
synthetic decision-maker.

Table I lists the specifications of the benchmarks. The orig-
inal feasibility set of the test function Mishra’s Bird function-
constrained (MBC) [41, 42] is modified so that the uncon-



6 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. XX, NO. XX, XXXX 2017

TABLE I
NUMERICAL BENCHMARKS - PROBLEM SPECIFICATION

Test function Objective function Unknown constraints Search domain D
Mishra’s Bird function- f(x, y) = sin(y)e(1−cos(x))2 + cos(x)e(1−sin(y))2 Feasibility constraints: [−10.0,−2];
constrained (modified) [41, 42] +(x− y)2 (x+ 9)2 + (y + 3)2 < 9 [−6.5, 0.0]
(MBC)
camelsixhumps- f(x, y) = (4− 2.1x2 + x4/3)x2 Feasibility constraints: g1 ∩ g2 [−2, 2];
hard constrained [8, 43] +xy + (4y2 − 4)y2 [−1, 1]

(CHC) g1 :

 1.6295 1
−1 4.4553

−4.3023 −1
−5.6905 −12.1374
17.6198 1

 [ x
y

]
<

[ 3.0786
2.7417
−1.4909

1
32.5198

]
g2 : x2 + (y + 0.1)2 < 0.5

camelsixhumps- f(x, y) = (4− 2.1x2 + x4/3)x2 Feasibility constraints: g2 [−2, 2];
hard and soft constrained [8, 43] +xy + (4y2 − 4)y2 Satisfaction constraints: g1 [−1, 1]

(CHSC) g1 :

 1.6295 1
0.5 3.875

−4.3023 −4
−2 1
0.5 −1

 [ x
y

]
<

[ 3.0786
3.324

−1.4909
0.5
0.5

]
g2 : x2 + (y + 0.04)2 < 0.8

TABLE II
NUMERICAL BENCHMARKS - SOLVER SPECIFICATION

Test function Max number of Number of initial Hyper-parameter values RBF specifications (12) Tolerance Weights Regularization
fun. eval. Nmax sampling Ninit δE δG,default δS,default function initial ε recalibration steps σ in (15) ch in (15) λ in (15)

MBC 50 13 1.0 1.0 − Inverse quadratic 1.0 {13, 22, 32, 41} 0.02 1.0 1e-6
CHC 100 25 2.0 2.0 − Inverse quadratic 1.0 {25, 44, 63, 81} 0.01 1.0 1e-6
CHSC 50 13 1.0 1.0 0.5 Inverse quadratic 1.0 {13, 22, 32, 41} 0.02 1.0 1e-6
Same parameters (if relevant) are used in C-GLISp, GLISp, and PBO.

TABLE III
NUMERICAL BENCHMARKS - RESULTS

Test function Constrained optimuma Feasibilityb
Optimum C-GLISp GLISp PBO C-GLISp GLISp PBO

MBC -48.4 -47.95 -48.33 -40.24 100 100 91
CHC -0.5844 -0.3582 -0.5224 0.2571 96 66 33
CHSC -0.9050 -0.8526 -0.8861 -0.6315 96 (95) 82 (84) 74 (72)
a- The median of computed constrained optima that are feasible out of 100 runs (the distribution over 100 runs is reported in Table IV).
b- Number of runs whose computed optimizers are feasible out of 100 runs. Values in parentheses indicate the number of runs the optimizer is satisfactory.

strained global optimum in the search domain is no longer in
the feasible area. The camelsixhumps-hard constrained (CHC)
benchmark [8, 43] considers two feasibility constraints, and
the unconstrained global optimum also differs from the con-
strained one. Lastly, the benchmark function camelsixhumps-
hard and soft constrained (CHSC) [8, 43] has both feasibility
and satisfaction constraints. The two unconstrained optima for
this test function are both feasible but not satisfactory.

The values of the hyper-parameters in C-GLISp, GLISp,
and PBO are provided in Table II. The number of initial
samples (Ninit) is selected as one fourth of the maximum
number of function evaluations (Nmax/4) rounded to the
nearest integer. Three-fold cross-validation is used to update
the hyper-parameter ε (12) at iterations Ninit, Ninit+(Nmax−
Ninit)/4, Ninit + (Nmax −Ninit)/2, and Ninit + 3(Nmax −
Ninit)/4, rounded to the closest integers, which define the
self-calibration index set Isc. The tolerance σ in (15) is set to
1/Nmax. The default value δG,default in (20) is the same as δE ,
so that the feasibility term in (18) is comparable to the pure
exploration term, while the default value δS,default is selected as
δG,default/2 to reduce its effects with respect to hard feasibility
constraints. The parameters δG and δS are kept at their default
values during the first Ninit experiments, then updated each
time a new point is added using equation (20). The remaining
parameters of the solvers are set according to the defaults used
or suggested in [26].

TABLE IV
DISTRIBUTION OVER 100 RUNS OF THE PERCENTAGE DIFFERENCE

BETWEEN ACHIEVED AND GLOBAL OPTIMUM

Benchmark Algorithm
Number of runs within each interval

Intervals of % Difference from Global Optimum
(0,5] (5,10] (10,15] (15,100]

MBC
PBO 39 4 2 18
GLISp 67 1 2 3
C-GLISp 69 6 1 5

(0,5] (5,20] (20,50] (50,100]

CHC
PBO 0 0 4 7
GLISp 28 7 5 1
C-GLISp 0 20 40 22

(0,5] (5,10] (10,15] (15,100]

CHSC
PBO 13 10 4 27
GLISp 56 8 5 9
C-GLISp 43 22 13 16

Note: only the runs with feasible solutions within 100% difference from the
global optimum are counted.

Table III reports the results obtained by running a Monte-
Carlo simulation with 100 runs of C-GLISp, GLISp, and PBO
to obtain statistically significant results. One of such runs of
C-GLISp on all three numerical benchmarks is depicted in
Fig. 1. Table IV displays the distribution over 100 runs of the
percentage difference between the achieved feasible solutions
and the true constrained optimum. Overall, the results from
Table III and IV show that C-GLISp can find a feasible near-
optimal solution more frequently than GLISp and PBO.

From the results on the benchmark function MBC, where
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Fig. 1. Algorithm C-GLISp. Level sets of the functions used in the
three benchmarks, along with feasibility and satisfaction sets. Blue ×:
points generated from initial sampling phase; black ◦: points generated
from active learning phase; purple ♦: global unconstrained optimizer;
red •: constrained optimizer found after Nmax iterations; green �:
global constrained optimizer. As N increases, the points generated by
C-GLISp approach the constrained optimizer, and most of the points
generated during the active learning phase lay in the feasibility and
satisfaction regions.
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Fig. 2. Benchmark CHC. Optimizers computed by C-GLISp, GLISp
and PBO in 100 runs. Red ×: optimizer computed at the end of each
run; purple ♦: unconstrained optimizer; green ♦: global constrained opti-
mizer. Numbers in black with arrows indicate the number of overlapping
points.
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the feasibility set ΩG covers roughly one-third of the domain
D (cf. Fig. 1), the performance of GLISp and C-GLISp are
comparable. They always terminate the search with a feasible
optimum (100 out of 100 runs), with 67% and 69% of them,
respectively, located within 5% difference from the global
solution (Table IV). On the other hand, PBO computes a
feasible optimum in 91 runs, but with only around 39%
within 5% difference (Table IV). When the constraint is more
complex such as the one in CHC, the majority of the optima
computed by C-GLISp (96 out of 100 runs) are feasible.
In comparison, only 66 and 33 runs by GLISp and PBO,
respectively, terminate with a feasible solution (Table III and
Fig. 2). From Fig. 1, it is also observed that, for the test
function CHC, after the initial sampling phase, most points
generated in the active learning phase by C-GLISp are within
the feasible region.

For the test function CHSC, C-GLISp often find a near-
optimal solution that is both feasible and satisfactory. The
performance of GLISp is slightly worse than C-GLISp in terms
of the number of times a feasible and satisfactory solution is
obtained. PBO can identify a feasible and satisfactory solution
with a relatively high chance but still lower than both C-GLISp
and GLISp. Also, its final outcome is worse, see Table III.

Table III also shows that, within the same number of
iterations, the median of the computed feasible constrained
optima from GLISp is always closer to the global constrained
optimum than the one computed from C-GLISp. This is
because of the trade-off between trying to get a more accurate
solution (which is often achieved by sampling multiple points
close to the current best solution up to iteration N ) and
exploring a larger area to reduce uncertainty (in problems with
unknown constraints, C-GLISp also tries to identify possible
feasible regions).

For our problem setting, we set a limit on the computational
budget. Modification of the exploration term from (16) to (17)
helps to better escape from local minima in the early iterations
by encouraging the exploration of regions of D further away
from the current best solution. This modification is significant
for problems with small feasible regions (relative to the search
domain) and/or complex unknown constraints (e.g., numerical
benchmark CHC). This is because the additional exploration
introduced by the modification can help the solver identify the
feasible region more quickly and start recommending feasible
guesses faster, reducing the chance that the solver gets trapped
into an infeasible local optimum.

From the number of feasible solutions computed shown in
Table III and the computed optimizers displayed in Fig. 2,
we observe that the situation of trapping into an infeasible
local optimum occurs to GLISp more frequently than to C-
GLISp. However, GLISp can achieve a solution closer to the
constrained optimum than C-GLISp (Table IV) when GLISp
successfully identifies the feasible region. This is because more
computational budget is then used to get closer to the optimum
than to explore other potentially feasible regions as in C-
GLISp. For problems where testing an infeasible solution is
expensive and/or dangerous, it is better to be conservative and
have a less optimal but feasible solution. As a result, C-GLISp
is preferred over GLISp under these problem settings.

Overall, the results on the numerical benchmarks show
that both C-GLISp and GLISp can approach near-optimal
solutions within a small number of function evaluations. In all
of the three benchmarks, both C-GLISp and GLISp outperform
PBO (Table III and IV). An explanation for the superior
performance of C-GLISp in identifying feasible/satisfactory
solutions is that it explicitly leverages feasibility/satisfaction
information in the acquisition function, while GLISp and PBO
handle unknown constraints only through preference queries.

V. MPC CALIBRATION

To illustrate the application of C-GLISp to controller cali-
bration, we consider the design of an MPC controller for lane-
keeping (LK) and obstacle-avoidance (OA) in autonomous
driving. MPC is employed to command vehicle velocity and
steering angle to provide a smooth and safe drive. The same
problem was considered in [27] and is extended in this paper
to handle feasibility and satisfaction constraints.

The design of model predictive controllers requires tuning
several knobs, such as the prediction and control horizons,
the weight matrices in the cost function, numerical tolerances
in the optimization solver, etc., under hard constraints such
as finding solutions within the sample interval of a real-time
implementation. Thus, it is hard to well define in advance a
single quantitative performance index that captures a usually
multifaceted desired closed-loop behavior to tune the MPC
parameters automatically.

We use C-GLISp to implement an iterative semi-automated
calibration procedure (automatic selection of the MPC param-
eters and human-based qualitative assessment of closed-loop
performance), thus avoiding the burden of defining a quanti-
tative index to minimize. The calibrator only needs to express
a preference on pairwise comparisons to indicate which of
the two MPC tunings has better closed-loop performance.
Different from the case study in [27], where we account for the
information of feasibility and satisfaction conditions implicitly
in the preference query (GLISp) as if they were, implicitly,
underlying penalty functions, C-GLISp explicitly takes into
account this information via direct queries as in (1) and (2).

A. System Description
We consider a simplified two-degree-of-freedom bicycle

model with the front wheel as the reference point to describe
the vehicle dynamics and simulate the experiment. The state
variables s = [xf wf θ]′ in the model are the longitudinal
xf and lateral wf [m] positions of the front wheel, and the
yaw angle θ [rad]. The manipulated variables u = [v ψ]′ are
the commanded vehicle velocity v [m/s] and steering angle ψ
[rad]. The standard kinematic equations

ẋf =v cos(θ + ψ)

ẇf =v sin(θ + ψ)

θ̇ =
v sin(ψ)

L

(22)

are used to model the evolution of the vehicle, where L [m]
is the vehicle length. Here, full state observation is assumed,
i.e., the control output y = s.
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B. MPC Formulation
The formulation of the semi-automatic MPC calibration

process is detailed in [27]. The dynamical model (22) is
linearized around its nominal point s̄k = [x̄fk w̄fk θ̄k]′,
ūk = [v̄k ψ̄k]′, and ȳk = s̄k at each time step and discretized
with sampling time Ts, resulting the following discrete-time
state-space model:

s̃k+1 =

[
1 0 −v̄k sin(θ̄k+ψ̄k)Ts
0 1 v̄k cos(θ̄k+ψ̄k)Ts
0 0 1

]
s̃k

+

[
cos(θ̄k+ψ̄k)Ts −v̄k sin(θ̄k+ψ̄k)Ts
sin(θ̄k+ψ̄k)Ts v̄k cos(θ̄k+ψ̄k)Ts

sin(ψ̄k)

L Ts
v̄k cos(ψ̄k)

L Ts

]
ũk

ỹk= s̃k,

(23)

where subscript k denotes the value at time step k and
Ṽar = Var−Var. This prediction model is then used to design
a linear MPC via a real-time iteration scheme [46, 47]. At
each sampling time t, the following QP problem is solved to
compute the MPC action to be applied:

min
{ut+k|t}Nu−1

k=0

Np−1∑
k=0

(
∥∥yt+k|t − yref

t+k

∥∥2

Qy
+
∥∥∆ut+k|t

∥∥2

Q∆u
)

(24)

subject to model equation (23) and the following input and
output constraints

ymin ≤ yt+k|t ≤ ymax, k = 1, . . . , Np

umin ≤ ut+k|t ≤ umax, k = 1, . . . , Np

∆umin ≤ ∆ut+k|t ≤ ∆umax, k = 1, . . . , Np

ut+Nu+j|t = ut+Nu|t, j = 1, . . . , Np −Nu,

(25)

where ‖·‖2M is the squared norm weighted by a matrix M ;
∆ut+k|t = ut+k|t − ut+k−1|t; yref and uref are the reference
values of control outputs and inputs during the experiment
(which are unique to the LK and OA phases of the experi-
ment); and Np and Nu are the prediction and control horizons.

C. Control Objectives
The two main objectives involved in this control task are:

(1) maintain the vehicle in the same lane with constant speed
if no obstacles (other vehicles) are present; and (2) pass
other moving vehicles if they are within a safety distance.
The qualitative descriptions of these objectives, such as the
ambiguity of transferring “optimal obstacle avoidance” into a
mathematical formula, make it challenging to define a proper
quantitative performance index for closed-loop performance.
On the other hand, it is easier for a calibrator to compare
the outcome of two different driving tests and then express a
preference.

We describe the test scenario as follows. Note, for ease of
assessment, the unit of v and ψ described in the following text
as well as in the figures are represented in km/hr and degree
(◦), respectively. The controlled vehicle is initially at position
(xf , wf ) = (0, 0) m with θ = 0◦. Another vehicle (obstacle)
is at position (30, 0) m and moving horizontally at a constant
speed of 40 km/hr. The shape of both vehicles is assumed to
be rectangular, with a length of 4.5 m and a width of 1.8 m.

During nominal LK conditions, the vehicle being controlled
moves horizontally at 50 km/hr, with wf = 0 m and ẇf = 0
m/s . Once the obstacle is within a safety distance, the vehicle
being controlled should pass it while keeping a safe lateral
distance between them. In this case, the horizontal and lateral
safety distances are 10 m and 3 m, respectively. The vehicle
controlled by MPC can vary its velocity in the range of [40,
70] km/hr during the LK period and [50, 70] km/hr during
the OA period, and its reference velocities are set to 50 and
60 km/hr, respectively. For both LK and OA periods, θ can
take values in the range of [-45, 45]◦, with its rate of change
between each time step limited to [-5, 5]◦/s.

The following MPC design parameters are tuned: sampling
time (Ts); prediction and control horizons (Np, Nu); weight
matrix Q∆u in (24). The sampling time is restricted in the
interval [0.085, 0.5] s. The prediction horizon is an integer
allowed to vary in the range [10,30] and the control horizon is
taken as a fraction εc of Np rounded up to the closest integer,
with εc ∈ [0.1, 1]. The weight matrix is set to be diagonal
Q∆u =

[ qu11 0
0 qu22

]
and the values of log(qu11) and log(qu22)

are restricted in the interval [-5, 3]. The rest of the MPC design
parameter is fixed, with Qy =

[
1 0 0
0 1 0
0 0 0

]
.

D. Calibration Process
The first author of the paper plays the role of the cali-

brator for this case study. The maximum number of function
evaluations Nmax is set to 50, with Ninit = 10. The default
hyperparameters δE , δG and δS in (18) are set to 1, 1, and 0.5,
respectively. The parameters σ, ch and λ in (15) are set to 0.02,
1, and 1e-6, respectively. The hyperparameter ε characterizing
the RBF function (12) is initialized to 1.0, and recalibrated at
iterations 10, 20, 30, and 40 via 3-fold cross-validation.

The closed-loop experiment of the vehicle control is simu-
lated for 15 seconds. Fig. 3 shows the query window for one
iteration of the calibration process. The MPC design param-
eters and the worst-case computational time (tcomp) required
for solving the QP problem of MPC (24) are displayed at
the top of the figure. At each iteration, the calibrator is asked
to decide whether the newly proposed experiment is feasible
and/or satisfactory, and to express a preference between the
new experiment and the current best one. More specifically,
the calibrator labels the control policy that leads to “un-
stable/unsafe” and “unimplementable” behavior as infeasible
(i.e., G(x) = 0). Examples of “unstable/unsafe” behaviors
include but are not limited to: vehicle hits the obstacle; vehicle
oscillates on the road, etc. “Unimplementable” cases are the
ones whose computational time (tcomp) required for solving
the QP problem of MPC (24) exceeds the sampling time Ts. As
for being labeled as satisfactory, the following two criteria are
used: (i) the lateral position of the vehicle does not exceed 5
m during the OA period (black dashed line on Fig. 3); and (ii)
the vehicle does not oscillate during the LK period (in other
words, the vehicle moves at a constant speed with wf and θ
close to 0 m and 0◦). These feasibility and satisfactory criteria
are assumed to be unknown to C-GLISp and are learned based
on the expressed feasibility and satisfactory labels.

For the pairwise comparisons, the calibrator expresses her
preferences according to the following guidelines: (i) whether
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Fig. 3. Vehicle control query window. The top subplots show the vehicle
and obstacle positions. The “vehicle OA” and “obstacle OA” bars show
five relative positions of the vehicle and obstacle during the OA period.
The dashed lines indicate the lateral distance that the car should avoid
exceeding (5 m in this case). The middle subplots show the actual and
reference velocity v at different longitudinal positions. The steering angle
ψ over the longitudinal position is depicted in the bottom subplots. The
results on the left panels are preferred and feasible, while the results on
the right panels are infeasible. The results on both sets of panels fail to
satisfy the satisfaction conditions.

it is feasible; (ii) whether it is satisfactory; (iii) whether the
vehicle guarantees passengers’ comfort during the OA period,
for example, by not changing velocities or moving the lateral
position too aggressively; (iv) whether the deviations of the
vehicle velocity from the reference values is minor in both LK
and OA periods; (v) whether aggressive variations of steering
angles are avoided. If a conflict combination among criteria
mentioned above appears, criterion (i) has the highest priority,
and if the conflict is among criteria (ii)–(v), the control policy
that leads to qualitatively safer driving practice based on the
calibrator’s experience is preferred. Note that conditions (iii)-
(v) and the method of judging safe driving practice are mainly
qualitative/subjective, and it is difficult to express them in
terms of quantitative metrics.

For the example query window illustrated in Fig. 3, con-
flicting combinations of the assessing criteria are observed.
Compared to the experiment shown in the left panels of the
figure, the experiment shown in the right panels has more
aggressive lateral movements during the OA period. Further-
more, the changes in velocity and steering angle are greater
in both frequency and magnitude in both LK and OA periods.
The experiment shown in the left panels is feasible since it is
implementable (tcomp < Ts) and stable, while the experiment
shown in the right panels of the figure is infeasible since
tcomp exceeds Ts. Additionally, both experiments fail to satisfy
the satisfaction conditions. Above all, the performance of the
experiment shown in the left panels is preferred according to
criterion (vi).

E. Results

C-GLISp terminates after 50 simulated closed-loop exper-
iments and 49 pairwise comparisons. The best MPC design
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Fig. 4. Final vehicle control performance obtained by the designed MPC
controller. The top subplot shows the vehicle and obstacle positions. The
“vehicle OA” and “obstacle OA” bars show five relative positions of the
vehicle and obstacle during the OA period. The middle subplot shows
the actual and reference velocity v at different longitudinal positions.
The bottom subplot shows the steering angle ψ over the longitudinal
position.

parameters Ts, εc, Np, log(qu11) and log(qu22) are 0.085
s, 0.100, 23, -0.323 and -3.71, respectively, with a worst-
case computation time tcomp = 0.0789 s. The closed-loop
performance obtained via these MPC design parameters is
depicted in Fig. 4. As shown in the figure, after only 50
simulated experiments, the proposed algorithm can tune the
MPC parameters to achieve feasible and satisfactory perfor-
mance, accomplishing the driving tasks with smooth and safe
maneuvers.

VI. CONCLUSIONS

The algorithm C-GLISp introduced in this paper can handle
preference-based global optimization with unknown objective
functions and unknown constraints better than other existing
black-box surrogate methods (PBO and GLISp), as illustrated
through benchmark problems. The autonomous driving case
study demonstrated the application of C-GLISp in semi-
automated MPC calibration. Although convergence to global
optimizers cannot be guaranteed, we observed that the C-
GLISp can find satisfactory results within a small number of
iterations and that it has a higher probability of proposing fea-
sible samples during the exploration thanks to the introduction
of additional information by the decision-maker that is used
to synthesize corresponding surrogate functions.

Future research will be devoted to exploring different initial
sampling methods, warm-starting procedures in the form of
“transfer learning” from previous similar optimization runs,
and preference-based collective learning to handle multiple
decision-makers. We finally note that, while we have used
C-GLISp for controller calibration, the algorithm can be used
in many other applications in which a few tuning parameters
must be decided based on preferences under constraints that
cannot be easily quantified.
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