
Tuning LQR controllers: a sensitivity-based
approach

Daniele Masti, Mario Zanon, and Alberto Bemporad

Abstract— We introduce an approach to efficiently tune
LQR controllers for linear time-invariant systems to match
a prescribed closed-loop behavior, such as the one given
by a reference model. The proposed approach is able to ef-
ficiently tune the LQR controller, even for high dimensional
systems and is superior in terms of achieved tracking per-
formance and other criteria with respect to global optimiza-
tion methods commonly used for black-box, simulation-
based, automated tuning.

Index Terms— Identification for control; machine learn-
ing.

I. INTRODUCTION

THE linear quadratic regulator (LQR) is a well-known
and established technique, which has been successfully

applied in a very large number of industrial applications.
Yet, despite its natural support for multi-input/multi-output
(MIMO) systems, and the the numerous extensions to augment
its capabilities (such as model predictive control [1] (MPC)
and LQG/LTR [2]), its potential spread in applications is
hampered by the lack of well-assessed tuning procedures
required to reach satisfactory performance [3]–[5].

The factors that make tuning LQR controllers a possibly
challenging task are many. The first one is that the number
of “tuning-knobs” scales quadratically with the number of
involved states/inputs. Another factor is that loop-shaping
approaches often used to tune linear controller in the frequency
domain are not directly applicable to LQR, which is based on
a performance index defined in the time-domain.

For the above reasons, the development of auto-tuning
procedures for LQR, i.e., techniques that are able to automat-
ically select the weight matrices defining the infinite-horizon
performance index, has been the subject of numerous works
based on different definitions of “performance”. For instance,
in [6] a rule-based approach to tune predictive controllers for
servomechanisms is presented. Parametric approaches based
on differentiating the optimality conditions of optimization-
based finite-horizon controllers have also been the object of
numerous works (see for, instance [7]–[9]) and have shown
promising results. In [10] two multi-objective approaches
based on lexicographic and hierarchic optimization algorithms
are also presented for MPC controllers. In [11], [12], two
solutions are discussed to match an existing controller to a

The authors are with IMT School for Advanced Studies, Piazza San
Francesco 19, Lucca, Italy. email: {daniele.masti, mario.zanon,
alberto.bemporad}@imtlucca.it.
This paper was partially supported by the Italian Ministry of University
and Research under the PRIN’17 project “Data-driven learning of con-
strained control systems”, contract no. 2017J89ARP.

set of weight matrices. In the context of infinite-horizon LQR,
in [4], [13], [14] rule-based approaches are presented to tune
LQR controllers for systems with a specific number of states
and inputs. In [15] a method to synthesize an LQR-based
PID regulator for DC-DC converters using iterative-learning
is presented.

Derivative-free, black-box, global optimization approaches
have also been proposed for automatic tuning of controllers.
In [5], an approach for tuning predictive controllers also in
relation to the available computational power is discussed,
while in [16] a method based on Gaussian processes is
presented for tuning LQR controllers. We also mention [17],
which proposes a preference-based approach that requires no
quantification of a closed-loop performance measure.

All the aforementioned methods present practical limita-
tions. Although they require very few assumptions, global
optimization methods often suffer from the curse of dimen-
sionality [18], [19], which limits their applicability to auto-
tune only a small number of parameters, and therefore to
small-dimensional systems. When applicable, derivative-based
methods enjoy better scaling properties, yet most works are
strictly meant for finite-horizon optimal control formulations
as they rely on inferring information from the optimality con-
ditions associated with the computed control action to proceed
in the tuning process. On the other hand, the intrinsic closed-
loop stability properties of the infinite-horizon formulation are
often desirable to have. Rule-based strategies are instead often
limited in their scope.

In this letter, we detail a derivative-based approach to
systematically tune LQR controllers. The main idea is to
design offline the controller so that the closed-loop system
will behave as much as possible to a user-provided (possibly
nonlinear) reference model and, in the particular context of this
work, its reference-to-output (I/O) behavior. This approach is
attractive because it can be well adapted to time-domain for-
mulations; it does not require a baseline controller to imitate,
and also does not require an explicit parameterization of the
reference model as it can rely solely on desired closed-loop
trajectories. In developing our technique, we also surpass the
limitations of competing approaches —which often consider
only a subset of possible LQR parameterizations— in a way
that does not require a nonlinear programming solver able to
handle semi-definite constraints (NLSDP), while maintaining
desirable scalability properties that derivative-free methods
lack.

This work is related to the inverse reinforcement learn-
ing [20], apprenticeship learning [21] and learning from
demonstration [22] methods, in which reward functions to

imitate a known agent are sought from recorded state/input
trajectories. Compared to them, we do not require that the
“expert demonstration” is performed on the actual target
system and solve the problem in remarkably different fashion.
The problem we aim to solve is also similar to the one
faced in [23], where genetic algorithms are used to tune
a continuous-time discounted LQR controller, and bi-level
programming approaches (such as [24]) in which optimal
control schemes are tuned to reproduce human behavior.

The paper is organized as follows: in Section II we for-
mally state the problem, introduce the relevant notation, the
approach we rely on to efficiently compute derivatives, and
some approaches to parameterize the weights matrices that
do not require one to impose semidefiniteness constraints. In
Section III we provide a set of experiments in which we show
the capabilities of the proposed approach. We finally draw
some conclusions in Section IV.

II. PROBLEM STATEMENT

We consider LQR controllers based on a Linear Time
Invariant (LTI) discrete-time1 dynamical system of the form

Σ ,

{
xk+1 = Axk +Buk
yk = Cxk

(1)

where xk ∈ Rnx , uk ∈ Rnu , yk ∈ Rny denote the states,
control inputs, and outputs respectively. A, B, C are known
matrices of appropriate dimensions (for example, obtained
from an identification procedure or from linearization of a
nonlinear model at a certain operating point). We further
assume that Σ is controllable, and its state xk to be measurable
to avoid introducing state observers in our formulation.

Let us assume that we have collected a dataset (rk, wk) of
desired closed-loop behaviors, k = 0, . . . ,H, where rk is the
reference signal and wk is the corresponding desired output
of the system we wish to get under closed-loop control. A
special case of the above assumption is to assume that wk is
generated by a reference model

ΣRM ,

{
ζk+1 = fRM (ζk, rk)
wk = hRM (ζk)

(2)

where ζk ∈ Rnz , rk ∈ Rny , wk ∈ Rny and fRM and hRM
are possibly nonlinear maps. For convenience, in this paper we
will focus on such a model-reference framework to address the
controller tuning problem, that is to tune an LQR controller
such that yk ≈ wk when excited by the same reference signal
rk. Consider the following offline problem

min
K,F,x,y

L(y, w) (3a)

s.t. xk+1 = Axk +B(−Kxk + Frk), k ∈ IH0 (3b)

yk = Cxk, k ∈ IH0 (3c)

where c , (c0, . . . , cH), c ∈ {x, y, w, r, u}, and Iba is the
set of all integers in the interval [a, b]. Note that r and w
are given data of the problem. We want to stress thatΣRM is
not necessarily needed, as long as its sampled input-output
behavior is available. This allows, e.g., to try reproducing

1The extension to the continuous-time case follows using the same argu-
ments.

complex behaviors for which no model is available, such
as human experts manually controlling the process (human
drivers, pilots, process-control operators, etc.).

We assume that the sequence r, w covers the entire range
of behaviors of interest. Clearly, that the quality of the results
of the method proposed in this paper will depend on how rich
and how long the training signals are. Correctly designing the
experiment to fit (rk, wk), however, is non trivial [25] and
beyond the scope of this work.

A simple choice to attempt making yk ≈ wk in closed loop
is to minimize the simple quadratic cost function

L(y, w) =

H∑
k=0

‖yk − wk‖22, (4)

although other types of functions might be used too.
Remark 1: The problem stated in (3) optimizes both K and

F . Had ΣRM been known, this could have been avoided as
the optimal F would have been a function of Σ and K itself.

A. LQR feedback parameterization

Directly solving (3) entails solving an optimization problem
over the space of all possible linear feedback gains, including
non-stabilizing ones. Instability is clearly undesirable from a
design point of view and can be problematic from a numerical
point of view. We propose to tackle that issue by restricting
the domain of K to the set of stabilizing feedback laws. In
particular, we will focus on K which are the solution of
an LQR problem. Note that this does not entail any loss of
generality, as any stabilizing feedback law can be obtained
from a suitably defined LQR formulation [12].

Choosing this parameterization has several practical advan-
tages. In particular, the desirable stability properties that full
state LQR controllers may deliver for some classes of tuning
parameters [26], [27]. Additionally, in case the introduction of
constraints is of interest, the obtained LQR weight matrices
can be used to formulate an MPC controller which maintains
the same closed-loop behavior of the unconstrained controller
for small signals [11], [12], i.e., when constraints are inactive.

In general, the LQR problem is formulated as

min
u

∞∑
k=0

[
xk
uk

]′
H

[
xk
uk

]
s.t. Equation (1),

x0 = x0,

(5)

where H ,

[
Q N
N ′ R

]
� 0, and Q = Q′ ∈ Rnx×nx , R =

R′ ∈ Rnu×nu , N ∈ Rnx×nu and x0 is the initial state of the
system. The general solution for this problem is given by a
static state feedback gain, namely uk = −Kxk, where the gain
K ∈ Rnu×nx is obtained by computing the only stabilizing
solution to the Discrete Algebraic Riccati Equation (DARE)

S = A′SA+Q− (A′SB +N)K, (6a)

K = (B′SB +R)−1(B′SA+N ′). (6b)

As S is an implicit functions of H , in the following we
summarize the computation of K through (6) as K = fK(H).

B. Model reference via LQR matching

The problem of synthesizing an LQR controller to match
a given closed-loop behavior (rk, wk) can be recast into the
following optimization problem

min
H,K,F,x,y

L(y, w) (7a)

s.t. xk+1 =Axk+B(−Kxk+Frk), k ∈ IH0 , (7b)

yk = Cxk, k ∈ IH0 , (7c)
K = fK(H), (7d)
H = H ′ � 0. (7e)

Note that, by exploiting the results of [12], one could equiva-
lently formulate the problem by removing variable H , con-
straint (7d), and by imposing the stability conditions that
A − BK has all its eigenvalues strictly inside the unit circle
and relying on the methods proposed in [12] to recover H .

Problem (7) is a NLSDP problem, since constraints (7b)
and (7d) define nonlinear equality constraints and (7e) is a
semidefinite constraint. Since all functions are differentiable,
(7) can be solved by derivative-based optimization algorithms.
The main non-standard features of the problem are con-
straint (7d) and (7e).

C. Derivatives of implicit functions

The main difficulty with (7d) is that fK is an implicit
function. In order to tackle this issue, let us rewrite (6) as

S =A′SA+Q− (A′SB+N)(B′SB+R)−1(B′SA+N ′).
(8)

While several numerical methods are available to solve the
DARE (6), they do not directly provide the required deriva-
tives. In order to address this issue, we exploit the implicit
function theorem [28], [29]. For ease of notation, we define
the vectorized matrices S,H as s, h, respectively, and (8) as

f(s, h) = 0, such that ds
dh = −

(
∂f(s,h)
∂s

)−1
∂f(s,h)
∂h .

The derivative of fK with respect to H is then directly
obtained by applying the chain rule. We ought to stress that
we intentionally eliminate S and use a standard DARE solver
in order to guarantee that the unique stabilizing solution
is obtained at each iterate performed by the NLP solver.
However, an alternative approach could consist in introducing
S as an optimization variable, with (6) directly as a constraint
replacing (7d) in Problem (7). However this would be danger-
ous because one does not have the a-priori guarantee that the
solver does not converge to one of the (in general infinitely
many) destabilizing solutions of the DARE.

D. Enforcement of the semidefinite constraint

Despite its simple nature, the presence of (7e) requires
one to employ a NLSDP solver to seek the solution of (7).
This is however problematic because there are very few well
tested and maintained NLSDP solvers available in literature,
and implementing such a solver from scratch is far from
trivial. In this work we take a more practical approach and
reformulate (7) so that a standard nonlinear programming

(NLP) solver can be instead used2. In particular, we present
two alternative formulations which differ by how matrix H is
parameterized:

1. Direct Cholesky factorization [30], [31]. Because H is
a positive definite matrix, it can be uniquely factorized
as H = L′L,where L is an upper triangular matrix
with positive diagonal elements. This means that one can
replace H (as decision variables) with the vector θ of the
nonzero elements of its Cholesky factor L.

2. An indirect approach based on LDL′ factorization.
A positive definite matrix H can be factorized [32] as
H = L̄DL̄′, where L̄ ∈ Rnx+nu×nx+nu is a lower
triangular matrix in which the diagonal elements are equal
to 1, and D ∈ Rnx+nu×nx+nu is a diagonal matrix with
only positives entries. Accordingly, a way to enforce (7e)
is to impose that the entries of the factor D of H stay
positive [33], namely:

Dii > 0, i = 1, . . . , nx + nu, (9)

where Dkj stands for the entry of D in the j−th column
an k−th row. In this case, since H is symmetric, the
decision variables vector θ will only have to contain the
elements of its lower (upper) half.

The first approach replace (7e) with a nonlinear parameter-
ization with bound constraints on some elements of θ. This is
advantageous because many optimization algorithms support
only this kind of bounds. The indirect LDL′ criterion retains
a linear parameterization of the elements of H , but it requires
introducing a set of nonlinear constraints.

Remark 2: The LDL′ decomposition could have also been
used to provide a direct parameterization of the matrix H .
Such an approach would be very similar to the already pro-
posed Cholesky parameterization and its analysis is therefore
omitted.

Remark 3: To employ the proposed criteria in our scheme,
we need to compute the sensitivities ∂Dii

∂H , which requires
us to differentiate through the LDL′ decomposition. Indeed,
this is not a concern as this computation is a well-understood
procedure which is also natively supported by many automatic
differentiation packages.

Remark 4: The condition (9) is equivalent to state that a
Cholesky factorization of H exists.

In the following we will analyze the performance of both
the proposed reinterpretation of the indirect LDL′ criterion
and the Cholesky parameterization as substitute for the LMI
constraint (7e).

E. Formulatation of the tuning problem as NLP

Let us LQR controller tuning problem as

min
θ,x,y,F,K,H

L(y, w)

s.t. : xk+1 =Axk+B(−Kxk+Frk), k ∈ IH0 ,
yk = Cxk, k ∈ IH0 ,
K = fK(H), H = fH(θ),
g(θ) ≥ 0.

(10)

2Analyzing which approach is the best is outside the scope of this paper.

Here, for the Cholesky parameterization we have that g(θ) ≥ 0

stands for θk̄+i − ε ≥ 0, i ∈ Inx+nu
1 , k̄ = (nx+nu−1)(nx+nu)

2 ,
and fH(θ) = L(θ)′L(θ), with

L(θ) =

θk̄+1 θ0 . . . θnu+nx−1

0 θk̄+2 θnu+nx . . .
...

. . .
...

0 θk̄+nu+nx

 . (11)

For the indirect LDL′ parameterization, g(θ) ≥ 0 stands for
the constraints described in (9), and

fH(θ) = X(θ)′ +X(θ), (12)

where X(θ) is, without loss of generality, an upper triangular
matrix. In both cases, ε � 1 is a constant used to recast
the strict positivity constraints as non-strict ones, as usual in
optimization.

Remark 5: The optimization problems (10) admit infinite
equivalent solutions [12]. For this reason, it might be useful
to introduce regularizers to improve numerical conditioning.

Remark 6: Additional constraints on H can also be im-
posed to promote specific properties of the solution (e.g.:
sparsity).

III. NUMERICAL EXPERIMENTS

We now report the results obtained by the presented ap-
proaches on various tests. The implementation was carried
out using MATLAB’s fmincon interior-point (IP) solver is
used to solve the NLP and CasADi [34] is used as automatic-
differentiation package. For comparison with global optimiza-
tion approaches, we also report the results obtained using
MATLAB’s particle swarm solver (PSO) [35].

We design r as a sequence of step signals with random
amplitude drawn from a uniform distribution U(−1.5, 1.5)
with a period of 60 steps, collecting 300 samples in total. IP
results were obtained setting as starting condition a H(θ) equal
to the identity matrix. For the PSO, to smooth the optimization
procedure, we set a limit of 280 iterations a maximum absolute
value of 10 on the elements of θ, and further impose a
minimum value of 10−4 on the diagonal elements of H in the
LDL′ case. Since MATLAB particleswarm solver does
not support nonlinear constraints, we handle them as penalties
in the objective function.

In all cases, the cost function (4) is used to assess quality
of closed-loop performance plus a small regularization term
λ‖H(θ)‖2F involving the Frobenius norm of H , with λ =
2 · 10−5. In this particular set of examples, without loss of
generality, we further imposed x0 = 0. All experiments are
performed on a PC with an Intel Core i7 4770k with 16GB
of RAM.

A. Experiments with reference models impossible to
achieve

We consider two dynamical systems: an unstable system
with non-minimum-phase zeros, and a stable minimum-phase
one. In both cases, the aim is to obtain a closed-loop behavior
as similar as possible to the one of an LTI reference model
that is however impossible to exactly achieve due to the
performance limitation imposed by the delays (in the latter

case) and by the non-minimum phase components (in the
former case).

1) Minimum phase system: We consider as system Σ the
minimal representation of the following transfer function

G(z) =
z2 − z + 0.16

z4 − 1.09z3 + 0.176z2 + 0.1051z − 0.02604
, (13)

where z−1 is the unit-delay operator. In this example, we
consider as reference model ΣRM the system

ΣRM (z) ,

{
ζk+1 = 0.15ζk + 0.85rk
wk = ζk

(14)

The results obtained for the above settings are reported in
Table I, where we can observer that the two parameterizations
achieve similar results, yet a much greater computational
cost is necessary for the Cholesky parameterization (11).
Nevertheless, our approach is able to reach better results
while requiring fewer function evaluations than the PSO-based
approach. The achieved closed-loop behavior is reported in
Figure 1 for the Cholesky case. There we can appreciate that,
except for the first time-step where the different behavior is
due to the intrinsic 2-step delay of the original system Σ, there
is good correspondence between the behavior of the controlled
system ΣLQR and the one of reference model ΣRM. Results for
the indirect LDL′ case are indistinguishable and are therefore
not reported.

2) Unstable non-minimum phase system: As test system Σ
we consider a minimal realization of the following transfer
function

H(z) =
z2 + 0.9z − 0.9

z3 − 0.98z2 + 0.7076z + 0.7238
, (15)

which has two unstable poles in z1,2 = 0.74± j
√

0.9 and an
unstable zero in z = −1.5. Also for this system we consider
the reference model given in (14). The comparison between

0 2 4 6 8 10 12 14 16 18 20

Time

0

0.2

0.4

0.6

0.8

1

1.2

A
m

p
lit

u
d
e

Fig. 1: Closed loop behavior of the controlled system ΣLQR

in comparison to ΣRM and H(z) (13). Results obtained using
the Cholesky parameterization (11).

Method Iterations # function
evaluations

Best
cost

CPU time
(seconds)

IP+LDL′ (12) 220 405 5.66 6
IP+Cholesky (11) 597 731 5.66 10
PSO+LDL′ (12) 88 8900 6.03 65

PSO+Cholesky (11) 280 28100 5.70 296

TABLE I: Achieved cost and computational effort of the two
proposed parameterizations for the system in (13).

the best-achieved cost for the two parameterizations is reported
in Table II. There we can see a similar situation to the one
found in the previous case: the IP solver was able to achieve
a very good fit using both parameterizations and, for the
indirect LDL′ case, fewer iterations were required to reach
convergence. The PSO solver was also able to achieve very
good results, yet it could not surpass our proposed approach
despite the enormous amount of function evaluations required.
The achieved closed-loop behavior is shown in Figure 2 for
the LDL′ parameterization. Results for the Cholesky case are
indistinguishable and omitted.

B. Trading off tracking and control effort

The proposed approach can be extended to tune LQR
controllers w.r.t. other targets in addition to the sole model-
reference tracking. Consider for instance tuning a controller to
trade off between tracking and energy/amplitude of the control
action. This can be simply obtained by adding a penalty on the
input signal to the cost function L(·, ·). To demonstrate this,
consider the following minimum-phase dynamical system Σ

J(z) =
0.1429z2 − 0.1429z + 0.02286

z3 − 1.4z2 + 0.61z − 0.084
, (16)

and the reference model given in (14). For this system, it is
indeed possible to achieve a perfect tracking of the reference
model, as shown in Figure 3. In there, however, we can also
observe that such a perfect tracking of ΣRM requires a great
feedback action effort uF

k = −KAxk. Assume now that we
would like to limit control action |uF

k | ≤ 1 when tracking
a unit-step reference signal from zero starting condition. To
do so, we employ the loss function L̄(y, w, u) = L(y, w) +∑H
k=0 η(max{1, |uF

k |}2 − 1), where η ≥ 0, and repeat the
tuning process using a square wave of amplitude 1 and 60 steps
period as test signal. The results obtained with η = 0.02 are

Method Iterations # function
evaluations

Best
cost

CPU time
(seconds)

IP+LDL′ (12) 206 320 0.942 4
IP+Cholesky (11) 583 759 0.942 9
PSO+LDL′ (12) 280 28100 0.962 241

PSO+Cholesky (11) 280 28100 0.947 297

TABLE II: Achieved cost and computational effort of the two
proposed parameterizations for the system in (15).

0 2 4 6 8 10 12 14 16 18 20

Time

0

0.5

1

1.5

A
m

p
lit

u
d
e

Fig. 2: Closed-loop behavior of the controlled system ΣLQR

in comparison to ΣRM for (15). Results were obtained using
the indirect LDL′ parameterization (12).

also shown in Figure 3. There we observe how the new closed
loop ΣLQR/B is still able to achieve an effective tracking, yet
the KBxk remains smaller than 1. The results in Figure 3 have
been obtained using the Cholesky parameterization.

C. Hammerstein-Wiener system

We investigate the behavior of the tuning approach when
trying to reproduce a nonlinear system. To this end we use
the plant described in (16) and takes a reference model the
following Hammerstein-Wiener system

ΣHWRM (z) ,

{
ζk+1 = 0.15ζk + 0.85(rk +

r2ksign(rk)
4)

wk = ζk + tanh(ζk2)
(17)

The results obtained using the Cholesky parameterization
are shown in Figure 4. Indistinguishable performance were
obtained also using the indirect LDL′ approach. There we can
appreciate that even for this nonlinear benchmark the proposed
approach is able to obtain good set-point tracking performance.

In Figure 4 we also observe the step response of an output
error model of order [4, 4, 1] identified by Matlab’s System
Identification Toolbox [36] on the same (rk, wk) dataset. The
good resemblance between ΣLQR and the identified model
suggests that our tuning approach achieves a result very close
to the best tracking performance that a linear system can
possibly achieve w.r.t ΣHWRM .

D. Computational performance for medium-sized
systems

To better assess the scalability of the proposed approach
we analyze the CPU time required to tune a controller for a
random system with 30 stable poles and 29 minimum phase
zeros. To tune the involved parameters, the solver required 520
seconds and 4094 function evaluations for the Cholesky case,
and 308 seconds and 3145 evaluations for the LDL′ case.
The optimal cost L? in both cases is less than 10−3, i.e., an
almost perfect tracking. Interestingly, the PSO fails in both
cases to synthesize a controller with comparable performance
even after 280 iterations.

0 2 4 6 8 10 12 14 16 18 20

Time

0

0.5

1

1.5

A
m

p
lit

u
d
e

Fig. 3: Comparison between ΣLQR/A and ΣLQR/B and the
reference ΣRM . The first two systems represent the closed-
loop obtained setting, respectively, η = 0 and η = 0.02 in the
tuning procedure. KAxk and KBxk represent the controller
feedback action for ΣLQR/A and ΣLQR/B respectively.

IV. CONCLUSIONS

We introduced a numerically efficient method to automat-
ically tune LQR controllers to match a user-provided I/O
behavior. Our approach reaches better results using a fraction
of the CPU time required by PSO, also for medium-scale
systems with 30 poles. We have also shown how the proposed
approach can be easily modified to take into account additional
goals such as avoiding input saturation.

Future works will explore extensions to uncertain and
stochastic systems, in addition to study convergence properties
and sample complexity [37], also in comparison with compet-
ing approaches.

0 2 4 6 8 10 12 14 16 18 20

Time

0

0.5

1

1.5

2

A
m

p
lit

u
d
e

Fig. 4: Closed-loop behavior of the controlled system ΣLQR

in comparison to ΣRM, for the Hammerstein-Wiener system.

REFERENCES

[1] F. Borrelli, A. Bemporad, and M. Morari, Predictive control for linear
and hybrid systems. Cambridge University Press, 2017.

[2] M. Athans, “A tutorial on the LQG/LTR method,” in 1986 American
Control Conference, pp. 1289–1296, IEEE, 1986.

[3] S. J. Qin and T. A. Badgwell, “A survey of industrial model predic-
tive control technology,” Control engineering practice, vol. 11, no. 7,
pp. 733–764, 2003.

[4] V. Kumar E and J. Jerome, “Algebraic Riccati equation based Q and
R matrices selection algorithm for optimal LQR applied to tracking
control of 3rd order magnetic levitation system,” Archives of Electrical
Engineering, vol. 65, no. 1, pp. 151–168, 2016.

[5] M. Forgione, D. Piga, and A. Bemporad, “Efficient Calibration of
Embedded MPC,” in Proc. of the 21st IFAC World Congress, 2020.

[6] E. J. Davison, D. E. Davison, and R. Milman, “Transient response
shaping, model based cheap control, saturation indices and MPC,”
European journal of control, vol. 11, no. 4-5, pp. 288–300, 2005.

[7] A. Agrawal, S. Barratt, S. Boyd, and B. Stellato, “Learning convex
optimization control policies,” in Learning for Dynamics and Control,
pp. 361–373, PMLR, 2020.

[8] S. Gros and M. Zanon, “Data-Driven Economic NMPC Using Rein-
forcement Learning,” IEEE Transactions on Automatic Control, vol. 65,
pp. 636–648, Feb 2020.

[9] M. Zanon and S. Gros, “Safe reinforcement learning using robust MPC,”
IEEE Transactions on Automatic Control, pp. 1–1, 2020.

[10] A. Yamashita, A. Zanin, and D. Odloak, “Tuning of model predictive
control with multi-objective optimization,” Brazilian Journal of Chemi-
cal Engineering, vol. 33, no. 2, pp. 333–346, 2016.

[11] S. Di Cairano and A. Bemporad, “Model predictive control tuning by
controller matching,” IEEE Transactions on Automatic Control, vol. 55,
no. 1, pp. 185–190, 2009.

[12] M. Zanon and A. Bemporad, “Constrained control and observer design
by inverse optimality,” arXiv preprint arXiv:2003.10166, 2020.

[13] S. Doddabasappa, “LQR control design for a DC-DC converter using
sensitivity functions,” Master’s thesis, The Pennsylvania State Univer-
sity, 2019.

[14] J.-B. He, Q.-G. Wang, and T.-H. Lee, “PI/PID controller tuning via LQR
approach,” Chemical Engineering Science, vol. 55, no. 13, pp. 2429–
2439, 2000.

[15] O. Saleem and M. Rizwan, “Performance optimization of LQR-based
PID controller for DC-DC buck converter via iterative-learning-tuning of
state-weighting matrix,” International Journal of Numerical Modelling:
Electronic Networks, Devices and Fields, vol. 32, no. 3, p. e2572, 2019.

[16] A. Marco, P. Hennig, J. Bohg, S. Schaal, and S. Trimpe, “Automatic
LQR tuning based on Gaussian process global optimization,” in 2016
IEEE Int. Conf. on robotics and automation (ICRA), pp. 270–277, IEEE,
2016.

[17] M. Zhu, A. Bemporad, and D. Piga, “Preference-based MPC calibra-
tion,” in Proc. of the 2021 European Control Conference (ECC), 2021.
To appear. arXiv preprint arXiv:2003.11294.

[18] R. Moriconi, M. P. Deisenroth, and K. Kumar, “High-dimensional
bayesian optimization using low-dimensional feature spaces,” arXiv
preprint arXiv:1902.10675, 2019.

[19] S. Chen, J. Montgomery, and A. Bolufé-Röhler, “Measuring the curse
of dimensionality and its effects on particle swarm optimization and
differential evolution,” Applied Intelligence, vol. 42, no. 3, pp. 514–526,
2015.

[20] A. Y. Ng and S. Russell, “Algorithms for inverse reinforcement learn-
ing,” in in Proc. of 17th Int. Conf. on Machine Learning, 2000.

[21] P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse reinforce-
ment learning,” in Proc. of the 21st Int. Conf. on Machine Learning,
p. 1, 2004.

[22] M. Palan, S. Barratt, A. McCauley, D. Sadigh, V. Sindhwani, and
S. Boyd, “Fitting a linear control policy to demonstrations with a Kalman
constraint,” in Learning for Dynamics and Control, pp. 374–383, PMLR,
2020.

[23] H. El-Hussieny and J.-H. Ryu, “Inverse discounted-based LQR algo-
rithm for learning human movement behaviors,” Applied Intelligence,
vol. 49, no. 4, pp. 1489–1501, 2019.

[24] S. Albrecht, Modeling and numerical solution of inverse optimal control
problems for the analysis of human motions. PhD thesis, Technische
Universität München, 2013.

[25] A. Tsiamis and G. J. Pappas, “Linear systems can be hard to learn,”
arXiv preprint arXiv:2104.01120, 2021.

[26] C. Chen, On the robustness of the linear quadratic regulator via
perturbation analysis of the Riccati equation. PhD thesis, Dublin City
University, 2015.

[27] U. Shaked, “Guaranteed stability margins for the discrete-time linear
quadratic optimal regulator,” IEEE Transactions on Automatic Control,
vol. 31, no. 2, pp. 162–165, 1986.

[28] M. C. Priess, R. Conway, J. Choi, J. M. Popovich, and C. Radcliffe,
“Solutions to the inverse LQR problem with application to biological
systems analysis,” IEEE Transactions on control systems technology,
vol. 23, no. 2, pp. 770–777, 2014.

[29] T.-C. Kao and G. Hennequin, “Automatic differentiation of
Sylvester, Lyapunov, and algebraic Riccati equations,” arXiv preprint
arXiv:2011.11430, 2020.

[30] J. C. Pinheiro and D. M. Bates, “Unconstrained parametrizations for
variance-covariance matrices,” Statistics and computing, vol. 6, no. 3,
pp. 289–296, 1996.

[31] S. Burer and R. D. Monteiro, “A projected gradient algorithm for solv-
ing the maxcut SDP relaxation,” Optimization methods and Software,
vol. 15, no. 3-4, pp. 175–200, 2001.

[32] G. H. Golub and C. F. Van Loan, Matrix computations, vol. 3. JHU
press, 2013.

[33] R. J. Vanderbei and H. Y. Benson, “On formulating semidefinite
programming problems as smooth convex nonlinear optimization prob-
lems,” tech. rep., Princeton University, 2000.

[34] J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl,
“CasADi – A software framework for nonlinear optimization and opti-
mal control,” Mathematical Programming Computation, vol. 11, no. 1,
pp. 1–36, 2019.

[35] The MathWorks, Inc., Optimization Toolbox. United States, 2021.
[36] The MathWorks, Inc., System Identification Toolbox. United States,

2021.
[37] M. Fazel, R. Ge, S. Kakade, and M. Mesbahi, “Global convergence of

policy gradient methods for the linear quadratic regulator,” in Int. Conf.
on Machine Learning, pp. 1467–1476, PMLR, 2018.

