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Abstract— When solving a quadratic program (QP), one
can improve the numerical stability of any QP solver by per-
forming proximal-point outer iterations, resulting in solv-
ing a sequence of better conditioned QPs. In this paper
we present a method which, for a given multi-parametric
quadratic program (mpQP) and any polyhedral set of pa-
rameters, determines which sequences of QPs will have to
be solved when using outer proximal-point iterations. By
knowing this sequence, bounds on the worst-case com-
plexity of the method can be obtained, which is of impor-
tance in, for example, real-time model predictive control
(MPC) applications. Moreover, we combine the proposed
method with previous work on complexity certification for
active-set methods to obtain a more detailed certification
of the proximal-point method’s complexity, namely the total
number of inner iterations.

Index Terms— Optimization algorithms, Predictive con-
trol for linear systems

I. INTRODUCTION

IN model predictive control (MPC) an optimization problem
must be solved at each time step. When MPC is used on

embedded systems in real-time applications, it is important
that the optimization methods used for solving these problems
are efficient, reliable, and simple. In linear MPC, where the
dynamics of the plant is modeled as linear, the optimization
problems in question are often quadratic programs (QPs)
which depend on the state of the plant and the set-point,
making them multi-parametric quadratic programs (mpQPs).

A class of methods which are suitable for solving QPs
originating from MPC problems is active-set methods [1][2][3,
Ch. 16.5][4][5]. In particular, the active-set method in [1] is
simple to implement and has been shown to be competitive
with state-of-the-art solvers for QPs encountered in real-time
MPC. A limitation of the method is, however, that it can
be unreliable for ill-conditioned problems, which lead to the
extension presented in [6]. Therein, the QP method is amended
with outer proximal-point iterations, resulting in solving a
sequence of better conditioned QPs which largely improves
the numerical stability of the method.
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Another recent development for improving the reliability of
active-set QP methods are complexity certification methods
which, given an mpQP, determines exactly which sequence of
active-set changes will occur during solution for any polyhe-
dral set of parameters. In particular, complexity certification
methods for the active-set QP methods in [1]–[4] have been
presented in [7]–[10], respectively. Furthermore, a general
complexity certification framework which encapsulates [7]–
[9] has been presented in [11].

In this paper we present a complexity certification method
which extends certification methods covered by [11] to handle
outer proximal-point iterations, akin to how [6] extends [1]. By
using the proposed method, the reliability of the QP method in
[6] can be increased further through guarantees on worst-case
computational complexity.

Given an mpQP, the method first identifies which sequence
of QPs will be solved when the proximal-point method is used.
Then, for each such QP, the complexity certification methods
covered by [11] are used to determine which sequence of
systems of linear equations will be solved when an active-set
method is used as an inner solver. Hence, the presented method
certifies, but is not limited to, the QP method in [6]. More
broadly, the proposed method certifies the worst-case number
of outer proximal-point iterations when any inner QP solver is
used. If there, in addition, exists a complexity method for the
inner solver, similar to the one covered in [11], the proposed
method can also determine bounds on the total number of inner
QP iterations and, ultimately, floating-point operations.

The main contribution is, hence, a method which can
be used to determine worst-case bounds on iterations and,
ultimately, floating-point operations for QP solvers which use
outer proximal-point iterations. Such bounds are important
when, e.g., MPC is used in real-time applications.

II. PROBLEM FORMULATION AND NOTATION

It is well-known, c.f. [12], that linear MPC problems can
be cast as mpQPs of the form

minimize
x

J(x, θ) ,
1

2
xTHx+ (f + fθθ)

Tx

subject to Ax ≤ b+Wθ,
(1)

where the iterate x ∈ Rn is related to the control action and
the parameter θ ∈ Θ0 ⊆ Rp is related to the state of the plant
and the set-point. The objective function J(x, θ) is defined by
H ∈ Sn+, f ∈ Rn, and fθ ∈ Rn×p, while the feasible set is



defined by A ∈ Rm×n, b ∈ Rm, and W ∈ Rm×p. Here we
will consider the case in which Θ0 is a polytope.

Remark 1: All subsequent results also hold when linear
equality constraints are present in (1), but we limit our
discussion to inequality constraints for a clean presentation.

Problem (1) can also be recast as minx qθ(x) with

qθ(x) ,

(
J(x, θ) +

m∑
i=1

I+([b]i + [W ]iθ − [A]ix)

)
, (2)

where I+ denotes the indicator function of the nonnegative
real-axis, i.e., I+(z) = 0 if z ≥ 0 and ∞ otherwise.
Recasting problem (1) into the unconstrained optimization
problem minx qθ(x) will be used to motivate the proximal-
point method introduced in Section III.

A. Notation
For a polyhedron R = {θ ∈ Rp : Aθ ≤ b} we denote

its interior R̊ , {θ ∈ Rp : Aθ < b}. A collection of
objects, e.g., polyhedra, {R1, R2, . . . , RN−1, RN} is often
written as {Ri}Ni=1 or more compactly {Ri}i if its cardinality
is unimportant. For any given integer N ∈ N we call Nn the
set of integers from 1 to N .

III. THE PROXIMAL-POINT METHOD

In this paper we are interested in analyzing a proximal-point
method which solves (1) by iteratively applying the so-called
proximal operator of qθ(x).

Definition 1: For a convex function g : X → (−∞,∞], its
proximal operator proxg : X → X is the mapping

proxg(v) , argmin
x∈X

(
g(x) +

1

2
||x− v||22

)
, ∀v ∈ X. (3)

Many interesting interpretations and properties of the prox-
imal operator are given in [13], where also interpretations of
the proximal-point method, soon to be introduced, are given.

Remark 2: proxg is in general a set-valued function, but if
g is proper, closed, and convex it outpus a singleton.

Here, we will, in particular, make use of the proximal
operator for γqθ, given by

proxγqθ (v) , argmin
x

(
qθ(x) +

1

2γ
||x− v||22

)
, (4)

where γ > 0 can be interpreted as a regularization parameter
since proxγqθ (v) is the optimum of the regularized QP

min
x

1

2
xT
(
H + 1

γ I
)
x+

(
f + fθθ − 1

γ v
)T

x

s.t. Ax ≤ b+Wθ.
(5)

Importantly, (5) is better conditioned than (1) since a positive
diagonal matrix is added to the Hessian. The smaller γ is, the
better conditioned the Hessian in (5) is.

Our interest in proxγqθ originates from the relation between
its fixed points and the optimizers of (1).

Lemma 1: For H � 0 and γ > 0, let xk be updated by

xk+1 = proxγqθ (xk). (6)

Then, given a starting iterate x0(θ) and θ ∈ Θ0,
limk→∞ xk(θ) = x∗(θ), where x∗(θ) is the optimizer of (1).

Proof: See [6, Corollary 1].
Hence, for a given θ, problem (1) can be solved by

iteratively applying proxγqθ , corresponding to solving a reg-
ularized QP problem, until a fixed point has been reached
within a prescribed tolerance, as is summarized in Algorithm
1. The algorithm is a proximal-point method and terminates
if the change between two iterates is less than or equal to
ν > 0 in some norm, meaning that a fixed point of proxγqθ
has approximately been reached.

Algorithm 1 Proximal-point method for solving (1)

1: x0 ← starting guess, θ given, k ← 0.
2: while true do
3: xk+1 ← proxγqθ (xk)
4: if ||xk+1 − xk|| ≤ ν then
5: return xk+1

6: k ← k + 1

Algorithm 1 has a convergence rate of O(1/k). More
concretely, it can be shown (see, e.g., Theorem 10.28 in [14])
that its iterates satisfy

Jk(θ)− J∗(θ) ≤ 1

2γk
||x0(θ)− x∗(θ)||22, (7)

with Jk(θ) , J(xk(θ), θ) and J∗(θ) , J(x∗(θ), θ).
Remark 3: An inherent trade-off when picking γ can be

seen in (5) and (7): a smaller γ leads to better conditioned
QP subproblems to solve in each iteration of Algorithm 1,
but a smaller γ also leads to slower convergence, i.e., more
iterations of Algorithm 1 must be executed.

To summarize, the advantage of using a proximal-point
method for solving (1) is that a sequence of well-conditioned
QPs can be solved to solve the original QP, which might be
ill-conditioned. This allows solvers which behave particularly
bad for ill-conditioned problems, or solvers which demand the
problem to be strictly convex, to be used to solve (1).

A. Evaluating the proximal operator
Using the proximal-point method might seem expensive

since we have to solve numerous QPs instead of a single one.
However, as is shown in [6], performing outer proximal-point
iterations instead of trying to solve the QP directly can, in
addition to improving numerical stability, improve the worst-
case CPU time. This improvement can partly be explained
by the subproblems being better conditioned than the original
QP problem, making them easier to solve. Furthermore, only
the linear term in the objective function of (5) changes in
the regularized QP subproblems, i.e., the solution between
subproblems will be similar. Hence, the solution from the
previous subproblem can be used as a warm start in the fol-
lowing QP so that, possibly required, matrix factorizations can
be reused which, often, reduces the computational complexity
significantly.

A class of QP methods that can be efficiently warm-started
is active-set methods. We will therefore mainly focus on using
active-set methods for solving the QP needed to evaluate
proxqθ . However, most of the results are applicable to the case



in which other QP methods, such as interior-point methods,
are used to evaluate proxγqθ .

IV. PARAMETRIC BEHAVIOUR

We are now interested in how Algorithm 1 behaves for dif-
ferent values of the parameter θ, for example, how the number
of iterations k depends on θ. When analyzing the parametric
properties of the algorithm, the following definitions will prove
useful.

Definition 2: A collection of polyhedra {Ri}Ni=1 is said
to be a polyhedral partition of Θ if ∪iRi = Θ and if
R̊i ∩ R̊j = ∅,∀i 6= j.

Definition 3: A function x(θ) : Θ→ X is piecewise affine
(PWA) on Θ if there exists a polyhedral partition {Ri}Ni=1

of Θ and if, ∀i ∈ NN , x(θ) = Giθ + hi, ∀θ ∈ Ri, with
Gi ∈ Rn×p and hi ∈ Rn. If in addition Gi = 0, ∀i ∈ NN ,
x(θ) is piecewise constant (PWC) on Θ.

The main property which allows for the parametric be-
haviour of Algorithm 1 to be parametrically tractable stems
from proxγqθ retaining PWA structures, formalized in the
following lemma.

Lemma 2: If v(θ) is PWA on Θ, then proxγqθ (v(θ)) is also
PWA on θ.

Proof: Since v(θ) is PWA, v(θ) = Giθ + hi,∀θ ∈ Ri
for some polyhedral partition {Ri}Ni=1 of Θ. By considering
θ ∈ Ri and inserting the affine expression of v(θ) into (5),
proxγqθ (v(θ)) is the solution to

min
x

1

2
xT
(
H + 1

γ I
)
x+

(
f − 1

γh
i + (fθ − 1

γG
i)θ
)T

x

s.t. Ax ≤ b+Wθ, θ ∈ Ri,
(8)

which is an mpQP and, hence, has a PWA solution, see,
e.g., Theorem 4 in [12]. Let this solution be denoted as
Gi,jθ + hi,j ,∀θ ∈ Ri,j , where {Ri,j}Nij=1 is a polyhedral
partition of Ri. What remains to prove is that {Ri,j}i,j is
a polyhedral partition of Θ. First we note that ∪i,jRi,j =
∪iRi = Θ, where the first equality follows from {Ri,j}j
being a polyhedral partition of Ri for each fixed i and the
last equality follows from {Ri}i being a polyhedral partition
of Θ. Next, we have that R̊i,j ∩ R̊ĩ,j̃ = ∅ for i 6= ĩ and j 6= j̃,
which follows from R̊i,j ∩ R̊i,j̃ = ∅ for j 6= j̃ and any i
since {Ri,j}i,j is a polyhedral partition of Ri. Furthermore,
R̊i,j ∩ R̊ĩ,k = ∅ for i 6= ĩ since Ri,j ⊆ Ri and R̊i ∩ R̊ĩ = ∅
since {Ri}i is a polyhedral partition of Θ.
Figure 1 illustrates how the proximal operator of qθ propagates
polyhedral partitions.

R1

R2

R3

proxγqθ

R1,1

R1,2

R1,3

R2,1

R2,2

R3,1 R3,2

R3,3

Fig. 1: Example of polyhedral partitions before and after
proxγqθ is applied to a PWA function.

Now, since Algorithm 1 iteratively applies proxγqθ , Lemma
2 can be applied iteratively to analyze how its iterates change
parametrically.

Lemma 3: Let x0 be PWA on Θ, then xk(θ) in Algorithm
1 will be PWA on Θ at all iterations k.

Proof: Directly follows from Lemma 2 and by induction,
since the iterates of Algorithm 1 are updated by iteratively
applying proxγqθ .

So far we have shown that the parametric behaviour of
Algorithm 1 will be similar on polyhedral regions of the pa-
rameter space if the starting iterate is PWA. We are now inter-
ested in analyzing the termination criterion ||xk+1 − xk|| ≤ ν
parametrically, which evidently depends on which norm is
used. The following lemma shows that if || · ||∞ is used, a
polyhedral partitioning of the parameter space can be retained.

Lemma 4: Let Θ∗k ⊆ Θ0 be the set of parameters in Θ0

which results in the termination criterion ||xk − xk−1|| ≤ ν
being satisfied in iteration k of Algorithm 1, i.e.,

Θ∗k , {θ ∈ Θ0 : ||xk(θ)− xk−1(θ)|| ≤ ν}. (9)

Furthermore, let x0 be PWA on Θ0 and let the || · ||∞ be used
for the termination criterion. Then there exist two collections
of polyhedra {Ψi}i and {Φi}i such that

(i) Θ∗k = ∪iΨi
k,

(ii) Θ0 \Θ∗k = ∪iΦik.
Proof: First, we show that the difference ∆xk(θ) ,

xk(θ)− xk−1(θ) is PWA. From Lemma 3 we have that xk−1

is PWA for any k, i.e., xk−1 = Gik−1θ + hik−1,∀θ ∈ Ri,
where {Ri}i is a polyhedral partition of Θ0. Furthermore,
by using the same notation as in the proof of Lemma 2,
xk = Gi,jk θ + hi,jk ,∀θ ∈ Ri,j , where {Ri,j}i,j is a polyhedral
partition of Θ0 and {Ri,j}j is a polyhedral partition of Ri.
The difference then becomes

∆xk(θ) = Gi,jk θ + hi,jk −
(
Gik−1θ + hik−1

)
, if θ ∈ Ri,j

= ∆Gi,jk θ + ∆hi,jk , if θ ∈ Ri,j
(10)

where we have used Ri,j ⊆ Ri in the first equality and have
defined ∆Gi,jk , Gi,jk −Gik−1 and ∆hi,jk = hi,jk −hik−1 in the
second equality.

With ∆xk(θ) being PWA established, we analyze the ter-
mination criterion ||∆xk(θ)||∞ ≤ ν.

Let n(i, j) : NNi × NNi,j → NNiNi,j be any bijective
mapping and define

Ψ
n(i,j)
k ,Θ∗k ∩Ri,j

={θ ∈ Ri,j : ||∆Gi,jk θ + hi,jk ||∞ ≤ ν},
(11)

which is the set of all parameters in Ri,j which satisfy the
termination criterion after k iterations. Ψn

k is a polyhedron
since it is defined as an intersection between two polyhedra.
Taking the union of all Ψn

k gives

∪nΨn
k = ∪i,j (Θ∗k ∩Ri,j) = Θ∗k ∩ (∪i,jRi,j)

=Θ∗k ∩Θ0 = Θ∗k,
(12)

where the second equality follows from intersections distribut-
ing over unions, the third equality follows from {Ri,j}i,j
being a polyhedral partition of Θ0, and the final equality



follows from Θ∗k ⊆ Θ0. This proves (i) and, once (i) has been
established, (ii) follows directly from Proposition 6 in [15],
which states that the difference between a polyhedron and a
collection of polyhedra can also be represented by a collection
of polyhedra.

Remark 4: Θ∗k in Lemma 4 is not necessarily a convex set
since its composing polyhedra might be disconnected.

A direct consequence of Lemma 4 is that the number of
iterations k will be structured if the || · ||∞ is used in the
termination criterion, namely k(θ) will be PWC.

Corollary 1: If x0 is PWA on Θ0 and ||.||∞ is used in the
termination criterion of Algorithm 1, the number of iterations,
k(θ) : Θ0 → N, needed by Algorithm 1 will be PWC on Θ0.

Proof: Directly follows from Lemma 4. Explicitly,
k(θ) = k̃, ∀θ ∈ Θ∗

k̃
\Θ∗

k̃−1
, where Θ∗

k̃
is defined by (9). Again,

since Θ∗k can be represented as a collection of polyhedra,
Proposition 6 in [15] can be used to show that Θ∗

k̃
\ Θ∗

k̃−1
also can be represented as a collection of polyhedra.

With these parametric properties established, we set out to
devise a method which certifies the worst-case complexity
of Algorithm 1. Note that it can be immediately shown that
the above results also hold when ‖.‖1 is used in Step 4 of
Algorithm 1.

V. COMPLEXITY CERTIFICATION

The idea of the complexity certification method we propose
is to execute iterations of Algorithm 1 parametrically, which
will partition the parameter space into polyhedral regions. By
using an affine starting iterate x0(θ), the iterates at iteration
k, xk(θ), will be affine functions in θ, as shown by Lemma 3.
Each region is defined by a tuple (Θ, k,G, h), where Θ ⊆ Θ0

is the parameter region, k is the number of iterations that
has been executed for the region to reach its current state and,
finally, the iterate on the region is given by the affine mapping
xk(θ) = Gθ + h. Executing another iteration of Algorithm 1
for a region given by the tuple (Θ, k,G, h) corresponds to
solving an mpQP on the form

min
x

1

2
xT
(
H + 1

γ I
)
x+

(
f − 1

γh+ (fθ − 1
γG)θ

)T
x

s.t. Ax ≤ b+Wθ, θ ∈ Θ,
(13)

which will generate the tuples {(Θi, k + 1, Gi, hi)}i, where
the explicit solution to this mpQP is given by

x = Giθ + hi, ∀θ ∈ Θi.

Next, the termination criterion is imposed parametrically.
Even though Lemma 4 and Corollary 1 can be used to track
exactly how many proximal-point iterations are needed by
Algorithm 1 to converge to the solution of (1), the cuts made
by the termination criterion increase the complexity of the
partition. These cuts are not necessary, however, if only a
worst-case analysis is of interest, e.g., when maxθ∈Θ0 k(θ) is
of interest, which is often the case for real-time MPC. Instead
of partitioning a parameter region Θ into regions which have
converged and which have not, the parameter region can be
treated as an atomic unit and if

max
θ∈Θ
||xk+1(θ)− xk(θ)|| ≤ ν, (14)

all of the parameters in Θ satisfies the termination criterion.
Remark 5: A similar approach of treating regions as an

atomic unit instead of explicitly partitioning the parameter
space by a termination criterion was used in [16], which
considered complexity certification of an early-terminating
primal active-set method.

Remark 6: In addition to circumventing cuts imposed by
the termination criterion, analyzing the termination by (14)
allows for other norms (such as the 2-norm) to be used in
the termination criterion while retaining a polyhedral partition,
which would not be the case if the partitioning were to be
analyzed exactly for these norms.

The certification method is summarized in Algorithm 2.
Two stacks of tuples are maintained throughout the process;
S stores tuples corresponding to regions for which there exist
parameters which do not yet satisfy the termination criterion,
while S∗ contains tuples corresponding to regions for which
all parameters satisfy the termination criterion. The procedure
solvempQP(G, h,Θ) solves the mpQP in (13). For a survey
of methods for solving mpQPs, c.f. [17].

Algorithm 2 Certification of outer proximal-point iterations

1: Push (Θ0, 0, G0, h0) to S
2: while S 6= ∅ do
3: Pop (Θ, k,G, h) from S
4: {(Θi, Gi, hi)}Ni=1 ← solvempQP(Θ, G, h)
5: for i ∈ {1, . . . , N} do
6: ∆← max

θ∈Θi
||(Gi −G)θ + (hi − h)||

7: if ∆ ≤ ν then
8: Push (Θi, k + 1, Gi, hi) to S∗

9: else
10: Push (Θi, k + 1, Gi, hi) to S
11: return S∗

Since Algorithm 2 uses (14) instead of explicit partitioning
according to the termination criterion, we want to ensure that
it terminates in finite time. This is ensured by the sequence of
iterates produced by Algorithm 1 converging.

Lemma 5: Assume that x0(θ) is given and let {xi(θ)}i
be the corresponding sequence of iterates produced by Al-
gorithm 1. Then, for any subset Ψ ⊆ Θ0, ∃K ∈ N :
maxθ∈Ψ ||xk+1(θ)− xk(θ)|| ≤ ν, ∀k ≥ K.

Proof: Follows directly from Lemma 1 and Cauchy’s
convergence criterion.

With the finite termination of Algorithm 2 ensured, we state
the main result of this paper: For a given mpQP, Algorithm 2
can be used to determine the worst-case iteration complexity
of Algorithm 1.

Theorem 1: Let {(Θi, k̂i, Gi, hi)}i be the collection of tu-
ples in S∗ when Algorithm 2 has terminated and let k(θ) :
Θ0 → N be the number of iterations needed by Algorithm 1
to terminate, as a function of θ. Then

(i) k(θ) ≤ k̂i, ∀θ ∈ Θi and ∀i
(ii) maxi k̂

i = maxθ∈Θ0
k(θ)

Proof: (i) Consider any tuple (Θi, k̂i, Gi, hi) ∈ S∗.
From Steps 6-8 of Algorithm 2, we then have that



maxθ∈Θi ||xk̂i(θ)− xk̂i−1(θ)|| ≤ ν =⇒ Θi ⊆ Θ∗
k̂
, which

in turn, from (9), implies that k(θ) ≤ k̂i,∀θ ∈ Θi.
(ii) From (i), it follows that

max
i
k̂i ≥ max

θ∈Θ0

k(θ), (15)

since ∪iΘi = Θ0. Now, to prove (ii) we want to prove that
this bound is tight, i.e., ∃θ̃ ∈ Θ0 : k(θ̃) = maxi k̂

i. Let j ∈
argmaxik̂

i and let Θ̃j ⊆ Θ0 be the parent of Θj in Algorithm
2, i.e., the region which was partitioned to obtain Θj , which
implies that Θj ⊆ Θ̃j . Since Θ̃j was partitioned into Θj ,
maxθ∈Θ̃j ||xk̂j−1(θ)−xk̂j−2|| > ν, otherwise Θ̃j would have
been added to S∗. This implies from (9) that Θ̃j * Θ∗

k̂j−1
,

which in turn implies that ∃θ̃ ∈ Θ̃j : k(θ̃) > k̂j−1. Combining
this lower bound with the upper bound in (15) gives

max
i
k̂i − 1 < k(θ̃) ≤ max

i
k̂i ⇔ k(θ̃i) = max

i
k̂i, (16)

where we have recalled that k̂j = maxi k̂
i.

Thus, Algorithm 2 provides upper bounds on the number
of iterations needed by Algorithm 1 to terminate and a tight
upper bound on the worst-case number of iterations, for any
region of interest in the parameter space.

Up to this point, we have not made any assumptions on how
proxγqθ is evaluated in Algorithm 1. Next, we consider the
case when an active-set method is used as an inner QP solver,
resulting in more fine-grained certificates of the complexity,
such as total number of iterations performed by the inner
solver.

A. Certifying inner iterations

As was mentioned in Section III-A, the choice of inner
solver is important for the proximal-point method to be practi-
cal. In particular, it is critical that the inner solver can be warm
started, which makes active-set methods good candidates. For
some active-set methods there exist algorithms which, for a
given mpQP, can certify their complexity [7][8][9][10][11].
These certification methods determine which sequence of
active sets is visited for any parameter or interest, allowing the
worst-case number of iterations and floating-point operations
to be determined. In brief, the parameter space is partitioned
into polyhedral regions and for each region the worst-case
number of iterations, the optimal solution as an affine function
of θ and the optimal active-set, i.e., the constraints which hold
with equality at the solution, are determined.

To get more fine-grained certificates on the complexity of
Algorithm 1, we consider the case in which any active-set
method covered by [11] is used as an inner solver. By using the
corresponding complexity certification method for the inner
solver, one can obtain, in addition to bounds on the outer
iteration, bounds on the total number of inner iterations or even
the number of floating-point operations needed by Algorithm
1. The idea is to use Algorithm 1 to determine which sequence
of mpQPs will be solved for different regions of the set Θ0

and for each such mpQP apply the complexity certification for
the active-set method to determine the sequence of active-set
changes made by the inner solver.

This is done by extending solvempQP(Θ, G, h) in Al-
gorithm 2 with the procedure certInner(Θ, G, h,A) which
applies the complexity certification method for the active-
set method on the mpQP in (13) and outputs the tuples
{(Θi, κi, Gi, hi,Ai)}i, where Giθ+hi, ∀θ ∈ Θi is, as before,
the explicit solution of (13), κi is a measure of the complexity,
which can either be the number of iterations or number of
floating-point operations, to solve (13) when the active-set
method is warm started with A and, finally, Ai is the optimal
active set at region Θi for (13). The final algorithm is given
by Algorithm 3.

Algorithm 3 Certification of total inner complexity

1: Push (Θ0, 0, G0, h0,A0) to S
2: while S 6= ∅ do
3: Pop (Θ, κ,G, h,A) from S
4: {Θi, κi, Gi, hi,Ai}Ni=1 ← certInner(Θ, G, h,A)
5: for i ∈ {1, . . . , N} do
6: ∆← max

θ∈Θi
||(Gi −G)θ + (hi − h)||

7: if ∆ ≤ ν then
8: Push (Θi, κ+ κi, Gi, hi,Ai) to S∗

9: else
10: Push (Θi, κ+ κi, Gi, hi,Ai) to S
11: return S∗

Remark 7: Even though our main focus herein is on active-
set methods, Algorithm 3 works for any QP method, if there
exists a complexity certification method for it.

Remark 8: The partition provided by certInner will be
finer compared to the partition of the explicit solution. If one
wants to reduce the number of regions, all regions with the
same final active set can be merged into one region and the
maximal κi can be picked for the merged region. However, the
finer partition from certInner is not necessarily a drawback
since it allows for more regions to be terminated by (14).

VI. NUMERICAL EXAMPLE

The proposed certification method is illustrated on a small-
scale mpQP originating from MPC applied to control a double
integrator. The problem matrices are given by

H =

5.3 1.8 8.0
1.8 4.4 6.0
8.0 6.0 22.9

 · 10-2, fθ =

0.36 0.50 -0.50 -0.01
0.30 0.41 -0.41 0
0.85 1.0 -1.0 0


f = 03×1, A =

(
I3
−I3

)
, b = 16×1, W = 06×4,

where In denotes the n-dimensional identity matrix and 0n×m
and 1n×m denote n×m matrices with all elements equal to
0 or 1, respectively. The regularization parameter was set to
γ = 102 and for the termination criterion the || · ||∞ was used
with a tolerance ν = 10−6. Moreover, the starting iterate was
chosen as the origin, i.e., x0 = (0, 0, 0)T .

Gurobi [18] was used for solving the nonconvex optimiza-
tion problems in Step 6 of Algorithm 2 and 3.

A representative two-dimensional slice of the final partition
of Θ0 with the estimated number of outer iterations k̂ produced
by Algorithm 2 is shown in Figure 2, together with results from



# of outer iterations
1 2 3 4 5 6 7 8 9 10 11 12 13 14

θ1-0.7 0.7

θ2

-0.7

0.7

(a) Certification

θ1-0.7 0.7

θ2

-0.7

0.7

(b) Simulation

Fig. 2: Number of outer iterations determined by: (a) Applying
the Algorithm 2 on the mpQP; (b) Executing Algorithm 1 over
a two-dimensional grid in the parameter space. The slice is
given by θ3 = θ4 = 0. As is stated in Theorem 1, the outer
iterations of Algorithm 1, shown in (b), is upper bounded by
the result from Algorithm 2, shown in (a).

(a) γ = 102 (b) γ = 2 · 102 (c) γ = 2 · 103

Fig. 3: Number of outer iterations determined by Algorithm
2 for different values of the regularization parameter γ.

simulation. These simulation results were obtained by sam-
pling Θ0 and, for each parameter sample, applying Algorithm
1 to the resulting QP. The execution time for the complexity
certification was 42 seconds for a MATLAB implementation
of the algorithm executed on an Intel 2.7 GHz i7-7500U CPU.

The properties of Algorithm 2 which were proven in The-
orem 1 can be seen in Figure 2, namely that k̂(θ) is an upper
bound on k(θ) for all parameters in Θ0 and that the worst-
case outer iteration bound is tight, which for the example is
14 outer iterations.

One can also see that the complexity of the exact partition
produced is more complex than the one produced by Algo-
rithm 2, highlighting the advantage of using (14) instead of
tracking the termination exactly by explicit partitioning of the
parameter space through the termination criterion.

Figure 3 shows partitions generated by Algorithm 2 for
different values of the regularization parameter γ, where a
larger γ results in fewer outer iterations (in accordance with
Remark 3). The execution time for Algorithm 2 for values of
γ in Figure 3a, 3b, and 3c were, 42 seconds, 22 seconds, and
2 seconds, respectively.

VII. CONCLUSION

In this paper we have proposed a complexity certification
method for when outer proximal-point iterations are performed
to improve the numerical stability of QP solvers. Given an
mpQP, the method determines exactly which set of regularized

QPs will be solved when the proximal-point method is used,
which can be applied to determine the worst-case number
of outer proximal-point iterations. We have also shown how
the proposed method can be combined with previous work
on complexity certification methods for active-set methods to
determine worst-case bounds on the total number of inner
iterations and floating-point operations. The ability of the
proposed method to determine the exact worst-case number of
outer iterations performed by the proximal-point method was
illustrated on an mpQP originating from controlling a double
integrator through MPC.
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