
Multi-agent active learning for distributed
black-box optimization

Loris Cannelli, Member, IEEE , Mengjia Zhu, Member, IEEE , Francesco Farina, Alberto Bemporad, Fellow,
IEEE , Dario Piga, Senior Member, IEEE

Abstract— Global optimization problems over a multi-
agent network is addressed in the paper. The objective
function, possibly subject to global constraints, is not
analytically known, but can only be evaluated at any query
point. It is assumed that the cost function to be minimized
is the sum of local cost functions, each of which can
be evaluated by the associated agent only. The proposed
algorithm asks the agents at each iteration first to fit a
surrogate function to local samples, and subsequently to
minimize, in a cooperative fashion, an acquisition function,
in order to generate new samples to query. In this paper
we build the acquisition function as the sum of the local
surrogates, in order to exploit the knowledge of these
estimates, plus another term that drives the minimization
procedure towards unexplored regions of the feasible
space, where better values of the objective function might
be present.

The proposed scheme is a distributed version of the
existing algorithm GLIS (GLobal optimization based on
Inverse distance weighting and Surrogate radial basis
functions), and share with it the same low-complexity and
competitiveness, with respect to, for instance, Bayesian
Optimization (BO). Experimental results on benchmark
problems and on distributed calibration of Model Predictive
Controllers (MPC) for autonomous driving applications
demonstrate the effectiveness of the proposed method.

Index Terms— Black-box optimization, distributed
optimization, Model Predictive Control, multi-agent
networks, surrogate models

I. INTRODUCTION

ACTIVE learning algorithms for black-box global
optimization aim to optimize an expensive-to-evaluate

objective function f(x), whose analytical expression is
typically not available and can only be evaluated through
experiments or simulations [1]. Different active learning
algorithms for black-box optimization with a minimum
amount of function evaluations have been proposed in the last
decades [2], [3], [4], and the most popular one is definitely
Bayesian Optimization (BO) [1], which relies on successively

This work was partly supported by HASLER STIFTUNG under
the project Black-box optimization in multi-agent networks: towards a
distributed learning approach.

Loris Cannelli and Dario Piga are with the IDSIA Dalle Molle Institute
for Artificial Intelligence, SUPSI-USI, 6962, Lugano, Switzerland (e-
mail:{loris.cannelli, dario.piga}@supsi.ch).

Mengjia Zhu and Alberto Bemporad are with IMT School
for Advanced Studies, Lucca, Italy (e-mail: {mengjia.zhu,
alberto.bemporad}@imtlucca.it).

Francesco Farina is an independent researcher with no affiliation (e-
mail: farina@skiff.com).

constructing a probabilistic surrogate function (typically, a
Gaussian Process) approximating the objective f(x). The
surrogate is then used at each iteration of BO to select the
next point where to query f(x), by trading-off exploitation
(searching for values of x where f(x) is expected to be
optimal) and exploration (searching for points x for which
f(x) is highly uncertain). The same rationale is also adopted
by other active-learning based approaches for black-box global
optimization [2], [3], [4]. In this paper, we present a distributed
version of GLIS, an active learning scheme for black-box
optimization recently proposed in [3].

The need of distributed active learning algorithms for black-
box optimization comes from the recent research interest in
networked multi-agent systems [5], [6]. The commonality of
network-structured applications is that they need to perform
a decentralized optimization. This happens mainly because
of two aspects: i) a lack of a central controller/authority,
and ii) an inherent time-varying dynamics of the connectivity
structure. Indeed, in several applications the presence of a
central controller (a master node) is impractical or unattractive
for various reasons: 1) its resources may be insufficient to
coordinate the whole network and communicate with all the
agents (e.g., limited bandwidth); 2) its single failure will cause
the entire system to fail (robustness concerns); 3) privacy and
confidentiality of the local information of the agents can not
be preserved; 4) some of the agents in the network might be
low-power devices that can communicate only with nodes in
their physical proximity, making unfeasible the existence of
a star topology (or a spanning tree). Furthermore, additional
advantages of distributed systems is their inherent flexibility:
the network topology and connectivity may be time-varying
due, e.g., to agents mobility, link failures, or power outage.

The main idea of GLIS is to recursively build a surrogate
of the objective function f(x) as a linear combination of a
Radial Basis Function (RBF), whose parameters are estimated
by quadratic programming. The acquisition function used to
select the query point x at each iteration of GLIS is then
constructed as a weighted sum of the surrogate and of an
Inverse Distance Weighting (IDW) function that is used to
promote exploration of the input space. In the distributed
version of GLIS presented here, called D-GLIS, we consider
a black-box optimization problem in which N agents attempt
optimizing a global separable objective given by the sum of
local objectives fi(x), i.e., f(x) =

∑N
i=1 fi(x). Following

the GLIS approach, at each iteration of D-GLIS, the i-th
agent updates a surrogate f̂i of its local objective fi based on

its current estimate of the surrogate itself. Then, each agent
optimizes a local acquisition function to find the next point
to query locally. The local acquisition function consists of the
combination of a surrogate of the global objective f(x) and
a local IDW function promoting the exploration of areas not
yet explored by the i-th agent.

We refer to distributed optimization in terms of:
• experiments performed by the agents. In fact, the input

space is cooperatively explored by the agents. Unlike
other approaches for multi-agent learning [7], [8], we
assume that the agents do not share information on their
local objective fi nor the corresponding surrogate f̂i;

• optimization of the local acquisition function minimized
by each agent. Since each agent builds its own surrogate,
and this information is not shared among the others, D-
GLIS relies on decentralized consensus schemes. This
allows the agents to cooperate over a network to achieve
a global performance objective by exchanging a limited
amount of local information with their one-hop neighbors
only.

The two arguments above represent the main differences
between GLIS and D-GLIS, and thus the main novelty of
the paper. The rest of the paper is organized as follows.
The active learning problem for distributed optimization is
formulated in Section II. Section III presents the proposed
distributed learning scheme D-GLIS. Section IV discusses
the building blocks of D-GLIS that lie in the field of
distributed optimization. Section V presents numerical results
on benchmark global optimization problems (solved in a
distributed fashion) and on decentralized calibration of an
MPC for autonomous driving. The accompanying technical
report [9] provides further details on the numerical distributed
optimization algorithms used by D-GLIS, as well as more
details on the numerical examples.

II. PROBLEM FORMULATION

Consider a network composed by N computing units
(agents). We address the problem of solving the following
optimization problem:

x⋆ = argmin
x∈X

f(x), (1)

where x ∈ Rn and X ⊆ Rn is the set of feasibility which is
supposed to be known. We assume that the objective function
f : Rn → R is separable:

f(x) ≜
N∑
i=1

fi(x), (2)

where fi : Rn → R is the local cost function of the i-th agent.
We suppose that:

• the analytical expression of the local functions fi (with
i = 1, . . . , N) are not available, and fi can only be
observed by the i-th agent through evaluation of fi(x)
at any selected x ∈ X , possibly in a noisy way;

• each agent performs its own function evaluation of fi(x),
without sharing this information with the others. At
the same time, the agents cooperate to meet the global
objective of solving (1);

• evaluating fi(x) is expensive, and thus problem (1)
needs to be solved within a limited number of function
evaluations.

As an example, f(x) can be a global performance index,
which is given by the average of the local performance indexes
fi(x) of each agent. The agents might not provide information
on the local function evaluations fi(x) they performed for
several reasons, such as for privacy issues, reduction of
communication costs, lack of a central coordinator (master),
etc.

The communication among the agents is modeled as a
fixed, directed weighted graph G = ({1, . . . , N} , E ,A), where
{1, . . . , N} is the set of the vertices/agents, E ⊆ {1, . . . , N}×
{1, . . . , N} is the set of edges/communication links, and
A ∈ RN×N is the weighted adjacency matrix of the graph.
The edge (i, j) ∈ E models the fact that agent i can send
a message to agent j. A is compliant with the topology
described by E , that is to say, being αij the (i, j)−entry
of A, then αij > 0 if (i, j) ∈ E , and αij = 0 otherwise.
In the rest of this work it will be assumed that i) G is
strongly-connected, and ii) A is doubly stochastic. These are
two common minimal assumptions (see, for example, [10])
ensuring that the information of each agent influences the
information of any other agent infinitely often in time.

In the following section we present D-GLIS, which aims at
solving problem (1) through a decentralized strategy relying
on the communication graph G and based on active learning.

III. D-GLIS

A. Local surrogate functions

Assume that each agent i has collected a local dataset Di =
{xj , yj}Mi

j=1 of length Mi, where yj is the noisy observation
of f(xj). The set Di is not shared with the other agents.
Among many possible choices to construct the surrogate f̂i
approximating the true unknown local objective fi for each
agent i = 1, . . . , N , we adopt the following weighted linear
combination of RBFs, according to the original version of
GLIS [11]:

f̂i(x) =

Mi∑
k=1

β
(i)
k ϕ(ϵd(x, xk)), (3)

where ϕ : R → R is an RBF, with d(x, xk) being any
distance function between x and xk and ϵ > 0 a scalar
hyper-parameter defining the shape of the RBF. The unknown
coefficients β(i) = [β

(i)
1 , . . . , β

(i)
Mi

]T are determined by fitting
the model f̂i(x) to the dataset Di through the minimization
of the regularized squared error:

Mi∑
k=1

∥∥∥∥∥yk −
Mi∑
k=1

β
(i)
k ϕ(ϵd(x, xk))

∥∥∥∥∥
2

+ γ
∥∥∥β(i)

k

∥∥∥2 , (4)

where the quadratic regularization term is added to guarantee
strict convexity of (4). Some RBFs commonly used are
ϕ(ϵd) = 1

1+(ϵd)2 (inverse quadratic) and ϕ(ϵd) = e−(ϵd)2

(squared exponential kernel), with hyper-parameter ϵ tuned
through cross-validation.

It is interesting to note that minimizing the regularized
cost in (4) bears resemblance to the distributed Support-
Vector-Machine problem considered in the recent work [12].
However, unlike in [12], the surrogate functions f̂i do not
share the same parameters (i.e., β(i)

k ̸= β
(j)
k for i ̸= j), which

means that the agents do not need to reach a consensus on the
coefficients βk.

Once local surrogate functions f̂i are estimated, the
surrogate f̂ of the global objective f is simply:

f̂(x) =

N∑
i=1

f̂i(x). (5)

If the global surrogate f̂ were known to all agents, it could
be in principle minimized in order to find the new sample
xT+1 at iteration T + 1 of D-GLIS. However, two issues
arise. First, we assume that the agents do not share their local
surrogates f̂i. Thus, distributed algorithms must be adopted to
minimize f̂ . This point will be discussed in Section IV. The
second issue is due to the fact that, by considering only the
surrogate f̂ , we only exploit the current available observations.
Thus, the global minimum of problem (1) can be missed as
the surrogate is not guaranteed to well approximate the true
objective f in unexplored regions of the input domain X .
Therefore, a term promoting exploration of the input space X
must be considered, which should be different for each agent,
as the agents may explore the input space in different ways.
This point is discussed in the following paragraph.

B. Local inverse distance weighting functions
According to [3], the IDW function is used to promote

exploration. In particular, for the i-th agent, the IDW function
is defined as

zi(x) =

 0 x ∈ {x1, . . . , xMi}

tan−1

(
1∑Mi

j=1 wj(x)

)
otherwise

where wj(x) = 1
∥x−xj∥2 and x1, . . . , xMi are the datapoints

contained in Di. Clearly, z(x) = 0 for all inputs already
tested by the agent, z(x) > 0 in Rn \ {x1, . . . , xMi

}, and
zi increases as the distances between x and the already tested
inputs {x1, . . . , xMi} increases.

C. Local acquisition functions
Given an exploration hyper-parameter δ ≥ 0, the local

acquisition function ai : X → R is constructed in order to
balance exploration and exploitation. Specifically, given the
global surrogate f̂ (unknown to agent i), define ai as follows:

ai(x) ≜
f̂(x)

∆f̂
− δzi(x), (6)

where ∆f̂ is the range of the surrogate f̂ , i.e., ∆f̂ ≜
maxx∈X f̂(x) − minx∈X f̂(x) and is used in (6) as a
normalization factor to ease the selection of the exploration
parameter δ ∈ (0, 1].

At each iteration of D-GLIS, one agent, say agent i, i =
1, . . . , N , is selected in a round-robin fashion and the input

parameter xi,∗ to test for this agent is computed, according to
GLIS, as the solution of the optimization problem:

xi,∗ = argmin
x∈X

ai(x), (7)

where the superscript i in xi,∗ express the dependency of the
query input with the i-th agent.
It is worth noticing that in constructing the acquisition function
ai in (6) the global surrogate f̂ is considered by the i-th agent,
while exploration is driven by a local IDW zi. This is because
the agents should cooperate to optimize the global objective
f , while each agent should also evaluate its local objective fi
through its own exploration of the domain X .

D. Iterative optimization
Once the new input xi,∗ is selected, i) the i-th agent

evaluates yi = fi(x
i,∗)+ ϵ, ii) the local surrogate f̂i and IDW

functions zi are updated, iii) a new agent j is selected. This
procedure is iterated until a maximum number of iterations
Tmax is reached. Finally, the optimal solution x⋆ is computed
by only minimizing the final global objective f̂ , thus switching
off the exploration term. The main steps of D-GLIS are
summarized in Algorithm 1.

Algorithm 1 D-GLIS
Inputs: maximum number of function evaluations per agent
Nmax; exploration parameter δ; constraint set X ; initial
datasets Di = {xj , yi}Mi

j=1, and initial surrogate functions f̂i
-constructed from Di- for all agents i = 1, . . . , N .

1: repeat
2: select agent i according to a cyclic rule
3: build the IDW function zi in Section (III-B) from
{xj}Mi

j=1

4: define the local acquisition function ai in (6)
5: compute (7) via distributed optimization (see

Section IV)
6: evaluate yi,∗ = f(xi,∗) + ϵ
7: update the local dataset Di ← Di ∪ {xi,∗, yi,∗}
8: Mi ←Mi + 1
9: fit a new local surrogate f̂i(x) based on Di

10: construct the global surrogate f̂(x) as in (5)
11: until maximum numbers of iterations Tmax = NNmax is

reached
12: compute consensus x∗ = arg minx

∑N
i=1 f̂i(x) via

distributed optimization (see Section IV)
Output: consensus x⋆

Remark. It is also possible to consider a parallel and fully
decentralized version of Algorithm 1 where all the agents
compute at each iteration their acquisition functions, solve in
a distributed way at the same time N optimization problems
as (7), and finally update their datasets Di. In this case, there
is no need to have a central controller enforcing the cyclic
selection rule.

IV. DISTRIBUTED OPTIMIZATION

In the D-GLIS algorithm described in the previous section,
the generic agent i optimizes its own acquisition function ai,

which also depends on the local surrogate functions f̂j (with
j ̸= i) of the other agents. However, local surrogates of the
other agents are assumed not to be known by the i-th agent.
This requires to use distributed algorithms, where all the agents
communicate with the others to optimize the local acquisition
function ai of the i-th agent.

In order to solve (7) in Step 5 of Algorithm 1 in a
cooperative fashion, the agents leverage the GTAdam [13]
distributed algorithm. GTAdam is a distributed version of
the popular Adam algorithm [14]. Adam is a gradient-like
optimization scheme that solves problems in the form of (7)
in a centralized way. At each iteration of Adam, a solution
estimate xk is updated by computing a descent direction which
is properly adjusted using the gradient history. GTAdam [13]
solves problems in the form of (7) over a network of agents by
means of local computation and communication only, without
any central coordinator. In order to make Adam distributed,
the renowned gradient tracking algorithm [15] is encapsulated
into the Adam framework. The strong connectivity of G
ensures that the information of each agent can reach any other
agent in the network, while the double stochasticity of A
guarantees that the agents asymptotically will converge to the
same stationary point (see [13] for details). However, because
of the non-convex nature of problem (7), no guarantees of
convergence can be stated.

Note that GTAdam in D-GLIS is implemented not only in
Step 5 for solving (7) as described above, but, similarly,
in Step 12 too. Details on numerical implementations of
GTAdams for D-GLIS are provided in the accompanying
report [9].

V. EXAMPLES

In this section we test the D-GLIS algorithm on benchmark
optimization problems and distributed MPC design for
autonomous driving. Python codes can be downloaded at
https://leon.idsia.ch/lib download. The
disropt library [16] is used for the distributed operations.

A. Benchmark optimization problems
We test D-GLIS on four benchmark optimization problems,

denoted as brent, camelsixumps, hartman3 and ls.
Problems brent, camelsixumps, and hartman3 are
defined in [17], while ls is a distributed least square problem.
A full description of the problems is available in the extended
version [9] of this work. As an example, we show here
how to reformulate the brent problem to fit our distributed
framework: number of agents N = 3; x ∈ R2; cost function:

f(x) = (x1 + 10)2︸ ︷︷ ︸
f1(x)

+ (x2 + 10)2︸ ︷︷ ︸
f2(x)

+ e−x
2
1−x

2
2︸ ︷︷ ︸

f3(x)

;

constraints xi ∈ [−10 10] (i = 1, 2). The knowledge of
the global optima is only used to evaluate the quality of the
solution obtained by D-GLIS. In all the experiments the agents
communicate over a fixed undirected graph G, generated using
an Erdős-Rényi random model (n, p) with p = 0.3 and n the
number of unknown variables. The adjaceny matrix A of the
graph is obtained through a Metropolis-Hastings weight model

[18]. Algorithm 1 has been applied, running GTAdam as inner
distributed solver in Step 5 and Step 12.

In all the experiments the agents start the optimization
procedure with an initial local dataset Di composed of
Mi = 2n points, i = 1, . . . , N , generated uniformly at
random in the feasible set. For each outer iteration of D-
GLIS, the inner solver GTAdam runs for 1000 iterations.
The value of the exploration hyper-parameter δ is updated
by the agents while D-GLIS is running, according to the
following heuristic: each agent i uses in Step 5 a value δi ≜

N

(
max
yj∈Di

yj − min
yj∈Di

yj

)
, which depends on its current dataset

Di. Each problem is run for 20 Monte-Carlo realizations and
the performance of D-GLIS is shown in Figure 1 in terms
of quantiles. The function values plotted in Figure 1 are
obtained after each outer iteration of D-GLIS, by computing
x∗ = arg minx

∑N
i=1 f̂i(x) in a distributed way, and then

evaluating f(x) in x⋆. These points have been computed only
for monitoring the performances of D-GLIS, but, in practice,
x⋆ is computed only once, in Step 12, when the desired
maximum number of iterations Tmax is reached. Figure 1
shows that on all the tested problems D-GLIS approaches
towards the global optimum after less than 80 experiments.

B. MPC for automated driving vehicles

As a case study, we use D-GLIS to calibrate an
MPC for automated driving vehicles for lane-keeping and
obstacle-avoidance. This case study was originally discussed
in [19], [20] for MPC calibration through preference-based
optimization. The test scenario is shown in Figure 2. A Subject
Vehicle (SV) is on a one-way horizontal road with two lanes.
Unlike the case study in [19], [20], we include two Obstacle
Vehicles (OVs). Each OV is placed at the center of the lane
and moves forward at a constant speed. OVs’ initial velocities
and initial longitudinal positions can vary, depending on the
test scenarios. The SV is commanded by an MPC controller
to follow the lane, and to avoid OVs by changing the lane,
accelerating, or decelerating. Each calibrator (namely, agent)
can prioritize optimization criteria differently and conduct
various experiments. The goal is to reach consensus among
them without disclosing the specifics of their experiments.

1) System description: A two-degree-of-freedom bicycle
model, fully described in the supplementary material [9, Sec.
5], is implemented with state vector s ≜ [xf , wf , θ]

T, where
xf and wf (m) are the longitudinal and lateral positions of
the SV’s front wheel, and θ (rad) is the yaw angle. The
manipulated variables u ≜ [v, ψ]T, are the SV’s velocity v
(m/s) and steering angle ψ (rad), respectively.

2) MPC formulation: Full state observation is assumed and
the control output y coincides with s. The prediction model of
the MPC is a discretized version of the bycicle model, sampled
with a sampling time Ts = 0.085. A linear time-varying MPC
is designed via real-time iteration [21]. At each sampling time
t, the following quadratic programming problem is solved

(a) brent (b) camelsixhumps (c) hartman3 (d) ls

Fig. 1: Performances of D-GLIS on benchmark problems: function value vs. number of iterations.

SV 1

2

Fig. 2: Test scenario for MPC calibration.

according to receding horizon strategy:

min
{ut+k|t}Nu−1

k=0

:

Np−1∑
k=0

∥∥yt+k|t − yreft+k∥∥2Qy
+

+

Np−1∑
k=0

∥∥ut+k|t − ureft+k∥∥2Qu
+

Np−1∑
k=0

∥∥∆ut+k|t∥∥2Q∆u
,

(8)

s.t. ymin ≤ yt+k|t ≤ ymax, k = 1, . . . , Np,

umin ≤ ut+k|t ≤ umax, k = 1, . . . , Np,

∆umin ≤ ∆ut+k|t ≤ ∆umax, k = 1, . . . , Np,

ut+Nu+k|t = ut+Nu|t, k = 1, . . . , Np −Nu,

where Qy , Qu, and Q∆u are weight matrices, ∆ut+k|t ≜
ut+k|t−ut+k−1|t, yref and uref are, respectively, the reference
values of control outputs and inputs during the experiments,
and Nu and Np are the control and prediction horizon.

3) Test scenarios and control objectives: We consider the
following MPC parameters to calibrate: control and prediction
horizons Nu and Np; and the diagonal elements of the weight
matrix Q∆u ≜

[qu11 0
0 qu22

]
. These parameters are tuned within

the intervals: Np ∈ [10 30]; Nu is taken as a fraction ϵc of Np,
with ϵc ∈ [0.1 1]; and log(qu11), log(qu22) ∈ [−5 3]. The
rest of the MPC parameters are fixed, with Qy =

[
0 0 0
0 10 0
0 0 1

]
,

and Qu = [1 0
0 1]. The reference value vref of the manipulated

variable v is set to 50 km/h. During the experiments, v can
fluctuate within the interval [1 90] km/h, with its rate of
change v̇ ∈ [−4 4] m/s2. The steering angle ψ can vary
between -45◦ and 45◦ at a rate within [−60 60]◦/s, with
its reference value ψref = 0◦. As for the control commands:
xf ∈ [-∞,∞] m; wf ∈ [−0.6 3.6] m to ensure that SV is
within the road; and wref

f can take the two values 0 m or 3 m
(namely, center of lane 1 or lane 2, respectively), depending
on which lane the SV is on. The yaw angle θ is constrained
to belong to the interval [−90 90]◦, and θref = 0◦.

The following three objectives have been used to specify
how the calibrated MPC controller should direct the SV

to maintain lane position, prevent crashes with OVs and
guarantee passengers’ comfort: i) minimize the variation of
the velocity; ii) minimize the variation of the steering angle;
iii) avoid collision between SV and OVs. The expressions
used to emulate the aforementioned objectives are: fm1 ≜

1
Ntotal

∑Ntotal

k=1

∣∣∣∣∣ vk−vrefk

vrefk

∣∣∣∣∣, fm2 ≜ 1
Ntotal

∑Ntotal

k=1

∣∣∣∣∣ψk−ψref
k

ψref
k +0.1

∣∣∣∣∣, and

fm3 ≜ 1000 Icollision, where Ntotal = 2
⌈
texp
2Ts

⌉
is the

total number of discretization steps throughout the whole
experiment, texp is the experiment duration, and Icollision
denotes an indicator function which takes value 1 if SV and
any OV collide, 0 otherwise.

We consider the presence of 4 calibrators (agents), each one
weighting fm1 and fm2 with a different order of priority. The
objective function fi for agent i (with i = 1, 2, 3, 4) is defined
below and normalized to the range of [−2.5, 2.5]:

f1=5(1−exp(−0.5fm1− 0.5fm2− fm3))−2.5,
f2=5(1−exp(−0.8fm1− 0.2fm2− fm3))−2.5,
f3=5(1−exp(−0.3fm1− 0.7fm2− fm3))−2.5,
f4=5(1−exp(−0.6fm1− 0.4fm2− fm3))−2.5.

(9)

Furthermore, each agent assesses the MPC controller
using different initial OV settings, i.e., different simulation
experiments are performed by the agents. The calibration
goal is to reach an agreement among them so that the MPC
controller works well under diverse testing circumstances.

4) Calibration process: The calibration of the MPC
parameters Np, ϵc, log(qu11), and log(qu22) have been
performed by running Algorithm 1 with configuration:
• the i-th agent only knows the local function fi(x);
• the agents communicate over a undirected graph G,

generated as in Section V-A;
• the initial local dataset Di of the i-th agent is composed of
Mi = 2 feasible points generated uniformly at random;

• GTAdam has been used as inner solver in Step 5 and 12.
• the value of δ is updated while D-GLIS is running, according

to the same heuristic described in Section V-A;
• D-GLIS terminates after Tmax = 80 iterations.

For further clarifications, we remark that the QP problem (8)
is solved locally by each agent, once the calibration parameters
are fixed after each iteration of D-GLIS.

5) Results: D-GLIS provides MPC parameters with
satisfactory performance with 16 learning experiments per
agent. The optimized parameters of [ϵc, Np, log(qu11),
log(qu22)] are x⋆ = [0.10, 20, -4.25, -5]⊤. Figure 3 shows the

(a) Test 1 (b) Test 2

Fig. 3: SV control performances obtained by the MPC in two test scenarios with random parameters (red curves) and optimal
parameters x⋆ (blue curves): velocity v (top) and steering angle ψ (bottom) of the SV with respect to the simulation time t.

evolution of the velocity v and steering angle ψ obtained by the
MPC with optimal parameters in two different test scenarios.
For comparison, the velocity v and steering angle ψ achieved
by an MPC with random hyper-parameters (extracted from
the initial dataset D3) are also plotted. The MPC with random
parameters generally exhibits more aggressive and frequent
fluctuations in both manipulated variables, whose values also
deviate from the reference. Other simulation scenarios are
shown in the accompanying report [9].

VI. CONCLUSIONS

This paper has proposed D-GLIS, an algorithm to
solve cooperatively, over a distributed network of agents,
global optimization problems where the cost function is
separable and expensive to evaluate, possibly subject to
global constraints (known and inexpensive to evaluate). The
proposed scheme, contrarily to many other approaches for
black-box optimization, e.g., BO, is driven by deterministic
arguments (the IDW function), which has the purpose of
encouraging the investigation of unexplored regions of the
feasible space. Differently from its predecessor GLIS, D-GLIS
is distributed, meaning that a network of agents cooperates
to solve a common optimization problem through distributed
experiments, exchanging among themselves only fundamental
information about the minimization procedure.

REFERENCES

[1] E. Brochu, V. M. Cora, and N. de Freitas, “A tutorial on bayesian
optimization of expensive cost functions, with application to active user
modeling and hierarchical reinforcement learning,” arXiv:1012.2599,
2010.

[2] C. Malherbe and N. Vayatis, “Global optimization of Lipschitz
functions,” International Conference on Machine Learning, pp. 2314–
2323, 2017.

[3] A. Bemporad, “Global optimization via inverse distance weighting and
radial basis functions,” Comput. Optim. and Appl., vol. 77, pp. 571–595,
2020.

[4] L. Sabug Jr., F. Ruiz, and L. Fagiano, “SMGO: a set membership
approach to data-driven global optimization,” Automatica, vol. 133, pp.
109890, 2021.

[5] A. Nedić and J.s Liu, “Distributed optimization for control,” Annu. Rev.
of Contr., Robot., and Auton. Sys., vol. 1, pp. 77–103, 2018.

[6] L. Cannelli, F. Facchinei, G. Scutari, and V. Kungurtsev, “Asynchronous
optimization over graphs: Linear convergence under error bound
conditions,” IEEE Trans. on Autom. Contr., vol. 66, no. 10, pp. 4604–
4619, 2020.

[7] J. Choi, S. Oh, and R. Horowitz, “Distributed learning and cooperative
control for multi-agent systems,” Automatica, vol. 45, no. 12, pp. 2802–
2814, 2009.

[8] J. Foerster, I. A. Assael, N. de Freitas, and S. Whiteson, “Learning
to communicate with deep multi-agent reinforcement learning,” Adv.
Neural. Inf. Process. Syst., vol. 29, 2016.

[9] L. Cannelli, M. Zhu, F. Farina, A. Bemporad, and D. Piga, “Multi-agent
active learning for distributed black-box optimization,” 2023, Technical
report TR-IDSIA-2023-02, https://leon.idsia.ch/static/
libraries/D-GLIS.pdf.

[10] A. Nedić and A. Ozdaglar, “Distributed subgradient methods for multi-
agent optimization,” IEEE Trans. on Autom. Contr., vol. 54, no. 1, pp.
48–61, 2009.

[11] A. Bemporad and D. Piga, “Global optimization based on active
preference learning with radial basis functions,” Mach. Learn., vol.
110, pp. 417–448, 2021.

[12] M. Doostmohammadian, A. Aghasi, T. Charalambous, and U. A. Khan,
“Distributed support vector machines over dynamic balanced directed
networks,” IEEE Control Systems Letters, vol. 6, pp. 758–763, 2022.

[13] G. Carnevale, F. Farina, I. Notarnicola, and G. Notarstefano, “Distributed
online optimization via gradient tracking with adaptive momentum,”
arXiv:2009.01745, 2020.

[14] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv:1412.6980, 2014.

[15] M. Zhu and S. Martı́nez, “Discrete-time dynamic average consensus,”
Automatica, vol. 46, no. 2, pp. 322–329, 2010.

[16] F. Farina, A. Camisa, A. Testa, I. Notarnicola, and G. Notarstefano,
“Disropt: a python framework for distributed optimization,” IFAC-
PapersOnLine, vol. 53, no. 2, pp. 2666–2671, 2020.

[17] M. Jamil and X. Yang, “A literature survey of benchmark functions for
global optimisation problems,” Int. J. Math. Model. Numer. Optim., vol.
4, no. 2, pp. 150–194, 2013.

[18] L. Xiao, S. Boyd, and S. Lall, “A scheme for robust distributed sensor
fusion based on average consensus,” Fourth Int. Symp. on Inf. Process.
in Sens. Netw., pp. 63–70, 2005.

[19] M. Zhu, A. Bemporad, and D. Piga, “Preference-based MPC
calibration,” Eur. Contr. Conf. (ECC), pp. 638–645, 2021.

[20] M. Zhu, D. Piga, and A. Bemporad, “C-GLISp: Preference-based global
optimization under unknown constraints with applications to controller
calibration,” IEEE Trans. on Contr. Syst. Technol., vol. 30, no. 5, pp.
2176–2187, 2022.

[21] S. Gros, M. Zanon, R. Quirynen, A. Bemporad, and M. Diehl, “From
linear to nonlinear MPC: bridging the gap via the real-time iteration,”
Int. J. of Contr., vol. 93, no. 1, pp. 62–80, 2020.

