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Computation of Least-Conservative
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Abstract—We address the problem of synthesizing state-
constraint sets for a fully decentralized Model Predictive
Control (MPC) scheme. We consider linear time-invariant
discrete time systems, with subsystems possibly coupled
in both dynamics and state constraints. For each individual
subsystem we employ a set-based framework to com-
pute the state-constraint sets, that are used to synthesize
local tube-based MPC controllers. The offline problem that
computes the constraint sets explicitly ensures that the fea-
sible regions of the MPC controllers are non-empty, and
whenever the controllers are feasible, the overall system
constraints are satisfied with the least conservativeness
possible. We demonstrate the closed-loop performance of
the decentralized scheme, assessed with respect to cen-
tralized MPC, using a numerical example.

Index Terms—Decentralized control, predictive control
for linear systems, constrained control, robust control.

I. INTRODUCTION

MODEL Predictive Control (MPC) of interconnected
systems has been an active area of research, driven

by practical requirements posed by communication and com-
putation limitations [1]. Several control schemes satisfying
these requirements have been proposed, which are based on
decomposition methods of either the coupled system or of
the centralized optimization problem [2]. These schemes are
broadly divided into two categories: distributed MPC (DMPC)
and decentralized MPC (DeMPC), with the division usually
being defined based on the communication between the con-
trollers. With respect to interconnection patterns, the two broad
categories are systems with dynamic coupling and constraint
coupling.

Dynamic couplings lead to interactions between the states of
disparate constituent subsystems, thus requiring coordination
between local controllers. Tube-based MPC [3] has been used
as an effective framework to tackle this coordination problem.
By modeling the state interactions as local disturbances,
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local controllers can be designed that explicitly take these
disturbances into account to ensure robust constraint satis-
faction. An example that uses this framework is the DMPC
scheme proposed in [4], which accommodates both dynamic
and constraint coupling. This scheme requires communica-
tion between the controllers of reference trajectories, and true
states and inputs. On the DeMPC side, schemes that do
not require communication between the controllers have been
proposed. The lack of communication introduces unavoidable
conservativeness, which should be tackled is a structured way.
For example, in [5], local tube-based MPC controllers are
synthesized using feedback gains, which are computed by
solving an offline optimization problem that minimizes the
conservativeness of the resulting control action. However, the
scheme only accommodates dynamic coupling and not con-
straint coupling. A common theme among these approaches
is the adoption of the method presented in [6] to compute
tight outer approximations of the minimal Robust Positive
Invariant (mRPI) set, which is an essential ingredient of
tube-based MPC.

Recently, building on the work presented in [7], a one-
step approach to compute outer approximations of the mRPI
set has been presented in [8]. This approach, which allows
for very quick online recomputation of a small RPI set, has
been purposed in the development of a DMPC scheme in [9].
The recomputation leads to disturbance sets which reduce in
size as the set-points are reached, therefore improving the
performance of the overall distributed scheme.

In this letter we present a method to compute state-
constraint sets for local tube-based MPC controllers [3] used
within the DeMPC scheme of [5]. We consider linear time-
invariant systems which can be coupled by both dynamics
and constraints. To the best of the authors’ knowledge, this
interconnection pattern has not been considered previously in
the DeMPC literature. The method is centered on the formu-
lation of an offline optimization problem, which is developed
using a set-based framework. The decoupled state-constraint
sets are computed such that (a) the corresponding output set
is the least conservative inner-approximation of the coupled
constraint set, and (b) feasibility and stability of the local
tube-based MPC controllers is ensured. The formulation of
the optimization problem relies on some new results that were
developed using the ideas presented in [10] to compute RPI
sets.
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Preliminaries: A compact set X ⊂ R
n (which is bounded by

definition) is proper if it contains the origin in its non-empty
interior int(X ). Under a linear map T : Rn → R

m, the image
TX of a set X ⊂ R

n is given by {Tx : x ∈ X }. The set Bn
p :=

{x : ‖x‖p ≤ 1} is the p-norm ball in R
n. A polyhedron is the

intersection of a finite number of half-spaces, and a polytope is
a compact polyhedron. A polytope X ⊂ R

n is full-dimensional
if there exists an x ∈ X and a scalar ε > 0 such that {x} ⊕
εBn

p ⊂ X . The support function of a compact set X at a given
y ∈ R

n is defined as hX (y) := maxx∈X y	x. The Minkowski
set addition is defined as X ⊕Y := {x + y : x ∈ X , y ∈ Y}. If
Y ⊂ X , then set subtraction X 
 Y := {x : {x} ⊕ Y ⊂ X }. If
X and Y are compact, convex and non-empty, the Hausdorff
distance metric is given by

dH(X ,Y) = min
ε≥0

ε s.t. X ⊆ Y ⊕ εBn∞, Y ⊆ X ⊕ εBn∞.

Given two matrices T, S ∈ R
n×m, Ti denotes row i of matrix T ,

T ≤ S denotes element-wise inequality, T ◦S denotes element-
wise multiplication, and diag(T, S) represents a matrix with
block-diagonal elements T and S. The symbols 1 , 0, and I
denote all-ones, all-zeros and identity matrix respectively, with
dimensions inferred from context. Set In

m := {m, . . . , n} is the
set of natural numbers between m and n. Given v ∈ R

n,
S ∈ R

n×n, we define ‖v‖2
S := v	Sv.

II. DECENTRALIZED TUBE-BASED MPC OF COUPLED

LINEAR SYSTEMS

A. System Description

We consider a linear time-invariant system of the form

x(t + 1) = Ax(t) + Bu(t), (1)

with state x ∈ R
nx , input u ∈ R

nu . This system is subject to
constraints

U := {u : Guu ≤ gu}, gu ∈ R
mU , (2a)

Y := {y ∈ R
ny : y = Cx, Gyy ≤ gy}, gy ∈ R

mY . (2b)

Assumption 1: The sets U and Y are full-dimensional poly-
topes containing the origin in their interior.

We assume that the system in (1) can be partitioned into M
subsystems, each with dynamics described by

x[i](t + 1) = A[ii]x[i](t) + B[i]u[i](t) +
∑

j∈Li

A[ij]x[j](t), (3)

where i indicates the ith subsystem with states x[i] ∈ R
ni

x

and inputs u[i] ∈ R
ni

u . The overall state and input vec-
tors are then x(t) = [x[1](t)	, . . . , x[M](t)	]	 and u(t) =
[u[1](t)	, . . . , u[M](t)	]	 respectively. The set Li indicates the
indices of the neighbors of i which are dynamically coupled
to it. That is, Li := {j ∈ M : i �= j, A[ij] �= 0}. From (3), we
have B = diag(B[1], . . . , B[M]). In addition, we assume that
the input constraints are decoupled. That is, U = ∏

i∈M Ui,
with u[i] ∈ Ui being the input constraint on individual sub-
system i, where

∏
denotes the Cartesian product. Note that

unlike in related literature [5], [11], [12], we do not assume Y
to be decoupled between the subsystems. Our aim is to solve
the following fully decentralized MPC problem.

Problem 1: Design M model predictive controllers Ci, one
per subsystem i, described by (3), such that (a) the state x is

regulated to 0, (b) system constraints (2) are satisfied, (c) each
controller Ci has access only to local states x[i], (d) there is no
communication between the controllers.

In order to solve Problem 1, we adopt the DeMPC scheme
of [5], which uses the tube-based MPC approach [3] to
design each controller Ci. In the original approach, each state-
constraint set Xi on the individual subsystem i is known a
priori, while we only know the coupled constraint Y . Hence,
in the next subsection, we recall the scheme in [5] for arbitrary
state-constraint sets Xi, and use the properties of the scheme
to derive requirements on Xi in order to satisfy the coupled
constraint Y .

B. DeMPC Formulation

In order to formulate the controller as decentralized,
we model all couplings as disturbances. Accordingly, we
rewrite (3) as

x[i](t + 1) = A[ii]x[i](t) + B[i]u[i](t) + w[i](t), (4)

with w[i](t) := ∑
j∈Li

A[ij]x[j](t). As in standard tube-based
MPC, we equip each subsystem i with a pre-designed feed-
back controller K[i] ∈ R

ni
u×ni

x , satisfying the following stability
assumption.

Assumption 2: (a) Each matrix pair (A[ii], B[i]) is control-
lable, (b) each K[i] is designed such that AK

[i] := A[ii] − B[i]K[i]
has all eigenvalues strictly within the unit circle, (c) defining
K := diag(K[1], . . . , K[M]), the matrix AK := A − BK has all
eigenvalues strictly within the unit circle.

Using K[i], we parameterize the control input as

u[i](t) = û[i](t) − K[i]�x[i](t), (5)

where �x[i](t) := x[i](t) − x̂[i](t) is the state error with respect
to the nominal system

x̂[i](t + 1) = A[ii]x̂[i](t) + B[i]û[i](t). (6)

We also define the input error �u[i](t) := u[i](t) − û[i](t).
Using (4), (5) and (6), the dynamics of the error system for
subsystem i can be derived as

�x[i](t + 1) = AK
[i]�x[i](t) + w[i](t). (7)

Since we assume that the state of each subsystem i is
constrained to the set Xi, we have

w[i](t) ∈ Wi :=
⊕

j∈Li

A[ij]Xj. (8)

Given the disturbance set Wi, the error state �x[i] always
belongs to the corresponding minimal Robust Positive
Invariant (mRPI) set [13] �Xi(Wi):

�x[i](t) ∈ �Xi(Wi) :=
∞⊕

t=0

(
AK

[i]

)t
Wi. (9)

In the following, we first formulate tube-based robust MPC
controllers Ci by relying on sets Xi and �Xi(Wi) and afterwards
discuss the properties that these sets must satisfy in order to
guarantee that y ∈ Y . Each Ci is based on solving

min
zi

t+N[i]−1∑

s=t

∥∥x̂[i](s)
∥∥2

Q[i]
+ ∥∥û[i](s)

∥∥2
R[i]

+ ∥∥x̂[i](t + N[i])
∥∥2

P[i]
(10a)
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s.t. x[i](t) − x̂[i](t) ∈ �Xi(Wi), (10b)

x̂[i](s + 1) = A[ii]x̂[i](s) + B[i]û[i](s), s ∈ I
t+N[i]−1
t , (10c)

x̂[i](s) ∈ Xi 
 �Xi(Wi), s ∈ I
t+N[i]−1
t+1 , (10d)

û[i](s) ∈ Ui 
 −K[i]�Xi(Wi), s ∈ I
t+N[i]−1
t , (10e)

x̂[i](t + N[i]) ∈ Xterminal
i , (10f)

with the optimization vector zi := [x̂[i](t : t +N[i])
	 û[i](t : t +

N[i] − 1)	]. The nominal model (6) is used to per-
form predictions of state evolutions, as indicated in (10c).
The initial state is left as a free variable to be opti-
mized through constraint (10b), and the predicted state and
input constraints are tightened through constraints (10d)
and (10e), such that the actual subsystem state x[i](t) ∈
Xi and u[i](t) ∈ Ui for all t. The feedback gain K[i] is
chosen to be the terminal control law, and terminal set
Xterminal

i ⊂ Xi 
 �Xi(Wi) is chosen to be an invariant set for
the system x[i](t + 1) = AK

[i]x[i](t), such that AK
[i]X

terminal
i ⊆

Xterminal
i and −K[i]Xterminal

i ⊆ Ui
 − K[i]�Xi(Wi). The matri-
ces Q[i] > 0 and R[i] > 0 are chosen such that K[i] is
the associated LQ control gain for nominal system i, and
P[i] is the solution of the corresponding Discrete Algebraic
Riccati Equation. Upon solving (10), control input u[i](t) =
û[i](t) − K[i](x[i](t) − x̂[i](t)) is applied to the plant.

We recall the properties of the DeMPC scheme from [5],
and derive requirements on the sets Xi in the following result.

Proposition 1: Suppose Assumptions 1 and 2 hold, and for
each i ∈ I

M
1 , sets Xi satisfy

�Xi(Wi) ⊂ int(Xi), (11a)

−K[i]�Xi(Wi) ⊂ int(Ui). (11b)

(a) For each controller Ci, we denote the feasible set XN[i]
i :=

{x[i] : (10b)-(10f) feasible for x[i](t) = x[i]}. Then, if x[i](0) ∈
XN[i]

i the controlled system in (3) satisfies x[i](t) ∈ Xi and
u[i](t) ∈ Ui for all time t, and the origin is asymptotically
stable; (b) Defining C[i] ∈ R

ny×ni
x as the matrix composed of

columns of matrix C multiplying states x[i] of subsystem i, if
the inclusion

M⊕

i=0

C[i]Xi ⊆ Y (12)

is satisfied, then the controllers Ci solve Problem 1.
Proof: (a) The conditions in (11) ensure that constraint sets

in (10d) and (10e) are non-empty. This leads to non-empty
feasible sets XN[i]

i . The proof then follows from [5]. (b) The
condition in (12) translates to Xi = {x[i] : ∀ x[j] ∈ Xj, C[i]x[i] +∑

j∈Li
C[j]x[j] ∈ Y} for all i ∈ I

M
1 . This implies that if (12)

holds, then x[i] ∈ Xi for all i ensures y ∈ Y . The fact that the
former is guaranteed by Part (a) concludes the proof.

From Assumptions 1 and 2, we see that requirements (11)
and (12) can be satisfied by compact sets Xi, which we
compute in the next section.

Remark 1: Note that requirement (12) results in conser-
vative sets Xi, since it enforces that the control applied to
the subsystem must satisfy system constraints Y , for every
possible control applied by the neighbors. This is unavoid-
able, unless communication is introduced. In case full state
information of all neighbors were available to Ci, one could

formulate the local constraint set as {x[i] : ∃x[j] ∈ Xj, C[i]x[i] +∑
j∈Li

C[j]x[j] ∈ Y} ⊇ Xi.

III. COMPUTATION OF STATE-CONSTRAINT SETS Xi

In this section, we present a formulation and a solution pro-
cedure to compute the sets Xi that satisfy requirements (11)
and (12). To this end, we introduce the system

�x(t + 1) = Ã�x(t) + B̃x(t), (13)

where the matrices Ã := diag(AK
[1], . . . , AK

[M]) and

B̃ :=
⎡

⎢⎣

0 A[12] · · · A[1M]
A[21] 0 · · · A[2M]
· · · · · · 0 · · ·

A[M1] A[M2] · · · 0

⎤

⎥⎦

capture the dynamic coupling between the subsystems. For
this system, we introduce the sets

X :=
∏

i∈M

Xi, �X(X) :=
∏

i∈M

�Xi(Wi).

The set �X(X) is the mRPI set of states corresponding to the
system (13) when driven by disturbances x(t) ∈ X, given by

�X(X) :=
∞⊕

t=0

ÃtB̃X. (14)

We make the following assumption on the sets Xi.
Assumption 3: We assume that each Xi is a compact convex

set containing the origin.
Assumption 3 implies that the mRPI set �X(X) is a compact

convex set containing the origin [13].
In order to encode inclusions (11), we introduce scalars

φx, φu ∈ [0, 1), and write the inclusions as

�X(X) ⊆ φxX, − K�X(X) ⊆ φuU. (15)

The values of φx and φu are tuning parameters which are
related to the strength of dynamic coupling. Larger values cor-
respond to increased permissible dynamic coupling, and hence
increased size of sets Xj. However, this also corresponds to
smaller terminal set Xterminal

i , thus requiring a longer horizon
N[i] to ensure feasibility.

Considering requirement (12), we first note that

CX =
M⊕

i=0

C[i]Xi ⊆ Y, (16)

by definition of X. Ideally, one would like to satisfy the inclu-
sion CX ⊆ Y with equality. This would imply that the sets Xi
are chosen such that all the points in set Y are reachable by Cx.
This, however, might not be feasible given requirements (15).
For further details, we refer the reader to [10]. Hence, we
choose to minimize the Hausdorff distance dH(Y, CX) between
the sets, while enforcing the inclusion.

From these requirements, we obtain the following
optimization problem for fixed scalars φx and φu:

min
X,ε≥0

ε s.t. (14), (15), (16), Y ⊆ CX ⊕ εBny∞, 0 ∈ Xi. (17)

Our approach explicitly tackles the issue of conservative-
ness discussed in Remark 1: The sets Xi are computed such
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that CX is the largest feasible inner-approximation of Y , i.e.,
dH(Y, CX) is minimized while ensuring feasibility and sta-
bility of Ci. This implies that the system output y = Cx is
restricted to the least conservative subset of Y when controllers
Ci safely regulate the system state x to the origin.

Remark 2: The structure of (13) follows from the assump-
tion of a block-diagonal matrix B, i.e., decoupled inputs. The
approach can be extended to accommodate coupled inputs and
input constraints through minor reformulations.

A. Finite-Dimensional Parameterization

We parameterize each set Xi using a finite-dimensional vec-
tor εx,i as Xi = Xi(ε

x,i) := {x[i] : Fix[i] ≤ εx,i}, where the
rows of matrix Fi ∈ R

mi
X×ni

x spanning R
ni

x are fixed a priori.
Since the corresponding mRPI sets �Xi(Wi) are in general not
finitely determined [14], we rely on an outer RPI approxima-
tion, parameterized using a finite-dimensional vector ε�x,i as
�Xi(Wi) ⊆ �Xi(ε

�x,i) := {�x[i] : Ei�x[i] ≤ ε�x,i}, where the
rows of matrix Ei ∈ R

mi
�X×ni

x spanning R
ni

x are fixed a priori.
These matrices should satisfy some requirements, that are for-
mulated in the sequel. The overall state constraint set is hence
X = X(εx) := {x : Fx ≤ εx}, where F := diag(F1, . . . , FM) ∈
R

mX×nx and εx := [εx,1	
, . . . , εx,M	

]	. The corresponding
mRPI set is hence approximated as �X(X(εx)) ⊆ �X(ε�x) :=
{�x : E�x ≤ ε�x}, where E := diag(E1, . . . , EM) ∈ R

m�X×nx

and ε�x := [ε�x,1	
, . . . , ε�x,M	

]	.
In order to obtain a close approximation of the equal-

ity constraint (14) for a given disturbance set X(εx),
we use the parameterized RPI set �X(ε�x) that mini-
mizes dH(�X(X(εx)),�X(ε�x)). Finally, since �X(X(εx)) ⊆
�X(ε�x), we replace �X(X(εx)) by �X(ε�x) in inclu-
sions (15). Note that process noise can be accommodated in
this framework through matrix B̃ and parameterized sets X.

In terms of the above parameterized sets, (17) is approxi-
mated as the following bilevel optimization problem.

Problem 2:

min
εx≥0,ε≥0

ε (18a)

s.t. �X(ε�x) ⊆ φxX(εx), (18b)

−K�X(ε�x) ⊆ φuU, (18c)

CX(εx) ⊆ Y, (18d)

Y ⊆ CX(εx) ⊕ εBny∞, (18e)
ε�x = arg min

¯ε
�x dH(�X(X(εx)),�X(¯ε

�x)),

s.t. Ã�X(¯ε
�x) ⊕ B̃X(εx) ⊆ �X(¯ε

�x).

(18f)

We now discuss the implementation of Problem 2.

B. Implementation of RPI Constraint (18f)

The invariance condition Ã�X(¯ε
�x) ⊕ B̃X(εx) ⊆ �X(¯ε

�x)

can be equivalently written as

c(¯ε
�x) + d(εx) ≤ b(¯ε

�x), (19)

where, for all i ∈ I
m�X
1 , we use the support function h to

define ci(¯ε
�x) := hÃ�X(¯ε

�x)
(E	

i ), di(ε
x) := hB̃X(εx)

(E	
i ) and

bi(¯ε
�x) := h�X(¯ε

�x)(E
	
i ). We make the following assumptions

on matrices E and F parameterizing the sets �X(¯ε
�x) and

X(εx):
Assumption 4: (a) Matrix F is chosen such that d(1) is

bounded, i.e., X(1) is compact, (b) the set �X(1) is a proper
polytope, with b(1) = 1, (c) there exists a scalar β ∈ [0, 1)

such that Ã�X(1) ⊆ β�X(1).
These assumptions imply that the support functions d, b and

c are always bounded above. To satisfy Assumptions 4(b) and
(c), the methods presented in [15], [16] can be used to compute
β-contractive RPI sets that parameterize �X(1). The assump-
tions also imply that there exists an RPI set parameterized as
�X(ε�x) for every compact disturbance set X(εx).

Lemma 1 [10]: Suppose Assumption 4 holds, then there
exists ε̂�x ≥ 0 satisfying the RPI relation c(ε̂�x) + d(εx) ≤
b(ε̂�x) for all εx ≥ 0.

Building on the results presented in [7] and [8], the fol-
lowing result shows that there exists an RPI set �X(ε�x) that
is minimal over all RPI sets parameterized with E, for every
given disturbance set X(εx).

Theorem 1 [10]: Suppose Assumption 4 holds, then the
value of ε�x that solves the equality relationship

c(ε�x) + d(εx) = ε�x (20)

for a given εx ≥ 0 is such that

dH(�X(X(εx)),�X(ε�x)) ≤ dH(�X(X(εx)),�X(¯ε
�x))

for all ¯ε
�x such that c(¯ε

�x) + d(εx) ≤ b(¯ε
�x), i.e., all ε�x

satisfying the RPI condition (19).
From this result, we conclude that the solution of (20)

solves the lower level optimization problem (18f). Hence, we
replace (18f) by the equality relationship in (20).

C. Implementation of Inclusions Constraints

We use two different encodings to implement the inclusion
constraints in Problem 2. The first one is based on sup-
port functions, while the second uses sufficiency conditions
presented in [17].

1) Support Function Encoding: Since all the sets involved in
Problem 2 are polytopes, the inclusions (18b), (18c) and (18d)
hold if and only if the inequality

g(εx, ε�x) ≤ f (εx) (21)

is satisfied, where

g(εx, ε�x) :=
⎡

⎣
gx(ε�x)

gu(ε�x)

gy(εx)

⎤

⎦, f (εx) :=
⎡

⎣
φxf x(εx)

φugu

gy

⎤

⎦.

Functions g and f are defined using support functions as
• For each i ∈ I

mX
1 , gx

i (ε
�x) := h�X(ε�x)(E

	
i ) and f x

i (ε
x) :=

hX(εx)(E	
i ),

• For each i ∈ I
mU
1 , gu

i (ε
�x) := h−K�X(ε�x)(G

u	
i ),

• For each i ∈ I
mY
1 , gy

i (ε
x) := hCX(εx)(G

y	
i ).

Hence, we replace (18b), (18c) and (18d) by the support
function inequality in (21).

2) Sufficiency Condition Encoding: In order to encode inclu-
sion (18e), we use the sufficiency condition presented in [17],
which states that under Assumption 1, the inclusion holds if
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there exist matrices zB := {�,�,�} of compatible dimen-
sions such that

� ≥ 0,
[
C I

]
� = I,

[
C I

]
� = 0,

�Gy =
[

F 0
0 By

]
�, �gy ≤

[
εx

ε1

]
+

[
F 0
0 By

]
�,

(22)

where By ∈ R
2ny×ny defines the ∞-norm ball in R

ny as
Bny∞ := {y : Byy ≤ 1}. The relations in (22) describe
polyhedral constraints which we denote as 	B, such that
(22) ⇔ (εx, ε, zB) ∈ 	B. Hence, we replace (18e) by (22).
Since (22) is a sufficiency condition on the inclusion, we have
dH(Y, CX(εx)) ≤ ε. We refer to [17] for further details.

D. Problem Formulation and Solution Method

Using (20), (21) and (22), we formulate Problem 2 as

min
εx,ε�x,ε,zB

ε (23a)

s.t. c(ε�x) + d(εx) = ε�x, (23b)

g(εx, ε�x) ≤ f (εx), (23c)

(εx, ε, zB) ∈ 	B, (23d)

ε ≥ 0, εx ≥ 0. (23e)

The above optimization problem is a bilevel programming
problem. In order to solve it, we replace the lower-level prob-
lems with their corresponding Karush-Kuhn-Tucker (KKT)
optimality conditions to obtain a Linear Program with
Complementarity Constraints (LPCC) [18] of the form

min
x,λ,s

ε s.t. (x, λ, s) ∈ C, λ ≥ 0, s ≥ 0, λ ◦ s = 0,

where C represents the set of all linear constraints, and λ

and s represent the vectors of all dual and slack variables.
We use the Sequential Quadratic Programing (SQP) algorithm
presented in [19] to solve the LPCC. For all details on this
formulation we refer the interested reader to [10]. Note that
εx = 0, ε�x = 0 and corresponding values of ε and zB are
feasible solutions to (23). Note that εx = 0, ε�x = 0 and
corresponding values of ε and zB are feasible for (23).

E. Integration With Controllers Ci

Upon solving (23), we recover constraint sets Xi from the
solution X(εx). Then, we compute the sets Wi given by (8).
For each Wi, we compute RPI sets �X̃i(Wi) by following the
method presented in [20] to tightly approximate �Xi(Wi). By
construction, we obtain �Xi(Wi) ⊆ �X̃i(Wi) ⊆ �Xi(ε

�x,i)

for a tight enough �X̃i(Wi). Using Xi and �X̃i(Wi), we con-
struct the optimization problems in (10) solved by Ci. We use
Proposition 1 to check the validity of a given initial state.

Remark 3: One can directly use the RPI sets �Xi(ε
�x,i) in

place of �Xi(Wi). However, this results in a smaller feasible
region XN[i]

i and increases the conservativeness of Ci.
Remark 4: The proposed formulation allows one to intro-

duce specific conditions to be satisfied by the parameterization
of the sets X, e.g., symmetry constraints can be imposed; and
the inclusion of a feasible region of the state-space in X can be
imposed through the sufficiency conditions presented in [17].

Remark 5: The computed sets Xi can be used to synthesize
local controllers Ci using other methods, e.g., [21].

IV. NUMERICAL EXAMPLE

We consider a system composed of three dynamically
coupled double integrators given by

A[ii] =
[

1 1
0 1

]
, B[i] =

[
0.5
1

]
,

with dynamic coupling matrix

B̃ =

⎡

⎢⎢⎢⎢⎢⎢⎣

0
0 0

0.025 −0.005
0 0

0.05 −0.05
0 0

0.025 −0.025
0

0 0
0.01 −0.01

0 0
0.05 −0.005

0 0
0.05 −0.05

0

⎤

⎥⎥⎥⎥⎥⎥⎦

and coupled constraints

Y =
⎧
⎨

⎩

⎡

⎣
−1
−1
−5

⎤

⎦ ≤
⎡

⎣
0 1 0 −1 0 0
0 0 0 1 0 −1
1 0 0 0 −1 0

⎤

⎦x ≤
⎡

⎣
1
1
5

⎤

⎦

⎫
⎬

⎭.

The input constraints are u[i] ∈ [−0.5, 0.5] for each i ∈ I
3
1 We

equip the subsystems with LQR feedback gains K[i] corre-
sponding to R[1] = 5, R[2] = 1 and R[3] = 10, and Q[i] = I for
each of the subsystems. In order to synthesize state constraint
sets Xi that satisfy the system constraints, we parameterize Xi
as Xi(ε

x,i) with m1
X = 12, m2

X = 8 and m3
X = 12 hyperplanes.

For the parameterized RPI sets �Xi(ε
�x,i), we choose sets

defined by m1
�X = 12, m2

�X = 8 and m3
�X = 12 hyperplanes

respectively. We select the matrices Ei using the methods
presented in [15], such that Ã�X(1) ⊆ β�X(1) holds with
β = 0.7839. We set φx, φu = 0.5. Larger values of these
parameters correspond to larger Xi, but also smaller tightened
constraints Xi 
 �Xi(Wi), thus smaller feasible regions XN[i]

i .
The results of formulating optimization problem (23) and

solving it with the SQP algorithm presented in [19], is
shown in Figure 1. The algorithm converges to ε = 0.6107.
Upon recovering the sets Xi = Xi(ε

x,i) from the solution,
we recompute tight approximations �X̃i(Wi) of the mRPI
sets [20]. For the considered example we obtain the upper
bound dH(�Xi(Wi),�Xi(ε

�x,i)) ≤ δi, with δ1 = 0.0479,
δ2 = 0.0219, δ3 = 0.069.

Using the sets Xi and �X̃i(Wi), we synthesize a tube-
based MPC controller Ci for each i ∈ I

3
1, which solves

the optimization problem (10). We choose the terminal sets
Xterminal

i to be the maximal positive invariant sets within
Xi
�X̃i(Wi). We also synthesize a centralized MPC controller
for the overall system, using the same control parameters.
The results of the simulations from the same feasible initial
point can be seen in Figures 1 and 2, for prediction horizon
N = 10. As pointed out in Remark 1, the state evolution with
DeMPC controllers is restricted to Xi, while the centralized
controller can violate this constraint but still satisfy the over-
all constraints. The sum of quadratic stage costs is 27.3768
for DeMPC and 21.9298 for centralized MPC. As discussed
in Remark 5, we use the sets Xi to also synthesize Ci to be the
controllers proposed in [21]. This leads to a better closed loop
performance with overall cost of 26.8348. The optimization
problems were formulated with YALMIP [22] and solved
using the Gurobi QP solver [23]. Set operations and plotting
were performed using the Multi-Parametric Toolbox [24].
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Fig. 1. Computed sets and simulation results in state space. Blue dots indicate initial states x[i ](0). Decentralized MPC restricts x[i ] ∈ Xi to satisfy
system constraints in (2), while centralized MPC does not require this restriction.

Fig. 2. System constraints and state regulation.

Note that the approximation of �Xi(Wi) by �Xi(ε
�x,i) can

be improved by solving (23) iteratively and introducing addi-
tional hyperplanes defining Ei [10, Corollary 1]. One can, e.g.,
use the hyperplanes defining �X̃i(Wi).

V. CONCLUSION AND FUTURE WORK

We have presented a method to compute state-constraint sets
for a fully decentralized MPC scheme to control a set of linear
systems whose dynamics and state constraints can be cou-
pled. We compute these sets by solving an offline optimization
problem, which is formulated using a set-based framework.
The problem explicitly ensures that conservativeness with
respect to the coupled constraints in minimized, while guar-
anteeing feasibility and stability of the local tube-based MPC
controllers. Future research will focus on (a) extensions to
tracking problems; (b) co-synthesis of feedback controllers
and constraint sets; (c) explicit enforcement of feasibility of a
known state, based on the ideas presented in [17, Example 6];
(d) exploiting the possibility of partial communication between
the controllers; e) efficient solution methods for problem (23),
possibly avoiding the LPCC reformulation and introducing
parallelized solution schemes.
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