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Abstract— We present a data-driven method to synthe-
size robust control invariant (RCI) sets for linear parameter-
varying (LPV) systems subject to unknown but bounded
disturbances. A finite-length data set consisting of state,
input, and scheduling signal measurements is used to com-
pute an RCI set and invariance-inducing controller, without
identifying an LPV model of the system. We parameterize
the RCI set as a configuration-constrained polytope whose
facets have a fixed orientation and variable offset. This
allows us to define the vertices of the polytopic set in
terms of its offset. By exploiting this property, an RCI set
and associated vertex control inputs are computed by solv-
ing a single linear programming (LP) problem, formulated
based on a data-based invariance condition and system
constraints. We illustrate the effectiveness of our approach
via two numerical examples. The proposed method can
generate RCI sets that are of comparable size to those ob-
tained by a model-based method in which exact knowledge
of the system matrices is assumed. We show that RCI sets
can be synthesized even with a relatively small number of
data samples, if the gathered data satisfy certain excitation
conditions.

Index Terms— Constrained control, Data driven control,
Linear parameter-varying systems, Robust control.

I. INTRODUCTION

A robust control invariant (RCI) set is a subset of the state-
space in which a system affected by bounded but un-

known disturbances can be enforced to evolve ad infinitum, by
an appropriately designed invariance-inducing controller [4].
Many works have proposed algorithms for computing such
RCI sets along with their associated controllers for linear
parameter-varying (LPV) systems, see, e.g., [7], [14], [15].
These approaches are model-based, in that an LPV model of
the system is assumed to be known. However, identifying an
LPV model poses several challenges [16]. Modelling errors
can result in the violation of the invariance property and
constraints during closed-loop operations.

To overcome the drawbacks of model-based methods, data-
driven approaches have emerged as favorable alternatives.
Data-driven control-oriented identification algorithms were
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proposed in [6], [12] which simultaneously compute an RCI
set and a controller, while selecting an ‘optimal’ model from
the admissible set. Alternatively, direct data-driven approaches
were presented in [2], [3], [9], [21], which synthesize RCI sets
and controllers directly from open-loop data, without the need
of model identification. The algorithm presented in [3], com-
putes a state-feedback controller from open-loop data to induce
robust invariance in a given polyhedral set, while methods
proposed in [2], [9], [21] simultaneously compute invariance-
inducing controllers along with RCI sets having zonotopic [2],
polytopic [9] or ellipsoidal [21] representations. These con-
tributions, however, are limited to linear time-invariant (LTI)
systems. For LPV systems, direct data-driven algorithms have
mainly focused on LPV control design, see, e.g., LPV input-
output controllers for constrained systems [16], predictive con-
trollers [18], and gain-scheduled controllers [11], [19]. To our
knowledge, only a recent work [10] has addressed computation
of RCI set for LPV systems in a data-driven setting. This
work differs from [10] in terms of description of the RCI
sets and computational complexity. We represent the RCI set
with a polytope having fixed orientation and varying offset
that we optimize in order to maximize the size of the set. As
presented in [14], [20], we enforce configuration constraints
(CC) on this polytope, which enable us to switch between
their vertex and hyperplane representations. We exploit this
property to parameterize the controller as a vertex control law
which is inherently less conservative than a linear feedback
control law [8]. A single linear program (LP) is formulated
and solved to compute the CC-RCI set with associated vertex
control law, while the approach in [10] requires to solve a
semi-definite programming problem.

II. NOTATIONS AND PRELIMINARIES

The set of positive reals is denoted by R+. A set of natural
numbers between two integers m and n, m ≤ n, is denoted
by Inm ≜ {m, . . . , n}. Let A ∈ Rm×n be a matrix written
according to its n column vectors as A = [ a1 ··· an ]; we define
the vectorization of A as A⃗ ≜ [ a⊤

1 ··· a⊤
n ]

⊤ ∈ Rmn, stacking
the columns of A. For a finite set Θ = {θ1, . . . , θr},
the convex-hull of Θ is given by, ConvHull(Θ) ≜{
θ ∈ Rn : θ =

∑r
j=1 αjθ

j , s.t
∑r

j=1 αj = 1, αj ≥ 0
}

.
For matrices A and B, A ⊗ B denotes their Kronecker
product. The following results will be used in the paper:



Lemma 1 (Vectorization): For matrices A ∈ Rk×l, B ∈
Rl×m, C ∈ Rm×n and D ∈ Rk×n, the matrix equation
ABC = D is equivalent to [1, Ex. 10.18],

(C⊤ ⊗A)
#»

B =
#         »

ABC =
#»

D, (1)
Lemma 2 (Strong duality [17]): Given a ∈ Rn, b ∈ R,

M ∈ Rm×n and q ∈ Rm, the inequality a⊤x ≤ b is satisfied
by all x in a nonempty set X := {x : Mx ≤ q} if and
only if there exists some Λ ∈ R1×m

+ satisfying Λq ≤ b and
ΛM = a⊤.

III. PROBLEM SETTING

A. Data-generating system and constraints

We consider the following discrete-time LPV data-
generating system

xt+1 = A(pt)xt+B(pt)ut+wt, (2)

where xt ∈ Rn, ut ∈ Rm, pt ∈ Rs, and wt ∈ Rn are the state,
control input, scheduling parameter, and (additive) disturbance
vectors, at time t, respectively. The matrix functions A(pt) and
B(pt) have a linear dependency on pt as

A(pt) =
s∑

j=1

pt,jA
j
o, B(pt) =

s∑
j=1

pt,jB
j
o, (3)

where pt,j denotes the j-th element of pt ∈ Rs and
Aj

o, B
j
o, j ∈ Is1 are unknown system matrices. Using (3), the

LPV system (2) can be written as

xt+1 =
[
A1

o · · · As
o B1

o · · · Bs
o

]︸ ︷︷ ︸
Mo

[
pt ⊗ xt

pt ⊗ ut

]
+ wt. (4)

Assume that a state-input-scheduling trajectory of T +1 sam-
ples {xt, pt, ut}T+1

t=1 generated from system (2) is available.
The generated dataset is represented as follows

X+ ≜ [x2 x3 · · · xT+1] ∈ Rn×T , (5a)

Xp
u ≜

[
p1 ⊗ x1 p2 ⊗ x2 . . . pT ⊗ xT

p1 ⊗ u1 p2 ⊗ u2 . . . pT ⊗ uT

]
∈ R(n+m)s×T .

(5b)

Note that the state measurements xt are generated according
to (2), which are affected by disturbance samples wt for t ∈
IT+1
1 whose values are not known. However, we assume that

for all t ∈ IT1 ,

wt ∈ W ≜ {w : −hnw ≤ Hww ≤ hnw} , (6)

i.e., the additive disturbance wt is unknown but bounded
a priori in the 0-symmetric polytope W . Furthermore, we
assume that for all t ∈ IT1 , the system parameter satisfies
pt ∈ P ≜ ConvHull({pj}, j ∈ Ivp1 ), where {pj}, j ∈ Ivp1
are vp given vertices defining the parameter set P . The state
and input constraints are given as

X ≜ {x : Hxx ≤ hnx} , U ≜ {u : Huu ≤ hnu} , (7)

where X and U are given polytopic sets.

B. Set of feasible models
A set of feasible models which are compatible with the

measured data X+, Xp
u and the set W is given as follows

MT ≜

{
M : xt+1 −M

[
pt ⊗ xt

pt ⊗ ut

]
∈ W, k ∈ IT1

}
, (8)

where M = [A1,...As, B1,...Bs ] ∈ Rn×(n+m)s are feasible
model matrices. Since we assume that the data-generating
system in (4) is LPV with known disturbance setW , it follows
that Mo ∈ MT . Using the definitions in (5) and (6), the
feasible model set MT is represented as,

MT ≜
{
M : −hw ≤ HwX

+ −HwMXp
u ≤ hw

}
, (9)

with hw ≜ [ hnw hnw ··· hnw ] ∈ Rnw×T . We now rewrite the
feasible model setMT in (9) using the vectorization Lemma 1
for

# »

M ∈ Rn(n+m)s as

MT ≜
{

# »

M : − #»

hw+hM ≤ HM
# »

M≤ #»

hw+hM

}
, (10)

where we define HM ∈ RTnw×n(n+m)s, hM ∈ RTnw and
#»

hw ∈ RTnw as

HM ≜
(
Xp

u
⊤⊗Hw

)
, hM ≜

[
Hwx2

...
HwxT+1

]
,

#»

hw≜

[
hnw

...
hnw

]
(11)

Proposition 1 (Bounded feasible model set): The set MT

is a bounded polyhedron if and only if rank (Xp
u)=(n+m)s

and Hw has a full column-rank n [3, Fact 1].
The full row-rank of Xp

u can be checked from the data, which
also relates to the persistency of excitation condition for LPV
systems [19, condition 1].

Remark 1: We have assumed that full-state measurements
are available. If they are not, a possible approach is to design
an observer and quantify an error bound between the true
and the estimated states. Taking into account this uncertainty,
developing a combined observer design and RCI set synthesis
method will be a subject of future research.

C. Invariance condition
A set S ⊆ X is referred to as RCI for LPV system (4), if

for any given p ∈ P , there exists a control input u ∈ U such
that the following condition is satisfied:

x ∈ S ⇒ x+ ∈ S, ∀w ∈ W, ∀M ∈MT , (12)

where the time-dependence of the signals is omitted for brevity
and x+ denotes the successor state.

Remark 2: An indirect approach would involve first identi-
fying a model M̃ = [Ã, B̃] and a set W̃ , and then enforcing

the RCI condition ∀ (x, p) ∈ S×P, ∃ u ∈ U : M̃

[
p⊗ x
p⊗ u

]
⊕

W̃ ⊆ S, where W̃ ⊇ W is an inflated disturbance set
that accounts for finite data [12]. This approach may lead to
more conservative RCI sets compared to directly satisfying
∀ M ∈ MT in (12). Making a thorough comparison of the
two approaches in terms of RCI set conservativeness is beyond
the scope of this paper.

Let {xi, i ∈ Ivs
1 } be the vs vertices of the convex RCI set S.

We suppose that a vertex control input ui ∈ U is associated



with the i-th vertex xi of the set S, for i ∈ Ivs1 , i.e., ui is
applied to the system when the current state is xt = xi.

Lemma 3: If the set S is robustly invariant for system (4),
then the following two statements are equivalent:

(i) for all x ∈ S, for any given p ∈ P , and ∀(w,M) ∈
(W,MT ),

x+ ≜ M

[
p⊗ x
p⊗ u

]
+ w ∈ S; (13)

(ii) for each vertex {xi,ui, i ∈ Ivs
1 }, for each vertex {pj , j ∈

Ivp1 } of the set P , and ∀(w,M) ∈ W,M,

xi,j+ ≜ M

[
pj ⊗ xi

pj ⊗ ui

]
+ w ∈ S. (14)

Proof: Since for each vertex xi, i ∈ Ivs1 and pj , j ∈
Ivp1 , it holds that xi ∈ S and pj ∈ P , thus, (i) ⇒ (ii).
Now, we prove the converse, i.e., (ii) ⇒ (i). Any x ∈ S
can be represented as a convex combination of its vertices:
x =

∑vs
i=1 λix

i,
∑vs

i=1 λi = 1, λi ≥ 0,∀ i ∈ Ivs
1 . For this

state, we choose the corresponding control input as

u =

vs∑
i=1

λiu
i. (15)

Note that, u ∈ U , as ui ∈ U and U is convex. Similarly, any
given scheduling parameter p ∈ P can be expressed as p =∑vp

j=1 αjp
j ,

∑vp
j=1 αj = 1, αj ≥ 0,∀j ∈ Ivp1 . Applying

the control input (15) to System (4), for any w ∈ W , we get,

x+ = M

[(∑vp
j=1 αjp

j
)
⊗
(∑vs

i=1 λix
i
)(∑vp

j=1 αjp
j
)
⊗
(∑vs

i=1 λiu
i
)]+ w, (16a)

=

vp∑
j=1

αj

vs∑
i=1

λi

(
M

[
pj ⊗ xi

pj ⊗ ui

]
+ w

)
︸ ︷︷ ︸

xi,j+∈S

, (16b)

=

vp∑
j=1

αj

vs∑
i=1

λix
i,j+

︸ ︷︷ ︸
xj+∈S

=

vp∑
j=1

αjx
j+ ∈ S, (16c)

where (16b) follows from the distributive property of the
Kronecker product. As S is convex, and from (14) we know
that xi,j+ ∈ S, then xj+ ∈ S in (16c). Similarly, as x+ in
(16c) is obtained as a convex combination of xj+ ∈ S, it
follows that x+ ∈ S, thus, proving (ii)⇒ (i).
We remark that the nonlinearity introduced to ensure robust
invariance ‘for all’ models and ‘for all’ scheduling parameters
is resolved via the vertex enumeration of the scheduling
parameter set. Condition (ii) in Lemma 3 allows us to enforce
the invariance condition only at a finite set of known vertices,
instead of enforcing it for all p ∈ P .

We now formalize the problem addressed in the paper:
Problem 1: Given data matrices (X+, Xp

u) defined in (5)
and the constraint sets (7), compute an invariant set S and
associated vertex control inputs ui ∈ U , i ∈ Ivs1 such that:
(i) All elements of the set S satisfy the state constraints S ⊆
X ; (ii) the invariance condition (14) holds. We also aim at
maximizing the size of the RCI set S.

IV. RCI SET PARAMETERIZATION

We parameterize the RCI set S as the following polytope

S ← S(q) ≜ {x : Cx ≤ q} , C ∈ Rnc×n, (17)

whose facets have a fixed orientation determined by the user-
defined matrix C and offset q ∈ Rnc to be computed.
We enforce configuration constraints (CC) [20] over S(q),
which enable us to switch between the vertex and hyperplane
representation of S(q) in terms of q. Given a polytope S(q),
having vs vertices, the configuration constraints over q are
described by the cone

S ≜ {q : Eq ≤ 0ncvs} (18)

with E ∈ Rncvs×nc . Let {V i ∈ Rn×nc , i ∈ Ivs1 } be the
matrices defining the vertex maps of S(q), i.e., S(q) =
ConvHull{V iq, i ∈ Ivs1 } for a given q. Then, for a par-
ticular construction of {V i, i ∈ Ivs1 , E}, the configuration
constraints (18) dictate that

∀q ∈ S ⇒ S(q) = ConvHull{V iq, i ∈ Ivs1 }. (19)

For a user-specified matrix C parameterizing S(q) in (17),
we assume we are given matrices {V i, i ∈ Ivs1 }, and E
satisfying (19). Such matrices are then used to enforce that the
RCI set S(q) is a CC-polytope. For further details regarding
their constructions, we refer the reader to Appendix VIII.

V. COMPUTATION OF RCI SET AND
INVARIANCE-INDUCING CONTROLLER

We enforce that the set S(q) is RCI under vertex control law
induced by ui, i ∈ Ivs1 . A particular construction of matrices
{V i ∈ Rn×nc , i ∈ Ivs1 }, and E ∈ Rncvs×nc satisfying (19)
is given. We enforce S(q) is a configuration-constrained
polytope through the following constraints

Eq ≤ 0. (20)

A. System constraints
Let us enforce the inclusion S ⊆ X and input constraints

ui ∈ U . Note that from (19), under the constraint (20), we
have the following vertex map of S(q),

S(q) = ConvHull{V iq, i ∈ Ivs1 } (21)

We now enforce the state and input constraints in (7) in terms
of q and ui as follows

HxV
iq ≤ hnx , Huu

i ≤ hnu , ∀i ∈ Ivs1 . (22)

B. Invariance condition
We now enforce the invariance condition xi,j+ ∈ S(q)

in (14) for all w ∈ W and for all feasible models in the
set M ∈ MT . Note that from (21), the vertices of S(q) are
{xi ≜ Viq, i ∈ Ivs1 }, under the constraints in (20). Then,
the successor state from xi,j+ for parameter pj , input ui, and
disturbance w is given in terms of q as follows

xi,j+ = M

[
pj ⊗ V iq
pj ⊗ ui

]
+ w. (23)



Thus, the inclusion in (14) is enforced by the inequality

Cxi,j+ ≤ q− d ∀i ∈ Ivs1 , ∀j ∈ Ivp1 , ∀M ∈MT , (24)

where d ≜ max{Cw : w ∈ W} tightens the set S(q) by the
disturbance setW . Using vectorization in (1), and substituting
(23), the inequality (24) can be written as follows1

C

(([
pj ⊗ Viq
pj ⊗ ui

])⊤

⊗In

)
M⃗≤q−d,

∀M⃗ ∈MT ≜ {M⃗ : HMM⃗ ≤ hM}, (25)

where we define H̄M =
[

HM

−HM

]
and h̄M =

[
#»
hw+hM
#»
hw−hM

]
with HM , hM ,

#»

hw defined as in (11). Using strong duality
(Lemma 2), the invariance condition (25) holds if and only if
there exists some multipliers Λij ∈ Rnc×2Tnw

+ for all i ∈ Ivs1 ,
j ∈ Ivp1 satisfying

Λij h̄M ≤ q− d, (26a)

ΛijH̄M = C

(([
pj ⊗ Viq
pj ⊗ ui

])⊤

⊗ In

)
. (26b)

C. Maximizing the size of the RCI set
We characterize the size of the RCI set S ⊆ X as

dX (S) := min
ϵ
{∥ϵ∥1 s.t. X ⊆ S ⊕D(ϵ)}, (27)

where D(ϵ) ≜ {x : Dx ≤ ϵ} is a polytope having user-
specified normal vectors {D⊤

i , i ∈ Imd
1 }. Thus, we want to

compute a desirably large RCI set S by minimizing the ‘dis-
tance’ dX (S) in (27). Let {yl, l ∈ Ivx1 } be the known vertices
of the state-constraint set X , i.e., X = ConvHull{yl, l ∈ Ivx1 }.
For each vertex yl of X , let zl ∈ D(ϵ) and sl ∈ S for l ∈ Ivx1
be the corresponding points in the sets D and S. The inclusion
X ⊆ S ⊕D(ϵ) in (27) is equivalent to [13],

∀l ∈ Ivx1 , ∃{zl, sl} : yl=zl+sl, Dzl ≤ ϵ, Csl ≤ q (28)

We now consider the following LP problem which aims at
computing the RCI set parameter q and invariance inducing
vertex control inputs {ui, i ∈ Ivs1 } for the LPV system (2).
Our goal is to maximize the size of the RCI set S(q) (or
equivalently, to minimize (27)), while satisfying the system
constraints, the invariance condition, and the configuration
constraints, for all i ∈ Ivs1 , j ∈ Ivp1 and l ∈ Ivx1 :

min ∥ϵ∥1
{q,ui,Λij , zl, sl, ϵ}
subject to: (20) (configuration constraints),

(22) (state-input constraints),
(26) (invariance condition),
(28) (set-size constraints).

(29)
The LP in (29) consists of ncvs linear inequalities for express-
ing the configuration constraints, (nx +nu)vs linear inequali-
ties for system constraints, vsvpnc number of linear inequality

1We used a halfspace representation of MT for its computational advan-
tages over the vertex representation. The main drawback of using a vertex
representation is its computational complexity, as MT ⊂ Rn(n+m)s, which
can induce a very large number of vertices.

and vsvpncn(n + m)s number of linear equality constraints
for invariance, and vx(md+nc+n) linear equality-inequality
constraints for maximizing the size of the RCI set. The number
of optimization variables is (nc + vs(m + 2vpncTnw) +
2nvx + md). The method can be computationally expensive
for high dimensional systems as the computational complexity
is impacted by the chosen representational complexity of the
RCI set nc, vs, and the system dimension n.

D. Invariance-inducing controller
The vertex control inputs {ui, i ∈ Ivs1 } ∈ U obtained by

solving the LP (29) correspond to the vertices {xi, i ∈ Ivs1 }
of the RCI set S. Then, for any xt ∈ S, an admissible control
input ut can be obtained as follows,

ut =

vs∑
i=1

λi,⋆
t ui, (30)

where λi,⋆
t , i ∈ Ivs1 are computed by solving the following LP:

{λi,⋆
t } = argmin

∑vs
i=1 λ

i
t

{λi
t}

subject to:
∑vs

i=1 λ
i
tx

i = xt, 0 ≤ λi
t ≤ 1.

(31)

VI. NUMERICAL EXAMPLES

We demonstrate the effectiveness of the proposed approach
via two numerical examples. All computations are carried out
on an i7 1.9-GHz Intel core processor with 32 GB of RAM
running MATLAB R2022a.

A. Example 1: LPV Double integrator
We consider the following LPV double integrator data-

generating system [7],

xt+1 =

[
1 + δt 1 + δt

0 1 + δt

]
xt +

[
0

1 + δt

]
ut + wt, (32)

where |δt| ≤ 0.25, with constraints X ≜ {x : |x| <= [5 5]⊤},
U ≜ {u : |u| ≤ 1}, and W ≜ {w : |w| ≤ [0.25 0]⊤}. This
system can be brought to the LPV form (2) with

A1=

[
1.25 1.25
0 1.25

]
,A2=

[
0.75 0.75
0 0.75

]
,
B1=

[
0 1.25

]⊤
,

B2=
[
0 0.75

]⊤
,

(33)

using pt,1 = 2(0.25+δt), pt,2 = 2(0.25−δt). This corresponds
to the simplex scheduling-parameter set P = {p ∈ R2 :
p ∈ [0, 1], p1 + p2 = 1} = ConvHull([ 10 ] , [

0
1 ]). The system

matrices in (33) are unknown and only used to gather the data.
A single state-input-scheduling trajectory of T = 100 samples
is gathered by exciting system (32) with inputs uniformly dis-
tributed in [−1, 1]. The data satisfies the rank conditions given
in Proposition 1, i.e, rank(Xp

u) = (n+m)s = 6. We choose
matrix C defining an RCI set with representational complexity
given by nc = 50, i.e., C ∈ R50×2, such that S(150) is an en-
tirely simple polytope. Each row of C is chosen as follows [20,
Remark 3]:Ci =

[
cos
(

2π(i−1)
nc

)
, sin

(
2π(i−1)

nc

)]
, i ∈ Inc

1 .

Based on the selected C, we build {V i, i ∈ I501 }, and E
satisfying the configuration constraints in (19). We set D = C
defining the distance in (27).



Fig. 1: Example 1: model-based CC-RCI set Smodel (dashed-
red), data-based CC-RCI set S (green).

Fig. 2: Example 1: Left panel: CC-RCI set S (green) with
closed-loop state trajectories and MRCI Ω∞ (dashed-red);
Right panel: corresponding control input trajectories and input
constraints (dashed red).

The RCI set S(q) obtained by solving the LP problem (29)
is shown in Fig. 1. The total construction and solution time
is 40.6 s. We compare the proposed approach to a model-
based method, where we compute a CC-RCI set Smodel using
the knowledge of the true system matrices. In particular, we
fix the model matrix M in (14) to the true system matrices
M = [A1,A2,B1,B2 ] given in (33), and compute Smodel

solving an LP minimizing dX (Smodel). In the model-based
case, invariance constraints (24) are directly computed for a
given fixed M . The volume of the RCI set S obtained with the
proposed data-driven proposed algorithm is 25.43, while that
provided by the model-based method is 24.56, which shows
that the proposed data-based approach generates RCI sets that
are of comparable size to those of model-based method. Fig. 2
depicts closed-loop state trajectories starting from some of the
vertices of the RCI set, and corresponding control input tra-
jectories. The maximal RCI (MRCI) set Ω∞ computed using
a model-based geometric approach [5, Algorithm 10.5] is also
plotted. The state trajectories are obtained by simulating the
true system (32) in closed-loop with the invariance inducing
controller ut in (30) computed by solving the LP (31) at each
time instance. Note that for each closed-loop simulation, a
different realization of the scheduling signal p taking values
in the given interval [0, 1] is generated. Moreover, during
each closed-loop simulation, different realizations of the dis-
turbance signal wt ∈ W are acting on the system. The result
shows that the approach guarantees robust invariance w.r.t. all
possible scheduling signals taking values in a given set as
well as in the presence of a bounded but unknown disturbance,
while respecting the state-constraints. The corresponding input
trajectories shown in Fig. 2 (right panel) show that the input
constraints are also satisfied. Lastly, we analyse the effect of
the number T of data samples on the size of the RCI set.
The volume of the RCI set and the LP objective dX (S(q))

Fig. 3: Example 2: model-based CC-RCI Smodel (dashed-red),
proposed data-driven CC-RCI set S (green).

Fig. 4: Example 2: Left panel: CC-RCI set S with closed-
loop state trajectories; Right panel: Corresponding control
trajectories and input constraints (dashed red).

for varying T are reported in Table I. As T increases, the

T 30 50 100 Model-based Ω∞
volume 22.23 24.47 25.43 24.56 28.19

dX (S(q)) 168.31 166.15 164.68 162.11 -

TABLE I: Example 1: Size of the RCI set vs samples T .

feasible model set MT shrinks progressively, MT+1 ⊆MT ,
thus constraint ∀M ∈ MT is less restrictive, resulting in an
increased size of the RCI set.

B. Example 2: Van der Pol oscillator embedded as LPV
Consider the Euler-discretized LPV representation of the

Van der Pol oscillator [14] in the form (2) with[
A1 A2

]
=

[
1 Ts

−Ts 1
1 Ts

−Ts 2

]
, B1,2 =

[
0
Ts

]
, (34)

where Ts = 0.1 is the sampling time. The scheduling
parameters are chosen as pt,1 = 1 − µTs(1 − x2

t,1) with
µ = 2 and pt,2 = 1 − pt,1. The system constraints are
X ≜ {x : ∥x∥∞ ≤ 1}, U ≜ {u : |u| ≤ 1} and W ≜
{w : |w| ≤ [10−3 10−3]⊤}. The scheduling parameter set
is P ≜ {p : p1 ∈ [1 − µTs, 1], p2 ∈ [0, 1], p1 + p2 = 1} =

ConvHull
(
[ 10 ] ,

[
1−µTs

µTs

])
. The system matrices {A1, A2, B}

are unknown and only used to gather the data. A single state-
input-scheduling trajectory of T = 100 samples is gathered
by exciting system (34) with inputs uniformly distributed
in [−1, 1]. The data satisfy the rank conditions given in
Proposition 1, i.e, rank(Xp

u) = (n + m)s = 6. The matrix
C parameterzing RCI set is selected with nc = 30. Each row
of C ∈ R30×2 is set according to [20, Remark 3], such that
S(130) is an entirely simple polytope. Based on the chosen
C, we build the matrices {V i, i ∈ I301 }, and E satisfying the
configuration constraints in (19). We set D = C defining the
distance in (27). The RCI set S(q) obtained by solving the LP



problem (29) is shown in Fig. 3. The total construction and
solution time is 21.5 s. For comparision, we also compute
the CC-RCI set Smodel with the model-based approach using
the knowledge of the true system matrices given in (34).
The volume of the RCI set S with the proposed data-driven
algorithm is 1.59, while that of Smodel is 1.62, which shows
that the proposed method is able to generate RCI sets that are
of similar size to those of the model-based method. Fig. 4
shows closed-loop state trajectories starting from the vertices
of the RCI set for different realizations of the scheduling and
disturbance signals during closed-loop simulation and corre-
sponding invariance-inducing control inputs, which satisfy the
input constraints. The volume of the RCI set and the LP

T 20 50 100 Smodel

volume 1.50 1.56 1.59 1.62
dX (S(q)) 19.04 18.81 18..67 18.54

TABLE II: Example 2: Size of the RCI set vs T .

objective dX (S(q)) for varying T are reported in Table II.
As T increases, the feasible model set MT becomes smaller,
resulting in an increased size of the RCI set.

VII. CONCLUSIONS
The paper proposed a data-driven approach to compute

a polytopic CC-RCI set and a corresponding vertex control
laws for LPV systems. A data-based invariance condition
was proposed which utilizes a single state-input-scheduling
trajectory without requiring to identify an LPV model of the
system. The CC-RCI sets are computed by solving a single
LP problem. The effectiveness of the proposed algorithm was
shown via two numerical examples to generate RCI sets from
a ‘small’ number of collected data samples.
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VIII. APPENDIX: CONFIGURATION-CONSTRAINED
POLYTOPES

We summarize the main results from [20]. Let S(q) ≜ {x ∈
Rn : Cx ≤ q}, q ∈ Rnc . We assume that q is such that
S(q) ̸= ∅. Let I ≜ {i1, · · · , i|I|} ⊆ Inc

1 be the index set
based on which we define matrices CI ≜ [C⊤

i1
· · ·Ci|I| ]

⊤ ∈
R|I|×n and qI ≜ [qi1 · · ·qi|I| ]

⊤ ∈ R|I| by collecting the rows
of matrix C and elements of vector q corresponding to the
indices in set I. The face of S(q) associated with the set I is
defined as FI(q) ≜ {x ∈ S(q) : CIx ≥ qI}.

Definition 1: A polytope S(q) is entirely simple if for all
index sets I such that the corresponding face is nonempty,
i.e., FI(q) ̸= ∅, the condition rank(CI) = |I| holds. □

For some given vector σ ∈ Rnc , suppose that S(σ) is an
entirely simple polytope. Then, the set of all n-dimensional
index sets with corresponding faces being nonempty is defined
as V ≜ {I : |I| = n, FI(σ) ̸= ∅}. Let |V| = vs, i.e., V =
{V1, · · · ,Vvs

} with |Vk| = n for each k ∈ Ivs1 . Then, accord-
ing to the definition of entirely simple polytopes, rank(CVk

) =
n, such that CVk

is invertible. Let Inc

Vk
∈ Rn×nc be the matrix

constructed using rows of identity matrix Inc corresponding to
indices in Vk. Then, defining the matrices V k := C−1

Vk
Inc

Vk
∈

Rn×nc , we note that
{
V 1σ, · · · , V vsσ

}
∈ S(σ) are the vs

vertices of S(σ). Using matrices {V k, k ∈ Ivs1 }, define the

cone S ≜ {q : Eq ≤ 0} , with E ≜

 CV 1−Inc

...
CV vs−Inc

 which was

described in (18). The following result is the basis for the
relationship in (19).

Proposition 2: [20, Theorem 2] Suppose that S(σ) is an
entirely simple polytope, based on which the vertex map-
ping matrices {V k, k ∈ Ivs1 } and a matrix E defining the
cone S are constructed as discussed above. Then, S(q) =
ConvHull{V kq, k ∈ Ivs1 } for all q ∈ S ≜ {q : Eq ≤ 0}.


