
A Linear Programming Method Based on
Proximal-Point Iterations with Applications to

Multi-Parametric Programming
Daniel Arnström, Alberto Bemporad and Daniel Axehill

Abstract— We propose a linear programming method
that is based on active-set changes and proximal-point
iterations. The method solves a sequence of least-distance
problems using a warm-started quadratic programming
solver that can reuse internal matrix factorizations from the
previously solved least-distance problem. We show that the
proposed method terminates in a finite number of iterations
and that it outperforms state-of-the-art LP solvers in sce-
narios where an extensive number of small/medium scale
LPs need to be solved rapidly, occurring in, for example,
multi-parametric programming algorithms. In particular, we
show how the proposed method can accelerate operations
such as redundancy removal, computation of Chebyshev
centers and solving linear feasibility problems.

Index Terms— Optimization algorithms, predictive con-
trol for linear systems.

I. INTRODUCTION

IN this letter we are interested in the classical problem of
finding solutions x∗ to linear programs (LPs) in the form

x∗ = argmin
x

fTx

s.t. Ax ≤ b,
(1)

where x, f ∈ Rn, A ∈ Rm×n and b ∈ Rm. The need
for solving such problems in various engineering applications
is ubiquitous, and herein we are in particular interested in
scenarios where an extensive number of small/medium scale
LPs must be solved rapidly. Such scenarios arise in numerous
control applications, for example, in real-time model predictive
control (MPC) when the 1- or∞-norm is used in the objective
function [1][2, Ch.9] and in multi-parametric programming
algorithms [3]–[10], used to, for example, compute explicit
control laws [11] and control invariant sets [12]. In such
scenarios, state-of-the-art LP solvers such as CPLEX and
Gurobi can yield, relatively, extensive execution times since
they are developed with challenging, large-scale, LPs in mind.

The method that we propose solves (1) by performing
proximal-point iterations [13], [14], where each such iteration
corresponds to solving a perturbed least-distance problem

This work was partly supported by the Swedish Research Council
(VR) under contract number 2017-04710.

D. Arnström and D. Axehill are with the Division
of Automatic Control, Linköping University, Sweden
daniel.{arnstrom,axehill}@liu.se

A. Bemporad is with the Department of Computer Science and
Engineering, IMT School for Advanced Studies Lucca, Lucca, Italy
alberto.bemporad@imtlucca.it

(LDP). We show how these LDPs can be solved efficiently
with the dual active-set quadratic programming (QP) method
proposed in [15], which has proven to be efficient for solving
small/medium size QPs arising in real-time MPC. Moreover,
the warm-starting capabilities (i.e., possibility of reusing pre-
vious solutions as good initializations) of the QP method in
[15] makes the proposed LP method competitive with state-
of-the-art implementations of the simplex method [16] and
interior-point methods [17].

The proposed LP method is similar to the simplex method in
that it is an active-set method. There are, however, three impor-
tant differences between the simplex method and the proposed
method: (i) The linear system of equations to be solved at each
iteration of the proposed algorithm is symmetric, allowing
an LDLT factorization to be used and updated. In contrast,
the revised simplex method does not solve symmetric linear
systems and, hence, typically maintains an LU factorization
[18] instead of an LDLT factorization, which requires more
computations [19]. (ii) In contrast to the simplex method,
the proposed algorithm does not have to be started in a
complementary basic solution. Moreover, the starting point
does not have to be feasible (neither in the primal nor dual
sense). (iii) Finally, the proposed method does not restrict its
iterates to be vertices of the feasible set.

The main contribution of this letter is, hence, an LP method
that is based on proximal-point iterations and the QP solver
in [15]. Moreover, we show that an implementation of the
proposed method can outperform state-of-the-art LP solvers
for small/medium size LPs, which in turn can improve com-
putational performance in control applications. In particular,
we show how the computational burden in geometrical and
combinatorial multi-parametric programming algorithms can
be reduced by using the proposed solver.

The outline of the letter is as follows: In Section II we
introduce how proximal-point iterations can be used to solve
LPs and how such iterations can be performed cheaply, leading
up to the proposed LP algorithm presented in Section III.
We then compare an implementation of the proposed method
with state-of-the-art LP solvers on small/medium size LPs
in Section IV, and show that the proposed method can lead
to over an order of magnitude speedup when solving LPs
encountered in explicit MPC applications.

A. Notation
The operator [·]i extracts the ith row of a matrix or vector.

Similarly, [·]I extracts all rows of a matrix or vector given
by the index set I ⊂ N1:m, where N1:m , {1, 2, . . . ,m}.
Moreover, we denote the complement of an index set with an
overline, e.g., I ≡ N1:m\I. The active set at a point x ∈ Rn is
denoted A(x) and is defined as A(x) , {i ∈ N1:m : [A]ix =
[b]i}, i.e., all inequalities of (1) that holds with equality (are
active) at x. Specifically, we let A∗ denote A(x∗).

II. PRELIMINARIES

A. Proximal-point iterations
By performing so-called proximal-point iterations [13],

[14], the LP in (1) can be solved by solving a sequence of
QPs (more specifically perturbed LDPs) in the form

xj+1 =argmin
x

fTx+
ε

2
‖x− xj‖22

s.t. Ax ≤ b,
(2)

where xj → x∗ when j → ∞ (see, e.g., Theorem 10.28 in
[14]) and where ε > 0 is a regularization parameter. Not only
will xj → x∗, but the iterates produced by (2) are decreasing
in terms of the objective function of (1):

Lemma 1 (Descent of proximal-point iterations): If Axj ≤
b and xj+1 6= xj in (2), fTxj+1 < fTxj .

Proof: Let the objective function in (2) be denoted
Jj(x) , fTx+ ε

2‖x−x
j‖. We then have that Jj(xj) = fTxj

and that Jj(xj+1) = fTxj+1 + ε
2‖x

j+1 − xj‖22. Moreover,
since xj+1 is the minimizer of (2), we get

Jj(xj+1) ≤ Jj(xj)⇔ fTxj+1 +
ε

2
‖xj+1 − xj‖22 ≤ fTxj ,

which in combination with xj+1 6= xj yields the desired result
fT (xj+1 − xj+1) ≤ − ε

2‖x
j+1 − xj‖22 < 0.

By scaling the objective function with 1
ε and removing terms

not containing x, we rewrite (2) as

xj+1 =argmin
x

1

2
‖x‖22 +

(
1

ε
f − xj

)T
x

s.t. Ax ≤ b,
(3)

with the corresponding dual problem

minimize
λ≥0

1

2
λAATλ+ dTλ, (4)

where d , b + A(1
ε f − x

j). Note that different values of ε
corresponds to a direct scaling of f .

Completing the squares of the objective function in (3)
results in 1

2‖x − (xj − 1
ε f)‖22 and gives a geometrical inter-

pretation of an iteration according to (3) (illustrated in Figure
1): First a step is taken along the negative gradient −f from
the current iterate xj , where 1

ε is the step-length taken in this
direction. The resulting point xj − 1

ε f is then projected onto
the feasible set {x ∈ Rn : Ax ≤ b}, yielding the next iterate
xj+1.

Remark 1 (Implicit step): The step − 1
ε f described above is

implicit in the sense that this step only forms the least-distance
problem in (3) to be solved. The method that will be used to

solve the least-distance problem, described next, will be warm-
started, which implies that it is not started in the unconstrained
minimizer of (3).

Ax ≤ b

− 1
ε fxj

xj+1

Fig. 1. Illustration of a proximal-point iteration according to (3). The
dashed circles are level curves of the objective function in (3). The gray
region is the feasible set Ax ≤ b.

B. Solving least-distance problems

For the iterations in (3) to be practical, the LDPs must
be solved efficiently. Since the problem in an iteration is
similar to the problem solved in the previous (only the linear
term in the objective function is perturbed), warm-starting
the solver is advantageous. This makes active-set methods
clear candidates for effective inner solvers because of their
warm-starting capabilities. Indeed, a QP solver that uses an
active-set solver in conjunction with proximal-point iterations
was proposed in [20], resulting in a numerically robust and
computationally efficient QP solver.

The ideas in [20] were improved upon in [15], where the
inner active-set solver was refined to reduce the computational
burden. Here we use this dual active-set QP solver (DAQP),
and tailor it for LDPs, to solve (3). In fact, the initial proximal-
point method that we propose herein can be seen as Algorithm
2 in [15] for the special case when the Hessian H = 0. This
special case is, nevertheless, very important and we show how
the additional structure of H = 0 leads to favorable properties.

A brief description, sufficient for our purpose, of how DAQP
solves (3) is given below and the reader is referred to [15] for
a complete description. DAQP operates on the dual problem in
(4) and, as any other active-set algorithm, updates a working
setW ⊆ N1:m untilW =Wj+1, whereWj+1 is the active set
at xj+1, i.e.,Wj+1 , A(xj+1). Changes toW are decided by
the solution to a system of symmetric linear equations (defined
by the current working set) in the form [A]W [A]TWy = −[d]W .
To solve these symmetric linear system of equations efficiently,
an LDLT factorization is maintained so that [A]W [A]TW =
LDLT , i.e., L and D are updated every time the working set
W changes.

III. A PROXIMAL-POINT LP METHOD

Next, we combine the ideas of the proximal-point iterations
described in Section II-A and the dual-active solver DAQP
to propose a proximal-point method for solving the LP in
(1). This proximal-point method is given in Algorithm 1 and
consists of three steps:

i) form the perturbed LDP (Step 2)
ii) solve the LDP (Step 3)

iii) check if a fixed point has been reached (Step 4)

These steps are repeated until a fixed point is reached, i.e.,
until xj+1 ≈ xj . As mentioned before, the LDPs in Step 3
are solved using DAQP, which takes as inputs A, d, defining
the dual of the LDP in (4), a starting iterate λ, and a
starting working set W . Importantly, DAQP is warm-started
In Step 3 of Algorithm 1 with the working set from the
previous outer iteration, reducing the computational burden
significantly. Even more advantageous, the matrix factors L
and D used in DAQP can be reused directly between outer
iterations, i.e., DAQP can be hot-started in Step 3.

Algorithm 1 A proximal-point method for solving (1)
Input: ε > 0, f, A, b,W0, λ0, x0, η > 0, j ← 0
Output: x∗,A∗

1: while true do
2: vj ← 1

ε f − x
j ; dj ← b+Avj

3: [xj+1, λj+1,Wj+1]← DAQP(A, dj , λj ,Wj)
4: if ‖xj+1 − xj‖ < η then
5: return xj+1,Wj+1

6: j ← j + 1

The constant η > 0 in Algorithm 1 is a tolerance used to
determine when a fixed point has approximately been reached.

Remark 2 (Complexity certification): If Algorithm 1 is
used to solve LPs in the context of linear MPC, the certification
method presented in [21] can be used to determine a worst-
case complexity bound for Algorithm 1 for a given MPC
problem.

A. Unboundedness and superfluous iterations

Even though the iterates of Algorithm 1 will converge to
an optimal solution, the algorithm has some shortcomings.
First off, the algorithm does not directly detect whether the
LP is unbounded; one can observe that the iterates decrease
the objective function indefinitely, but a more direct way of
detecting unboundedness is desirable.

Another shortcoming is that the algorithm might take short
steps in certain situations, leading to superfluous iterations.
Such superfluous iterations, exemplified in Figure 2, occur
when ε is selected too large (resulting in − 1

ε f becoming small)
or if the normal of the linear manifold defined by Wj is
approximately perpendicular to f .

− 1
ε f

xj

xj+1

xj+2

Fig. 2. Example of redundant iterations performed by Algorithm 1 that
emerge whenWj+1 =Wj .

Both of these shortcomings arise when Wj+1 = Wj

in Step 3 of Algorithm 1. We will now show how both
shortcomings can be ameliorated by extending Algorithm 1

with an additional step if Wj+1 = Wj . In particular, the
extension is based on xj+1 − xj being a descent direction
(shown in Lemma 1):

Instead of performing another proximal-point iteration when
Wj+1 = Wj , the iterate x is updated by moving in the
descent direction xj+1−xj until primal feasibility is lost. The
first blocking constraint (i.e., the first constraint that becomes
violated) is then added to Wj , ensuring that Wj changes in
every outer iteration.

Concretely, we let ∆x , xj+1 − xj and determine the first
blocking constraint l as

l = argmini∈B
[b]i − [A]ix

j

[A]i∆x
, (5)

where the set B , {i : [A]i∆x > 0} contains all possible
blocking constraints. Finally, the working set and iterate are
updated as

W ←W ∪ {l}, xj+1 ← xj +

(
[b]l − [A]lx

j

[A]l∆x

)
∆x. (6)

Remark 3: The extension is similar to an iteration of the
active-set LP algorithm presented in [22] and [23].

This additional step can also be used to detect an unbounded
LP through the following lemma:

Lemma 2: Let Axj ≤ b and ∆x = xj+1 − xj . If the set
{i : [A]i∆x > 0} = ∅, the LP in (1) is unbounded.

Proof: From Lemma 1 we have that ∆x is a descent
direction. Moving in the direction of ∆x can, hence, make
the objective of the LP in (1) arbitrarily small. Formally put:
fT (xj + α∆x) → −∞ when α → ∞. Moreover, if {i :
[A]i∆x > 0} = ∅ we have that A∆x ≤ 0 and, hence,

A(xj + α∆x) = Axj + αA∆x ≤ b, (7)

for any α > 0, i.e., x+α∆x is primal feasible for any α > 0.
In conclusion, the LP is unbounded.
Consequently, Lemma 2 implies that an unbounded LP is
detected whenever B = ∅ in (5).

Algorithm 1 amended with the steps described above is
summarized in Algorithm 2.

Algorithm 2 Extended version of Algorithm 1 that detects
unboundedness and avoids redundant iterations.
Input: ε > 0, f, A, b,W0, λ0, x0, j ← 0
Output: x∗,A∗

1: while true do
2: vj ← 1

ε f − x
j ; dj ← b+Avj

3: [xj+1, λj+1,Wj+1]← DAQP(A, dj , λj ,Wj)
4: if Wj+1 =Wj then
5: if ‖xj+1 − xj‖ < η then return xj+1,Wj+1

6: ∆x← xj+1 − xj
7: B ← {i /∈ Wj : [A]i∆x > 0}
8: if B = ∅ then return unbounded
9: else

10: l = mini∈B
[b]i−[A]ix

j

[A]i∆x

11: Wj+1 ←Wj ∪ {l}
12: xj+1 ← xj +

(
[b]l−[A]lx

j

[A]l∆x

)
∆x

13: j ← j + 1

B. Finite termination
As mentioned in Section II-B, Algorithm 1 can be seen as

a special case of Algorithm 2 in [15] for H = 0. This extra
structure gives some additional, favorable, properties.

For instance, a common occurrence when proximal-point
iterations are used to solve QPs is that multiple iterations have
to be performed even once W = A∗ and xj ≈ x∗, that is, a
tail of inefficient iterations are performed. This is not the case
for LPs since the optimum is attained at the boundary of the
feasible region:

Lemma 3 (Termination when Wj = A∗): If j 6= 0 and
Wj = A∗ in Algorithm 1, the algorithm terminates in the
subsequent iteration.

Proof: Directly follows from that the active set defines
all optimizers in an LP (A(xj) ∈ A∗ =⇒ xj ∈ x∗) and that
any x ∈ x∗ is a fixed point to (2) (see, e.g., [13, Sec. 2.3]).

Next, we are interested in showing that Algorithm 2 termi-
nates in a finite number of iterations for any given LP. First
we show that the algorithm makes progress in every iteration
for feasible LPs:

Lemma 4 (Progress of Algorithm 2): If the LP in (1) is
feasible, Wj and xj in Algorithm 2 have the following
properties:

1) fTxj+1 < fTxj if xj 6= x∗.
2) Wj+1 6=Wj if Wj 6= A∗,

Proof: 1) Since the LP is assumed feasible, we have
that xj+1 in (3) exists. Now, if Wj+1 6= Wj the proposition
directly follows from Lemma 1. If Wj+1 =Wj we will take
a non-zero step in a descent direction (Step 12) which gives
the desired descent.

2) If Wj+1 6= Wj in Step 3, the proposition is trivially
true. Otherwise, Wj will be updated by adding a constraint to
it in Step 11 (since a bounded LP =⇒ B 6= ∅), resulting in
Wj+1 =Wj ∪ {l} 6=Wj .

We are now ready to prove that Algorithm 2 terminates after
a finite number of iterations.

Theorem 1 (Finite termination): For any LP in the form
(1), Algorithm 2 terminates after a finite number of iterations,
either by detecting infeasibility or by finding an optimal
solution x∗.

Proof: First consider the case when the LP is feasible.
Then from Lemma 4 we have that the algorithm makes
progress in each iteration in the sense that the objective
function decrease and a new working set is obtained. Now,
since the set of all possible W is finite we get that Wk =
A∗ sooner or later, at which point the algorithm terminates
according to Lemma 3.

Next consider the case when the LP is infeasible. If the LP
is primal infeasible, infeasibility will be detected by DAQP
during the first outer iteration of Algorithm 2. Finally, if the LP
is unbounded the algorithm will, again because of the descent
property of the iterates and that the set of all possible W is
finite, sooner or later result in Wj such that B = ∅ in Step 8,
resulting in the algorithm terminating.

IV. NUMERICAL EXPERIMENTS

We compare a C implementation of Algorithm 2 (DAQP
PRX) with a set of state-of-the-art LP solvers. All experiments

are performed on an Intel 2.7 GHz i7-7500U CPU and the
reported solution times are the internal solution times provided
by each solver. To account for the variability in pure solution
times, each LP is solved five times and the median of these
solves is the used solution time. Moreover, DAQP PRX is
always cold started with x0 = 0 and W0 = ∅. Finally, unless
stated otherwise, ε = 1 and η = 10−6 are used for DAQP
PRX and default settings are used for the other solvers.

A. Randomized LPs
First, we consider randomized, dense, LPs with varying n

and m = 4n. The elements of f,A and b are generated as

[f]i ∼ N (0, 1), [A]ij ∼ N (0, 1), [b]i ∼ U([0, 1]). (8)

We compare DAQP PRX with the primal and dual simplex
methods provided by CPLEX and Gurobi. The solution times
passed internally from each solver are reported in Figure 3a.
For each n, the average solution time among these 100 LPs
are shown as solid lines. The best- and worst-case times are
also shown for DAQP PRX as dotted lines.

To separate the implementations of the solvers and the un-
derlying LP algorithms, we also compare the average number
of iterations for solving the LPs in Figure 3b. The number of
iterations reported for DAQP PRX is the total number of inner
iterations from all calls to DAQP, which is equivalent to the
total number of working-set changes. The reported number of
iterations for the other solvers are the iteration count directly
passed from the solvers.

From Figure 3a it can be seen that the proposed algorithm
is an order of magnitude faster than the implementations of
the simplex method in CPLEX and Gurobi. Moreover, in
Figure 3b it can be seen that the average number of iterations
is relatively low for DAQP PRX, highlighting not only the
validity of the implementation but also the underlying LP
algorithm. Also, recall that the systems of linear equations
solved in an iteration of DAQP PRX are symmetric, while
they are asymmetric in the simplex method.

Finally, we report how the number of iterations for Algo-
rithm 1 and Algorithm 2 vary for different values on ε in Figure
4. The number of iterations increases rapidly for Algorithm 1
when ε→∞ due to the step − 1

ε f becoming smaller (resulting
in the issue described in Section III-A). In contrast, the number
of iterations for Algorithm 2 remains relatively small even
when ε increase.

Remark 4 (Selecting ε): Note that since ε scales f , the size
of f itself is important when selecting ε. Moreover, the size
of the feasible set Ax ≤ b is also relevant in this selection.
As a general rule of thumb, selecting ε ≈ ||f || ||A||||b−Ac|| , where
c ∈ Rn is close to the center of the feasible set, usually gives
good results. Nonetheless, as is apparent from Figure 4, the
number of DAQP-PRX iterations does not significantly change
with respect to ε for a wide range of values.

B. Applications to explicit MPC
To show the practicality of the proposed LP method further,

we consider LPs that need to be solved when the explicit
solutions [11] for a set of linear MPC problems are computed.

20 40 60 80 100

10−4

10−2

Dimension n

A
ve

ra
ge

so
lu

tio
n

tim
e

[s
]

CPLEX PRIMAL CPLEX DUAL
GUROBI PRIMAL GUROBI DUAL
DAQP PRX

(a) Solution time

20 40 60 80 100
0

100

200

300

400

Dimension n

A
ve

ra
ge

#
ite

ra
tio

ns

(b) Number of iterations

Fig. 3. Average solution time and number of iterations over 100 randomly generated LPs according to (8) for varying n and m = 4n. The dotted
lines for DAQP in 3a marks the best- and worst-case solution time recorded when solving the 100 LPs.

10−2 10−1 100 101 102

100

200

300

400

ε

A
ve

ra
ge

#
of

ite
ra

tio
ns

Algorithm 1
Algorithm 2

Fig. 4. Average number of iterations over 250 randomly generated LPs
according to (8) with n = 50, m = 200, for varying values of ε.

In particular, we consider LPs that are solved to remove redun-
dant constraint and to compute Chebyshev centers, central in
geometrical methods [3]–[6]; and for determining feasibility
and degeneracy of critical regions, central in combinatorial
methods [7]–[10]. The MPC problems considered are the
control of an inverted pendulum on a cart, a DC motor, and
a ATFI-16 aircraft, all of which are tutorial problems in the
Model Predictive Control Toolbox in MATLAB. We use MPT
3.0 [24], specifically the MATLAB functions mpt mpqp 26
and mpt enum pqp, for computing the explicit solution of
the resulting multi-parametric QPs.

1) Redundancy removal: First, we consider LPs that are
solved to remove redundant constraints from a polyhedron
P , {x ∈ Rn : [A]ix ≤ [b]i}. This operation often takes up a
significant fraction of the time in geometrical multi-parametric
programming algorithms [4]. Moreover, redundancy removal
is often performed in post-processing of solutions computed
by combinatorial methods [9].

The jth constraint in a H-representation of P is said to
be redundant if P = {x ∈ Rn : [A]ix ≤ [b]i, i 6= j} and
redundancy of constraint j can be determined by solving the
LP

sj = minimize
x

[b]j − [A]jx

subject to Ax ≤ b.
(9)

If sj > 0, the jth constraint is redundant and can be
removed from the H-representation of P without changing the
underlying polyhedron [25].

Solution times for solving LPs in the form (9) in the MPT
3.0 function minHRep are reported in Table I.

2) Computing Chebyshev center: Next, we consider LPs
for computing the Chebyshev center of a polyhedron P ,
which is another important operation in geometrical mpQP
algorithms. Given a polytope P with H-representation Ax ≤ b
its Chebyshev center can be obtained by solving the LP

maximize
x,r

r

subject to [A]ix+ ‖[A]i‖2r ≤ [b]i, ∀i.
(10)

Moreover, if Ax ≤ b is assumed to be a minimal H-
representation of P , the Chebyshev center on the facet given
by the jth hyperplane is obtained by solving the LP

maximize
x,r

r

subject to [A]jx = [b]j ,

[A]ix+ ‖[A]i‖2r ≤ [b]i, ∀i 6= j.

(11)

Solution times for solving LPs in the form (10) and (11)
encountered in the MPT 3.0 function chebyCenter are
reported in Table I.

3) Feasibility and degeneracy detection: Finally, we con-
sider LPs that are solved in combinatorial mpQP algorithms
[7]–[9] for determining if critical regions are empty or not, and
for detecting if the solution on the critical region is degenerate.
Given an active set A, the corresponding critical region is
given by CA , {x ∈ RN : sĀ(x) ≥ 0, λA(x) ≥ 0, Ax ≤ b},
where both sĀ(x) and λA(x) are affine expressions of x,
making CA a polyhedron (cf., e.g., Theorem 2 in [3] for
details). Determining if CA is non-empty, in combination with
detecting degenerate solutions, can be done by solving the LP

maximize
t,x

t

subject to sĀ(x) ≥ t, λA(x) ≥ t, Ax ≤ b.
(12)

If t ≥ 0, CA is non-empty. Furthermore, when t = 0, strict
complementarity does not hold for the corresponding solution
(see, e.g., [7] or [9] for details).

Solution times for solving LPs in the form (12) encountered
in the MPT 3.0 function mpt enum pqp are reported in Table
I.

TABLE I
SOLUTION TIMES FOR VARYING LP SOLVERS FOR SOLVING LPS ENCOUNTERED IN MPT 3.0 WHEN COMPUTING EXPLICIT SOLUTIONS. FOR EACH

SCENARIO, n IS THE DIMENSION OF THE DECISION VARIABLE AND N IS THE NUMBER OF SOLVED LPS.

Average solution time [ms] Worst-case solution time [ms]
n N DAQP PRX CPLEX GRB GLPK MSK DAQP PRX CPLEX GRB GLPK MSK

Redundancy removal
DC motor 6 662 0.0050 0.22 0.21 0.13 0.52 0.08 0.35 0.34 0.20 1.3
Inverted pendulum 8 1101 0.0063 0.23 0.22 0.13 0.46 0.016 0.28 0.27 0.20 0.8
Aircraft 10 5613 0.0065 0.26 0.24 0.16 0.62 0.023 0.35 0.37 0.22 2.2
Chebyshev center
DC motor 7 490 0.009 0.26 0.23 0.21 0.66 0.025 0.37 0.35 13.4 4.2
Inverted pendulum 9 554 0.015 0.31 0.25 0.22 0.73 0.030 0.40 0.37 0.37 1.6
Aircraft 11 3377 0.012 0.30 0.26 0.25 0.87 0.037 0.51 0.50 8.9 2.7
Feas./degen. detection
DC motor 7 161 0.008 0.25 0.21 0.15 0.67 0.017 0.31 0.25 0.22 1.8
Inverted pendulum 9 365 0.013 0.26 0.23 0.17 0.58 0.021 0.32 0.31 2.4 1.1
Aircraft 11 891 0.014 0.33 0.28 0.29 0.89 0.033 0.54 0.50 7.2 1.8

4) Discussion: In accordance with the result from Sec-
tion IV-A, Table I shows that the implementation of the
proposed LP algorithm outperforms other LP solvers with over
an order of magnitude speedup, both on average and in the
worst case. The proposed method could be terminated early
when the redundancy removal LPs in (9) and the feasibility
LPs in (12) are solved since we are only interested in the sign
of the optimal objective value, not the actual value. Such early
termination would, obviously, reduce the solution time further.

V. CONCLUSION

We have proposed an LP algorithm based on performing
proximal-point iterations and solving LDPs using a dual
active-set QP solver. An implementation of the algorithm
yielded an order of magnitude speedup in solution time for
solving small/medium size LPs compared with state-of-the-
art LP solvers. In particular, we have shown how multi-
parametric programming algorithms can benefit from using
the proposed method for redundancy removal, computing
Chebyshev centers and for detecting feasibility/degeneracy of
critical regions.

As a final remark, the main performance limitation for
efficiently solving larger LPs is that the inner QP solver does
not exploit sparsity. Whether the solver can be extended to
solve larger LPs efficiently by using sparse linear algebra
routines, for example, by using the LDLT updates proposed
in [26], is a subject for future research.

REFERENCES

[1] C. V. Rao and J. B. Rawlings, “Linear programming and model
predictive control,” Journal of Process Control, vol. 10, no. 2-3, pp.
283–289, 2000.

[2] F. Borrelli, A. Bemporad, and M. Morari, Predictive control for linear
and hybrid systems. Cambridge University Press, 2017.

[3] A. Bemporad, M. Morari, V. Dua, and E. N. Pistikopoulos, “The explicit
linear quadratic regulator for constrained systems,” Automatica, vol. 38,
no. 1, pp. 3–20, 2002.

[4] P. Tøndel, T. A. Johansen, and A. Bemporad, “An algorithm for
multi-parametric quadratic programming and explicit MPC solutions,”
Automatica, vol. 39, no. 3, pp. 489–497, 2003.

[5] P. Grieder, F. Borrelli, F. Torrisi, and M. Morari, “Computation of the
constrained infinite time linear quadratic regulator,” Automatica, vol. 40,
no. 4, pp. 701–708, 2004.

[6] C. N. Jones and M. Morrari, “Multiparametric linear complementarity
problems,” in Proceedings of the 45th IEEE Conference on Decision
and Control. IEEE, 2006, pp. 5687–5692.

[7] A. Gupta, S. Bhartiya, and P. Nataraj, “A novel approach to multipara-
metric quadratic programming,” Automatica, vol. 47, no. 9, pp. 2112–
2117, 2011.

[8] R. Oberdieck, N. A. Diangelakis, and E. N. Pistikopoulos, “Explicit
model predictive control: A connected-graph approach,” Automatica,
vol. 76, pp. 103–112, 2017.

[9] P. Ahmadi-Moshkenani, T. A. Johansen, and S. Olaru, “Combinatorial
approach toward multiparametric quadratic programming based on char-
acterizing adjacent critical regions,” IEEE Transactions on Automatic
Control, vol. 63, no. 10, pp. 3221–3231, 2018.

[10] M. Herceg, C. N. Jones, M. Kvasnica, and M. Morari, “Enumeration-
based approach to solving parametric linear complementarity problems,”
Automatica, vol. 62, pp. 243–248, 2015.

[11] A. Bemporad, “Explicit model predictive control,” in Encyclopedia of
Systems and Control, J. Baillieul and T. Samad, Eds. London: Springer
London, 2019, pp. 1–7.

[12] S. V. Rakovic and M. Baric, “Parameterized robust control invariant sets
for linear systems: Theoretical advances and computational remarks,”
IEEE Transactions on Automatic Control, vol. 55, no. 7, pp. 1599–1614,
2010.

[13] N. Parikh and S. Boyd, “Proximal algorithms,” Foundations and Trends
in optimization, vol. 1, no. 3, pp. 127–239, 2014.

[14] A. Beck, First-order methods in optimization. SIAM, 2017.
[15] D. Arnström, A. Bemporad, and D. Axehill, “A dual active-set solver

for embedded quadratic programming using recursive LDL’ updates,”
arXiv preprint arXiv:2103.16236, 2021.

[16] G. B. Dantzig, Linear programming and extensions. Princeton univer-
sity press, 1998, vol. 48.

[17] S. J. Wright, Primal-dual interior-point methods. SIAM, 1997.
[18] R. H. Bartels and G. H. Golub, “The simplex method of linear program-

ming using LU decomposition,” Communications of the ACM, vol. 12,
no. 5, pp. 266–268, 1969.

[19] C. F. Van Loan and G. H. Golub, Matrix computations. Johns Hopkins
University Press Baltimore, 1983.

[20] A. Bemporad, “A numerically stable solver for positive semidefinite
quadratic programs based on nonnegative least squares,” IEEE Transac-
tions on Automatic Control, vol. 63, no. 2, pp. 525–531, 2017.

[21] D. Arnström, A. Bemporad, and D. Axehill, “Complexity certification of
proximal-point methods for numerically stable quadratic programming,”
IEEE Control Systems Letters, vol. 5, no. 4, pp. 1381–1386, 2021.

[22] M. J. Best and K. Ritter, Linear programming. Prentice Hall Upper
Saddle River, NJ, 1985.

[23] S. Sloan, “A steepest edge active set algorithm for solving sparse linear
programming problems,” International Journal for Numerical Methods
in Engineering, vol. 26, no. 12, pp. 2671–2685, 1988.

[24] M. Herceg, M. Kvasnica, C. N. Jones, and M. Morari, “Multi-parametric
toolbox 3.0,” in 2013 European control conference (ECC). IEEE, 2013,
pp. 502–510.

[25] K. Fukuda, “Frequently asked questions in polyhedral
computation,” ETH, Zurich, Switzerland, 2004. [Online]. Available:
https://people.inf.ethz.ch/fukudak/polyfaq/

[26] T. A. Davis and W. W. Hager, “Row modifications of a sparse Cholesky
factorization,” SIAM Journal on Matrix Analysis and Applications,
vol. 26, no. 3, pp. 621–639, 2005.

