
Tracking MPC Tuning in Continuous Time:
a First-Order Approximation of Economic MPC

Matteo Facchino, Member, IEEE , Alberto Bemporad, Fellow, IEEE , and Mario Zanon, Member, IEEE

Abstract— Economic MPC (EMPC) optimizes closed-loop
performance by directly minimizing a given objective function,
as opposed to Tracking MPC (TMPC) which instead penalizes
deviations from a precalculated optimal reference. The main
difference between the two approaches can be observed during
transients, as the former always acts optimally, while the
latter is only optimal when the reference is accurately tracked.
Unfortunately, stability for EMPC is in general difficult to
prove, as opposed to TMPC which builds on a rich theory. Ad-
ditionally, many efficient algorithms are available for TMPC,
while solving the EMPC problem can be much harder. In prior
works [1], [2], a family of discrete-time TMPC schemes that
provide approximate economic optimality has been developed
in order to partially overcome these issues. In this paper, we
aim at extending such a family of TMPC schemes to the
continuous time case. Similarly to the discrete-time case, also
in continuous-time we obtain a first-order approximation of
the EMPC control law. We demonstrate the theory with a
numerical example that confirms the first-order approximation
and we show that our continuous-time formulation can be
made equivalent to the discrete-time one.

Index Terms— Optimal control, Predictive control for linear
systems, Predictive control for nonlinear systems.

I. INTRODUCTION

MODEL Predictive Control (MPC) consists in re-
peatedly solving an optimal control problem on-

line in order to define a closed-loop control policy. The
benefits of MPC include the ability to handle nonlinear
constrained dynamics and multiple inputs. Traditionally,
MPC is based on a tracking approach, where a positive-
definite (typically quadratic) cost function is minimized.
This makes it possible to provide stability guarantees.
Because in many cases the control performance cannot be
easily captured by a positive-definite function, Tracking
MPC (TMPC) misses the opportunity to exploit the
optimization procedure in order to maximize the desired
performance during transients. MPC schemes that directly
optimize the performance criterion are usually called Eco-
nomic MPC (EMPC). The weak points of EMPC are:
(a) the difficulty of establishing stability guarantees [3]–
[5]; and (b) the difficulty in developing computationally
efficient algorithms [6]–[10].

Stability guarantees have been first obtained in [11], and
then further analyzed using a strict dissipativity condition
in [12]–[15] in discrete time. In [16]–[18] the convergence
is studied using the turnpike property of the underlying
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optimal control problem in continuous time. A stability
proof in the absence of terminal constraints is given in
[19]. The stability guarantees of discrete-time systems with
periodic constraints have been analyzed in, among others,
[20]–[22]. In [23]–[25] the relation between dissipativity
condition and turnpike properties has been analyzed. We
refer to [5] for a complete overview on stability and
performance of EMPC.

Stability-enforcing approaches that do not alter the per-
formance criterion are based on strict dissipativity, which
is, however, very hard to check in practical applications.
This observation motivates the development of TMPC
schemes tuned so as to approximately optimize the given
economic criterion. Such schemes have been proposed in
discrete time in [1], [2], [22]. Moreover, the need for a
tracking cost with nonzero gradient in order to correctly
approximate the EMPC control law has been discussed
in [26], [27]. In this paper, we propose a strategy to
compute a positive definite tracking cost function for a
nonlinear MPC (NMPC) scheme formulated in continuous
time. We will show that our formulation of the tracking
positive definite NMPC (PD NMPC) delivers a feedback
law that is first-order equivalent [2, Definition 1 (iii)] to
that of EMPC. Finally, since the obtained PD NMPC
scheme has a positive-definite quadratic cost, the efficient
optimization algorithms for real-time TMPC can be di-
rectly exploited.

The remainder of the paper is structured as follows. In
Section II we formulate the problem; we detail the cost-
tuning procedure in Section III. We provide simulations in
Section IV and conclude the paper in Section V.

II. PROBLEM FORMULATION

We consider a time-invariant nonlinear continuous-time
systems, described by time t ∈ R, states x ∈ Rnx , controls
u ∈ Rnu , and ordinary differential equations

ẋ(t) = f(x(t), u(t)), (1)

subject to the inequality constraints

h(x(t), u(t)) ≥ 0. (2)

The cost to be minimized is, ideally, the infinite-horizon
performance

J(x(t), u(t)) =
∫ ∞

t=0
l(x(t), u(t)) dt. (3)



MPC approximately solves the problem above by trun-
cating the infinite prediction horizon to a finite one T <
∞, such that the problem to be solved online reads

min
x(·),u(·)

∫ T

t=0
l(x(t), u(t)) dt + Vf(x(T )) (4a)

s.t. x(0) − x̂0 = 0, (4b)
ẋ(t) − f(x(t), u(t)) = 0, t ∈ [0, T ], (4c)
h(x(t), u(t)) ≥ 0, t ∈ [0, T ], (4d)
x(T ) ∈ Xf , (4e)

where Vf defines a terminal cost which, in order to obtain
the best performance, should approximate the cost-to-go
of the infinite-horizon problem; Xf defines a terminal set;
x̂0 is the initial state. The terminal cost and constraint are
usually introduced in order to obtain closed-loop stability
guarantees, which are obtained in case the former is a Lya-
punov function on Xf and the latter is positive invariant.
However, this is not yet sufficient to guarantee asymptotic
stability, as the cost further needs to satisfy the conditions

l(x, u) ≥ α(∥x − xs∥), ∀ u; l(xs, us) = 0, (5)

for some steady-state pair (xs, us), i.e., f(xs, us) = 0 [28];
for the sake of simplicity and without loss of generality, we
will assume throughout the paper that (xs, us) = (0, 0).
In (5), α : R → R is a class-K function. The running
cost l, when satisfying (5), is commonly referred to as
tracking cost, and we will denote it by lt. Running costs
that do not satisfy such property are commonly referred
to as economic costs and we will denote them by le.

Because the choice of terminal stabilizing conditions is
beyond the scope of this paper, for the sake of simplicity we
will consider a terminal point constraint, i.e., Xf = {xs},
for some suitable xs. The extension to the general case is
straightforward and, therefore, omitted here.

In this paper we focus on the case of optimal steady-
state operation. Clearly, there do exist notable cases in
which the optimal operation is not stationary, but rather,
e.g., periodic [21], [22], [29]. We ought to stress that, in
fact, the results of this paper will be the starting point to
also cover the periodic case, which is the subject of ongoing
research.

In order to characterize the optimal steady state, we
introduce the following problem:

(xs, us) = arg min
x,u

l(x, u) (6a)

s.t. f(x, u) = 0, h(x, u) ≥ 0, (6b)

which yields the optimal steady-state xs, us and the op-
timal Lagrange multipliers λs, µs associated respectively
with the steady-state and inequality constraints.

For the case of an economic cost, the asymptotic stabil-
ity of the optimal steady-state has been recently proved by
using arguments from dissipativity theory. The necessary
condition on the running cost to obtain stability is then
called strict dissipativity and requires the existence of a
so-called storage function ξ : Rnx → R such that

L(x, u) = l(x, u) + ∇xξ⊤f(x, u) ≥ α(∥x − xs∥). (7)

For more details on the topic, we refer to [5], [25] and refer-
ences therein. Note that here we formulate the dissipation
inequality in continuous time, while the vast majority of
the results are formulated in discrete time, where strict
dissipativity takes a slightly different form.

While dissipativity theory for economic MPC is sound
and well-developed, the main issue associated with it is the
difficulty of proving the existence of a storage function ξ
satisfying (7). Indeed, this is often an insurmountable chal-
lenge in practice with the notable exception of linear sys-
tems with quadratic costs, for which the storage function
is quadratic. To address this issue, tracking MPC which
approximately optimizes the economic criterion while de-
livering stability guarantees have been proposed in [1], [2],
[22]. In these works, the MPC problem is formulated in
discrete time, such that, for continuous-time systems, the
MPC sampling time must be fixed a priori, i.e., before
computing the positive-definite quadratic cost. In this
paper, we extend these ideas to continuous time, such
that the positive-definite quadratic cost can be computed
once and independently of the sampling time, which can
be therefore treated as a tuning parameter to be selected
afterwards.

III. COST TUNING

In this section we propose a procedure that yields a PD
NMPC scheme with quadratic cost, hence with easy-to-
establish stability guarantees, whose closed-loop control
law νPDN(x) approximates the closed-loop control law
νEN(x) of the nonlinear economic MPC scheme up to
the first order, i.e., νPDN(x) = νEN(x) + O(∥x − xs∥2

2).
The procedure to derive the PD NMPC starting from an
economic cost can be subdivided into three intermediate
steps. The first one consists in linearizing the economic
NMPC problem around the optimal steady-state given
by (6), in order to obtain an Economic Linear MPC
(ELMPC) scheme; the second step computes a positive
definite running cost used to define a PD LMPC scheme;
finally, the last step yields the desired PD NMPC formu-
lation which is built such that its linearization is the PD
LMPC scheme obtained at the previous step. The whole
procedure can be schematized as follows:

ENMPC ↔ ELMPC ↔ PD LMPC ↔ PD NMPC,

where we use the symbol ↔ to denote that the MPC
schemes to its left and right yield closed-loop control laws
that coincide up to first order.

This procedure succeeds in finding a positive definite
cost function if the original ENMPC is asymptotically
stable in a neighborhood of the optimal steady-state, and,
if it fails, then the ENMPC is unstable.

In order to be able to prove the desired result, we need
the following assumption.

Assumption 1: MPC Problem (4) is feasible for a
nonempty set of initial conditions, has a unique solu-
tion satisfying linear independence constraint qualification
(LICQ) and second order sufficient conditions (SOSC),



and the obtained closed-loop system is asymptotically
stable. Moreover, functions f and l are twice continuously
differentiable and the MPC Problem (4) is regular positive
at the optimal steady-state from (6) in the sense of [26,
Definition 1].

A. First-order equivalence between ENMPC and ELMPC
We define the following ELMPC problem:

min
x(·),u(·)

∫ T

t=0

1
2

[
x(t)
u(t)

]⊤

W

[
x(t)
u(t)

]
+ q⊤

[
x(t)
u(t)

]
dt

(8a)
s.t. x(0) − x̂0 = 0, (8b)

ẋ(t) − Ax(t) − Bu(t) = 0, t ∈ [0, T ], (8c)
Cx(t) + Du(t) + e ≥ 0, t ∈ [0, T ], (8d)
x(T ) = 0. (8e)

The matrices above are defined as follows:

W := ∇2
wH(w, λ, µ), q := ∇wle(x, u), (9a)

A := ∇xf(x, u)⊤, B := ∇uf(x, u)⊤, (9b)
C := ∇xh(x, u)⊤, D := ∇uh(x, u)⊤, (9c)

where w := [x, u]⊤ and H(w, λ, µ) is the Hamiltonian
evaluated at time t of the economic NMPC defined as:

H(x, u, λ, µ) = le(x, u) + ⟨λ, f(x, u)⟩ + ⟨µ, h(x, u)⟩,

where ⟨·, ·⟩ denotes the scalar product and we omit the
dependence on time for the sake of readability. All expres-
sions in Equation (9) are evaluated at the optimal primal-
dual steady state from (6). By construction, Problems (8)
and (4) satisfy the first-order equivalence condition, as
proven in the next lemma [26].

Lemma 1 ( [26, Lemma 2]): Consider an MPC Prob-
lem formulated as in (4), with optimal steady-state given
by (6). If Assumption 1 holds, then Problem (8) yields a
first-order approximation of Problem (4), i.e.,

aEL(x) = aEN(x) + O(∥x − xs∥2), with a ∈ {x, u, λ, µ}

B. Positive-Definite Linear MPC
We analyze next the second first-order equivalence, i.e.,

ELMPC ↔ PD LMPC, where we define PD LMPC as:

min
x(·),u(·)

∫ T

t=0

1
2

[
x(t)
u(t)

]⊤

W̃

[
x(t)
u(t)

]
+ q⊤

[
x(t)
u(t)

]
dt

(10a)
s.t. (8b) − (8e), (10b)

with W̃ ≻ 0. Note that the only difference between PD
LMPC Scheme (10) and ELMPC Scheme (8) is in the
Hessian of the running cost, as in general W ⊁ 0.

Theorem 1 below establishes that there exists a Hessian
matrix W̃ which makes the cost positive definite, without
changing the feedback law of Problem (8).

Theorem 1: Let us consider a region X0 of initial states
x̂0 for which the set of active constraints at all prediction
times coincides with the active set of the steady-state

Problem (8). Let Assumption 1 hold. Then Problem (10)
yields a first-order approximation of Problem (8). More-
over, there exist matrices δP and F such that

W̃ = W + W(δP ) + J⊤
As

FJAs ≻ 0, (11)

where we define

W(δP ) :=
[

A⊤δP + δPA δPB
B⊤δP 0

]
, (12)

and JAs = ∇wh(x, u) is the Jacobian of the constraints
that are strictly active at the optimal steady state.

Proof: The proof follows, mutatis mutandis, the ones
given in [2, Theorem 9] and [1, Theorem 1] and is therefore
omitted.
In order to provide intuition while avoiding the technical-
ities of a full proof, we prove that an LQR with running
cost matrix W yields the same feedback law as an LQR
with running cost matrix W + W(δP ) in the next lemma.

Lemma 2: Consider a stabilizing LQR with system ma-
trices A and B, and weighting matrices Q, R and S.
Given any real symmetric matrix δP , an LQR with system
matrices A and B, and weighting matrices QδP = Q +
A⊤δP + δPA, SδP = S + B⊤δP and RδP = R provides
the same feedback matrix as the original LQR.

The proof of Lemma 2 is provided in Appendix I. Note
that this result implicitly requires R ≻ 0, as otherwise the
LQR cannot be stabilizing. This lemma (the continuous-
time counterpart of [1, Lemma 2], instrumental in prov-
ing [1, Theorem 1]) is fundamental in establishing that the
cost-modifying operator defined in (12) does not alter the
optimal feedback law. Clearly, this result is necessary but
not sufficient. However, it shows how one can translate the
proofs of [1], [2] to continuous time.

In order to compute W̃ we formulate the following
Semidefinite Program (SDP):

min
δP,F,α,β

β + ρ∥F∥2 (13a)

s.t. βI ⪰ αW + W(δP ) + ηJ⊤
As

FJAs ⪰ I. (13b)

Problem (13) is formulated as such by following two guide-
lines: (a) the condition number of the running cost should
be small in order to avoid numerical difficulties when solv-
ing the MPC Problem (10) online; and (b) whenever it is
possible to solve (13), the obtained first-order equivalence
is independent of the active set. In case one needs η = 1
to find a solution, then the equivalence only holds for the
initial states for which all constraints that are active at
the optimal steady state remain active through the whole
prediction horizon. If, instead, a solution is obtained for
η = 0, the first-order equivalence holds regardless of the
active set. Furthermore, the condition number of matrix
W̃ is minimized in this case, while for η = 1, parameter
ρ governs a trade-off between minimizing the condition
number and not adding too much regularization through
matrix F .

Note that the cost modification given by (11) is a cost
rotation with storage function ξ(x) = x⊤δPx. As we will
discuss in the next subsection, a linear term typically needs



to be added to ξ. We will discuss the linear term as a
separate cost rotation next.

C. Positive-Definite Nonlinear MPC
We now analyze the last first-order equivalence

PD LMPC ↔ PD NMPC. Similarly to the first equiva-
lence ENMPC ↔ ELMPC we aim at defining the MPC
schemes such that Lemma 1 applies.

Differently from the previous case, however, ensuring
positive-definiteness of the NMPC Hessian matrix while
retaining the equivalence is non-trivial. If we use the same
cost for PD LMPC and PD NMPC, by Lemma 1 the
LMPC scheme satisfying the equivalence with the PD
NMPC scheme would have a running cost with Hessian

W̄ = W̃ +
nx∑
i=0

λs∇2fi(xs, us) −
nµ∑

j=0
µs∇2hj(xs, us) ⊁ 0.

Since in general both
∑nx

i=0 λs∇2fi(xs, us) ̸= 0 and∑nµ

j=0 µs∇2hj(xs, us) ̸= 0, then W̄ ̸= W̃ and hence
one cannot apply Lemma 1 to prove the equivalence
PD LMPC ↔ PD NMPC. In order to tackle this issue,
let us consider the contribution stemming from the system
dynamics and the path constraints separately.

In order to eliminate the first term, one can use Equa-
tion (7) with ξ(x) = λ⊤

s x to operate a linear rotation on
the running cost of the economic NMPC. Since by using
this running cost one does not change the primal solution
of the economic MPC problem (4), nor that of the optimal
steady-state problem (6), we will assume without loss of
generality that the economic cost l is linearly rotated such
that λs = 0.

In order to eliminate the second term, one can unfor-
tunately not follow the same path, unless a smart refor-
mulation is used, as doing so would render strongly active
constraints weakly active, as discussed in [2, Lemma 6].
Such an issue can be circumvented by introducing a vector
of time-dependent slacks s(t) and replacing the origi-
nal inequality constraints with the equality constraints
h(x(t), u(t)) − s(t) = 0 and the inequality constraint
s(t) ≥ 0. In this way, the new equality constraint can be
rotated in the same way as for the constraints relative
to the system dynamics. Since the constraint s(t) ≥ 0 is
linear, the term

∑nµ

j=0 µs∇2hj(xs, us) is zero even in case
µs ̸= 0.

IV. EXAMPLE

In this section we provide a numerical example to
present the theoretical concepts explained in the previous
sections. Let us consider an evaporation process in which a
volatile species is removed from a nonvolatile solvent, thus
concentrating the solution. All the details regarding this
model and the parameter values can be found in [30]. The
MPC strategies have been simulated in MATLAB using
the CasADi [31] open-source tool. The state equations of
the model are:

MẊ2 = F1X1 − F2X2, CṖ2 = F4 − F5, (14)
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Fig. 1: MPC closed-loop trajectories.

where we have also the following dependencies among
system variables:

T2 = aP2 + bX2 + c, T100 = fP100 + g,

λF4 = Q100 − F1Cp(T2 − T1), T3 = dP2 + e,

Q100 = UA1(T100 − T2), UA1 = h(F1 + F3),

Q200 = UA2(T3 − T200)
1 + UA2/(2CpF200) , F100 = Q100

λs
,

λF5 = Q200, F2 = F1 − F4,

The states are x = [X2 P2]⊤, the control inputs are
u = [P100 F200]⊤. The economic cost function is:

l(x, u) = 10.09(F2 + F3) + 600F100 + 0.6F200 + 10−4P 2
100
(16)

The considered chemical system is subject to the following
constraints:

X2 ≥ 25%, 40kPa ≤ P2 ≤ 80kPa,

P100 ≤ 400kPa, F200 ≤ 400kg/min,

The steady-state values obtained by (6) are:

xs =
[

25
49.514

]
, us =

[
190.815
218.378

]
. (18)

Figure 1 shows the behaviors of different MPC schemes
in a simulation of 300 seconds, with a sampling time
Ts = 1 s and prediction horizon T = 200 steps. We use an
explicit Runge-Kutta integrator of order 4 with 10 steps
per control interval to simulate the dynamical system and
evaluate the cost. The control signal is parameterized as
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Fig. 2: MPC control law with initial conditions in a
neighborhood of the optimal steady-state with Ts = 1 s.

a piecewise-constant function. The initial states at the
first time-instant are equal to the optimal steady-state
values, but along the simulation a pressure disturbance
∆P2 = 1kPa is applied at the time instants 0, 20 and
40 s. In the simulations, the MPC scheme does not have
any information about future disturbances. The plots show
the behavior of ENMPC, PD NMPC, PD LMPC, and
a Naive TMPC with Hessian matrix equal to Htrack =
diag(10, 10, 0.1, 0.1), and without the gradient term in
the running cost, are drawn. We can notice that the
behaviour of ENMPC is indistinguishable from that of the
PD formulations. Finally, we observe that the loss in terms
of closed-loop cost with respect to ENMPC is ≈ 9 times
smaller for PD NMPC than for Naive TNMPC. Moreover,
PD LMPC delivers essentially the same performance as
PD NMPC.

Figure 2 displays the control law yielded by different
MPC strategies when perturbing the initial states in
a neighborhood of the optimal steady-state, using the
sampling time Ts = 1 s. These simulations confirm the
theoretical results, i.e., that the ENMPC and the PD
NMPC formulations deliver the same control law up to
first order. Figure 2 also displays the behavior of PD
NMPC tuned in discrete time as per [2], confirming that
the discrete-time procedure provides the same results as
the continuous-time one.

In Figure 3 the results are displayed for sampling time
Ts = 2 s, showing that the first-order approximation
obtained with the proposed continuous-time procedure is
still correct even if the sampling time is selected after
tuning the cost, while the discrete-time procedure has to
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Fig. 3: MPC control law with initial conditions in a
neighborhood of the optimal steady-state with Ts = 2 s.

be run once more with the correct sampling time.

V. CONCLUSIONS

In this paper we have proposed a procedure to compute
a PD tracking formulation starting from an ENMPC
formulation for continuous-time systems. The obtained
TMPC approximates the control law of the ENMPC up
to first-order, even in case some inequality constraints are
active at the optimal steady-state. The reported numerical
examples have shown the effectiveness of the procedure
and the equivalence with the same procedure applied in
discrete time. Further research will consider extending
the defined procedure to the case of optimal periodic
operation.
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APPENDIX I
Proof: [Proof of Lemma 2] Let us consider the

Continuous-time Algebraic Riccati Equation (CARE):

A⊤P + PA + Q − (S⊤ + PB)R−1(S + B⊤P ) = 0. (19)

with feedback matrix K = R−1(S + B⊤P ).
Consider a new weighting matrix W̃ defined as:

W̃ = W + W(δP )

=
[

Q S⊤

S R

]
+

[
A⊤δP + δPA δPB

B⊤δP 0

]
. (20)

The CARE associated with matrix W̃ is

A⊤P̃ + P̃A + Q̃ − (S̃⊤ + P̃B)R̃−1(S̃ + B⊤P̃ ) = 0, (21)

where, from (20) we have:

Q̃ = Q + A⊤δP + δPA, S̃ = S + B⊤δP, R̃ = R.
(22a)

Substituting (22) into (21), we obtain:

A⊤P̃ + P̃A + Q + A⊤δP + δPA

− (S⊤ + δPB + P̃B)R−1(S + B⊤δP + B⊤P̃ )
= A⊤(P̃ + δP ) + (P̃ + δP )A + Q

− (S⊤ + (P̃ + δP )B)R−1(S + B⊤(P̃ + δP )) = 0.
(23)

From the above equivalence we have that the feedback
matrix K̃ is equal to:

K̃ = R−1(S + B⊤(P̃ + δP )). (24)

Since we know that, for the cost function defined by Q,S
and R, the matrix P solves the CARE defined in (19), and
since the stabilizing solution is unique [1], we can state
that Equations (19) and (23) are equal, hence:

P̃ + δP = P, and K̃ = K. (25)


