
1036 IEEE CONTROL SYSTEMS LETTERS, VOL. 4, NO. 4, OCTOBER 2020

Exact Complexity Certification of a Nonnegative
Least-Squares Method for Quadratic

Programming
Daniel Arnström , Alberto Bemporad , Fellow, IEEE , and Daniel Axehill

Abstract—In this letter we propose a method to exactly
certify the complexity of an active-set method which is
based on reformulating strictly convex quadratic programs
to nonnegative least-squares problems. The exact com-
plexity of the method is determined by proving the cor-
respondence between the method and a standard primal
active-set method for quadratic programming applied to
the dual of the quadratic program to be solved. Once this
correspondence has been established, a complexity cer-
tification method which has already been established for
the primal active-set method is used to also certify the
complexity of the nonnegative least-squares method. The
usefulness of the proposed method is illustrated on a
multi-parametric quadratic program originating from model
predictive control of an inverted pendulum.

Index Terms—Optimization algorithms, predictive con-
trol for linear systems.

I. INTRODUCTION

AN OPTIMIZATION problem has to be solved in each
time-instant when model predictive control (MPC) is

used for control. The optimization problems in question are
often quadratic programs (QPs) and to be able to use MPC in
embedded systems, the employed QP solvers need to be sim-
ple, fast and have real-time guarantees. Popular methods for
solving QPs originating from MPC are interior-point meth-
ods [1], [2], gradient projection methods [3], [4], [5], the
alternating method of multipliers (ADMM) [6] and active-
set methods [7], [8], [9], [10], [11]. The active-set method
in [11], which is based on reformulating strict convex quadratic
programs to nonnegative least squares (NNLS) problems, is
simple to code and has been shown to be efficient for solving

Manuscript received March 17, 2020; revised April 30, 2020; accepted
May 17, 2020. Date of publication June 1, 2020; date of current ver-
sion June 12, 2020. This work was supported by the Swedish Research
Council (VR) under Contract 2017-04710. Recommended by Senior
Editor F. Dabbene. (Corresponding author: Daniel Arnström.)

Daniel Arnström and Daniel Axehill are with the Division of
Automatic Control, Linköping University, 58183 Linköping, Sweden
(e-mail: daniel.arnstrom@liu.se; daniel.axehill@liu.se).

Alberto Bemporad is with the Department of Computer Science and
Engineering, IMT School for Advanced Studies Lucca, 55100 Lucca,
Italy (e-mail: alberto.bemporad@imtlucca.it).

Digital Object Identifier 10.1109/LCSYS.2020.2998953

QPs originating from MPC. However, since it is an active-set
method, its complexity can be exponential in the worst case.

To be able to provide tight real-time guarantees for active-
set methods, complexity certification methods which deter-
mine the worst-case behaviour for the active-set methods
in [7], [8] and [10] have been presented in [12], [13] and [14],
respectively. For a given MPC problem, these methods deter-
mine exactly which subproblems, i.e., systems of linear equa-
tions, that have to be solved to find the solution, for every
possible QP that needs to be solved. A unifying complex-
ity certification framework for a class of standard active-set
methods, which covers both the methods from [12] and [13],
is available in [15].

In this letter we extend the possibility to also certify the
complexity of the efficient QP method presented in [11],
adding to its simplicity and efficiency the possibility to deter-
mine its exact complexity, increasing its practical applicability.
This is done by proving that the working-set changes of the QP
method are equivalent to a standard primal active-set method
applied to the dual of the QP to be solved. This equivalence
allows direct use of the complexity certification framework
in [15]. The main focus of this letter is, hence, not to devise
another complexity certification method from scratch, but to
relate the method presented in [11] to the active-set method
considered in [15], for which there exists a complexity certifi-
cation method. In summary, the main contribution of this letter
is proving the equivalence between the QP methods in [11]
and [15], and from this equivalence the technical contribution
of a method which certifies the exact complexity of the QP
method in [11] follows.

II. PROBLEM FORMULATION

Consider a multi-parametric quadratic program (mpQP) in
the form

minimize
x

1

2
xTHx+ (f T + θT f T

θ )x

subject to Ax ≤ b+Wθ, (1)

where x ∈ R
n and the parameter θ ∈ �0 ⊆ R

p, with �0 being
a polytope (such as a box). The mpQP is given by A ∈ R

m×n,
b ∈ R

m, W ∈ R
m×p, f ∈ R

n, fθ ∈ R
n×p, and H ∈ S

n++. The
minimizer of (1), given θ , is denoted x∗(θ). It is well-known
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that a linear MPC problem can be cast in the form (1), where
the parameter θ contains the measured/estimated states and
reference signals [16].

In [11] it is shown that by introducing

M � AL−1, d(θ) � b+Wθ + AH−1(f + fθ θ), (2)

where L is the Cholesky factor of H, (1) can be restated as
the nonnegative least-squares problem

minimize
y≥0

1

2

∥
∥
∥
∥

[

MT

d(θ)T

]

y+
[

0
γ

]∥
∥
∥
∥

2

2
(3)

where γ is any positive scalar, M ∈ R
m×n, d(θ) ∈ R

m and
y ∈ R

m. Furthermore, the relationship between x∗(θ) and the
minimizer of (3), y∗(θ), is

x∗(θ) = −H−1
(

f + fθ θ + 1

γ + d(θ)Ty∗(θ)
ATy∗(θ)

)

(4)

Remark 1: It is straightforward to extend the ideas in this
letter to also handle equality constraints in (1) by using the
results in [17]. However, for the sake of a clean presentation,
we will only consider inequality constraints.

A. Notation

Since the algorithm to be studied is iterative, we use a sub-
script k to denote the value at iteration k for quantities that
change between iterations, e.g., yk denotes the value of y at
iteration k. Of importance is also the so-called working set
Wk which contains a subset of the components of yk that are
free to vary. Likewise, the set of components that are not in
Wk is denoted W̄k and contains components that are fixed
at zero. For indexing of matrices, [N]i denotes the ith row
of matrix N and [N]Wk denotes the submatrix obtained by
extracting the rows of N indexed by Wk. The shorter notation
Nk � [N]Wk for matrices that do not change between iterations
is also introduced for convenience.

B. Nonnegative Least-Squares Method

The nonnegative least-squares method for solving (1)
presented in [11] is described briefly below and summarized in
Algorithm 1. For a more detailed description, see [11] or [18,
Sec. 23.3]. The main objective of Algorithm 1 is to retain non-
negativity of the iterate y while updating the working set W .
At iteration k, the least-squares (LS) problem

minimize
y

1

2

∥
∥
∥
∥

[

MT

d(θ)T

]

y+
[

0
γ

]∥
∥
∥
∥

2

2

subject to [y]i = 0, i ∈ W̄k (5)

defined by the current working set Wk is solved, with the solu-
tion of (5) being denoted y∗k . The iterate yk is then updated to
yk+1 by a line search from yk to y∗k . To retain nonnegativity,
the first component of yk which becomes negative during this
line search is removed from Wk. If no such component exists,
i.e., if y∗k ≥ 0, global optimality is checked for y∗k by inves-
tigating the dual variable wk. If wk is nonnegative, a global
optimum has been found, otherwise, the index of the most
negative component of wk is added to W . When the working

Algorithm 1 Given θ , Solve the mpQP (1) With NNLS [11]

1: v← L−T(fθ θ + f ); d← (b+Wθ)+Mv
2: k← 1; Wk ← ∅; yk ← 0
3: while true do
4: y∗k ← solution to least squares problem (5)
5: if y∗k ≥ 0 then
6: wk ← M(MT

k [y∗k ]Wk)+ (γ + dT
k [y∗k ]Wk)d

7: if wk ≥ −(γ + dT
k [y∗k ]Wk)ε then

8: go to step 15
9: else i← arg min

i∈W̄k

[wk]i,Wk+1 ←Wk ∪ {i}
10: yk+1 ← y∗k
11: else l← arg min

h∈W : [y∗k ]h<0
{ [yk]h

[yk]h−[y∗k ]h
}

12: αk ← [y]l
[y]l−[y∗k ]l

; yk+1 ← yk + αk(y∗k − yk)

13: Wk+1 ←Wk \ {l}
14: k← k + 1
15: return λ∗ ← y∗k

γ+dT
k y∗k

, x∗ ← −L−1(MT
k λ∗k + v),Wk

set has been updated, another LS problem defined by the new
working set is solved and the steps above are repeated until
global optimality is reached.

The choice of γ is not critical since any γ > 0 is sufficient
for the algorithm to work. In [18, Sec. 23] γ = 1 is used,
and in [11] γ is adaptively updated by adding or removing
the absolute value of [d]i when i is added or removed from
W , respectively. In this letter we consider γ to be constant
for simplicity. However, the results also extends to an adap-
tively changing γ since the working-set changes produced by
Algorithm 1 are independent of γ .

Remark 2: The presentation of Algorithm 1 is slightly mod-
ified compared with [11] to make the definition of an iteration
in the algorithm clearer. Furthermore, some checks for infea-
sibility that are included in [11] have been omitted to clean up
the algorithm, i.e., we assume that (1) is primal feasible for all
θ of interest. This condition can be immediately verified, for
example, by checking that QP (1) is feasible for all vertices
θi of �0, as is shown in Lemma 1.

Lemma 1: Let {θi}Mi=1 be the vertices of the polytope �0

and let Xi � {x ∈ R
n : Ax ≤ b + Wθi} be the feasible set

for (1) when θ = θi. Then problem (1) is feasible ∀θ ∈ �0 ⇔
Xi = ∅, ∀i ∈ {1, . . . , M}.

Proof: Since θi ∈ �0, ∀i, the left-to-right implication fol-
lows immediately. For the right-to-left implication we have,
since �0 is convex, θ = ∑M

i=1 αiθi,
∑

αi = 1, αi ≥ 0. Let
xi ∈ Xi and consider x = ∑M

i=1 αixi. Then Ax = ∑
αiAxi ≤∑

αi(b+Wθi) = b+W
∑

αiθi = b+Wθ .

III. PROPERTIES OF NNLS ALGORITHM

This section describes properties of Algorithm 1 that will be
central in Section IV, where a complexity certification method
for Algorithm 1 is outlined.

Analyzing the parametric behaviour for Algorithm 1 does
not immediately follow from previous work on the topic since
there is parameter dependence in the quadratic term in the
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objective function of (3) due to d(θ). All of the complexity
certification methods in [13], [14] and [15] rely on parameter
dependence only appearing in linear terms. Hence, the main
objective in this letter will be to disentangle the parameter
dependence in the quadratic term and to show that Algorithm 1
will be equivalent, in terms of working-set changes, to another
algorithm which operates on a problem with only parameter
dependence in the linear term. This disentanglement is done
by considering λ which is a linear fractional transformation of
y defined as

λ � y

γ + dTy
. (6)

The following scalars will also prove useful

σk � γ + dTy∗k , ρk � γ + dTyk. (7)

With these scalars we have yk = ρkλk and y∗k = σkλ
∗
k if ρk = 0

and σk = 0, respectively.
For clarity, we initially deduce properties of Algorithm 1

under the assumption that MkMT
k is nonsingular. In

Section III-D we discuss properties of the algorithm in the
singular case.

A. Least-Squares Subproblems

The solution y∗k to the subproblem (5) can be found by
solving the following KKT-system

(

MMT + ddT [I]T
W̄k

W̄k
0

)(

y∗k
wk

)

=
(−γ d

0

)

, (8)

where I is the m × m identity matrix. Equation (8) has the
solution

y∗k = −γ IT
k (MkMT

k + dkdT
k )−1dk. (9)

Recall from Section II-A that Mk, dk and Ik is shorthand nota-
tion for submatrices obtained when indexing with Wk, i.e.,
[M]Wk , [d]Wk and [I]Wk , respectively. Another way of find-
ing the solution to (5) is to directly set all components of
y∗k that are not in Wk to zero, resulting in an unconstrained
optimization problem which is solved by the linear system

(MkMT
k + dkdT

k )[y∗k ]Wk = −γ dk, (10)

This can be rewritten as

MkMT
k [y∗k ]Wk = −dk(γ + dT

k [y∗k ]Wk) = −σkdk, (11)

where the last equality follows from [y∗k ]W̄k
= 0 which gives

γ + dT
k [y∗k ]Wk = γ + dTy∗k = σk. (12)

Our goal is now to formulate a corresponding KKT-system
for λ∗k � y∗k

σk
and μk � w

σk
instead of y∗k and wk, respectively.

First, to ensure λ∗k and μk are well-defined, we ensure that
division of σk is valid, i.e., that σk is nonzero when MkMT

k is
nonsingular. Even more strongly, σk is positive, as proved by
the following lemma.

Lemma 2: σk � γ + dTy∗k > 0, if MkMT
k is nonsingular.

Proof: When MkMT
k is nonsingular, (11) gives that

[y∗k ]Wk = −σk(MkMT
k )−1dk. (13)

Inserting this into the definition of σk gives

σk = γ + dT
k [y∗k ]Wk = γ − σkdT

k (MkMT
k )−1dk ⇔

σk = γ /(1+ dT
k (MkMT

k )-1dk). (14)

By definition, γ > 0 and the denominator is nonnegative since
MkMT

k is positive definite, resulting in σk > 0.
Now a KKT-system in terms of λ∗k and μk, instead of y∗k and

wk, can be formed by subtracting ddTy∗k from both sides of
the first equation of (8) and dividing both sides with σk = 0,
resulting in

(

MMT IT
W̄k

IW̄k
0

)(

λ∗k
μk

)

=
(−d

0

)

. (15)

The solution to the KKT-system in (15) is

[λ∗k ]Wk = −(MkMT
k )−1dk, (16a)

[μk]W̄k
= [M]W̄k

MT
k [λ∗k ]Wk + [d]W̄k

, (16b)

and [λ∗k ]W̄k
= 0, [μk]Wk = 0.

B. Checking for Global Optimality and Adding Index
to W

In Algorithm 1 the global optimum has been found if

wk ≥ −(γ + dTy∗k)ε. (17)

Otherwise, an index corresponding to the most negative
component of wk is added to W , according to Line 9 of
Algorithm 1.

The following lemma shows that the dual variable of the
KKT-system in (15), μk, can be considered instead of wk when
checking for global optimality and for deciding which index
that should be added to W .

Lemma 3: When MkMT
k is nonsingular

1) wk ≥ −(γ + dTy∗k)ε ⇔ μk ≥ −ε.
2) argmin

j∈W̄k

[wk]j = argmin
j∈W̄k

[μk]j.

Proof: Since MkMT
k is nonsingular, σk > 0 from Lemma 2.

Dividing both sides of wk ≥ −(γ + dTy∗k)ε with σk proves
1). Furthermore, the positiveness of σk gives argmin [wk]j =
argmin [wk]j/σk = argmin [μk]j.

C. Updating Iterate and Removing Component From W
The iterate yk is updated in Line 12 of Algorithm 1

according to the line search

yk+1 = yk + αk(y
∗
k − yk), (18)

where αk = minh∈Wk : [y∗k ]h<0 αh
k , with αi

k being defined as

αi
k � [yk]i/([yk − y∗k ]i). (19)

αi
k can be interpreted as the step length taken from yk in the

direction yk − y∗k which makes the i:th component of y zero.
Also, note that [y∗k ]h < 0 =⇒ αh

k ∈ [0, 1).
Now, we are interested in the corresponding update of λ

when y is updated according to (18). Inserting (18) in the
definition of λ in (6) gives

λk+1 = yk+1

γ + dTyk+1
= yk + αk(y∗k − yk)

γ + dT(yk + αk(y∗k -yk))
. (20)

We will now show that the update of λk also can be seen as
a line search.

Authorized licensed use limited to: Alberto Bemporad. Downloaded on November 10,2020 at 07:25:25 UTC from IEEE Xplore.  Restrictions apply. 



ARNSTRÖM et al.: EXACT COMPLEXITY CERTIFICATION OF NONNEGATIVE LEAST-SQUARES METHOD FOR QUADRATIC PROGRAMMING 1039

Lemma 4: If MkMT
k is nonsingular, ∃βk ∈ R such that

λk+1 = λk + βk(λ
∗
k − λk). (21)

Proof: The lemma follows from linear fractional transfor-
mations conserving convex sets see, e.g., [19, Sec. 2.3.3].
Concretely, picking

βk = αkσk

αkσk + (1− αk)ρk
(22)

and inserting it into (21) results in (20) by using (7).
Furthermore, β i

k is defined by (22) when αi
k is used instead

of αk. Before considering properties of β i
k, we prove that,

similar to σk, ρk > 0 when MkMT
k is nonsingular.

Lemma 5: If MkMT
k is nonsingular, ρk � γ + dTyk > 0

Proof: The lemma is proven by induction. First, inserting
yk+1 from (18) into the definition of ρ in (7) gives

ρk+1 = γ + dT(yk + αk(y
∗
k − yk))

= γ + dTyk + αk(d
Ty∗k − dTyk + γ − γ )

= (1− αk)ρk + αkσk. (23)

Now, assume that ρk > 0. Then ρk+1 > 0 since αk ∈ [0, 1]
and σk > 0 from Lemma 2. The base case is satisfied since
y1 = 0 =⇒ ρ1 = γ > 0. Hence, the lemma follows by
induction.

This nonnegativity property of ρk, together with the non-
negativity property of σk, can be used to prove the following
lemma which establishes a relation between αi

k and β i
k.

Lemma 6: If MkMT
k is nonsingular and αi

k, α
j
k ∈ [0, 1],

αi
k ≤ α

j
k ⇔ β i

k ≤ β
j
k. (24)

Proof: Directly using the definition of β i
k from (22), and

dropping the subscript k for convenience, gives

β i ≤ β j ⇔ αiσ

αiσ + (1− αi)ρ
≤ αjσ

αjσ + (1− αj)ρ

⇔ αiσρ ≤ αjσρ ⇔ αi ≤ αj, (25)

where the nonnegativeness of ρk and σk has been used in the
second and third equivalence.

We are now ready to state the main result for the non-
singular case. The following lemma shows that λ∗k can be
considered instead of y∗k when checking for local optimality
and for deciding which index that should be removed from W .

Lemma 7: If MkMT
k is nonsingular

1) y∗k ≥ 0⇔ λ∗k ≥ 0.
2) argmin

h∈Wk : [y∗k ]h<0
αh

k = argmin
h∈Wk : [λ∗k ]h<0

βh
k .

Proof: First, since MkMT
k is nonsingular we have that σk > 0

which gives

Hk � {h ∈Wk : [y∗k ]h < 0} = {h ∈Wk : [λ∗k ]h < 0},

since
y∗k
σk
= λ∗k , i.e., the same indices of y∗k and λ∗k will be

negative, and these components are given by the set Hk,
which proves 1). Next, [y∗k ]h < 0 inserted into (19) gives
αh

k ∈ [0, 1),∀h ∈ Hk. Hence, Lemma 6 gives the same order-
ing of {αh

k }h∈Hk and {βh
k }h∈Hk which means that the same

index will give a minimum.

D. Singular Case

MkMT
k only becomes singular after a component is added

to W in Algorithm 1. In this case, the solution to (5), [y∗k ]Wk ,
will be a singular eigenvector to MkMT

k as is shown by the
following lemma.

Lemma 8: If MkMT
k becomes singular in Algorithm 1,

MkMT
k [y∗k ]Wk = 0 and σk = 0.

Proof: If MkMT
k is singular, ∃λ̃k = 0, λ̃k ∈ R

m such that
MkMT

k [λ̃k]Wk = 0, [λ̃k]W̄k
= 0. Now, define δk � dT λ̃k. Then

y∗k = − γ
δk

λ̃k leads to the objective function of (5) being zero
and hence, since norms are nonnegative, this is a minimizer
of (5). Inserting this y∗k into the definition of σk gives σk = 0
by construction.

What remains to prove is that δk = 0, so y∗k from above
is well-defined. Since MkMT

k only becomes singular after an
addition to W , let i be the component that was added to W
at iteration k − 1, i.e., Wk = Wk−1 ∪ {i}. From (15), μk−1 is
given as

MMT
k−1λ

∗
k−1 + d = μk−1. (26)

Multiplying this equation with λ̃T
k from the left gives

λ̃T
k MMT

k−1λ
∗
k−1 + λ̃T

k d = [λ̃k]i[μk−1]i ⇔ (27a)

λ̃T
k d = [λ̃k]i[μk−1]i, (27b)

where we have recalled the partitions of λ∗ and μ from (16a)
and (16b), respectively. Furthermore, we have also used that
λ̃k is a singular eigenvector of MT by construction.

Since i was added to W at iteration k − 1, [μk−1]i < 0.
Furthermore, [λ̃k]i = 0 since [λ̃k]T

Wk
Mk = 0 and [λ̃k]i = 0

would imply that [λ̃k]T
Wk−1

Mk−1 = 0, which is impossible

since Mk−1MT
k−1 was nonsingular, hence, δk � λ̃T

k d = 0.
Remark 3: We will, without loss of generality, assume that

λ̃k is such that δ < 0. This is valid since MkMT
k λ̃k = 0 =⇒

MkMT
k (−λ̃k) = 0. Hence, we can always change the sign of

δk by changing the sign of λ̃k.
Using Lemma 8 together with (20) gives the following

update of λ in the singular case

λk+1 = yk + αk(y∗k − yk)

γ + dT(yk + αk(y∗k − yk))

= (1− αk)yk + αky∗k
(1− αk)ρk

= λk + αk

(1− αk)ρk
y∗k

= λk − αkγ

(1− αk)ρkδk
λ̃k = λk + β̃kλ̃k, (28)

where σk = 0 is used in the second equality, y∗k = − γ
δk

λ̃k

is used in the fourth equality and β̃k � − αkγ
(1−αk)ρkδk

has been
defined in the last equality. Similar to αi

k and β i
k, we introduce

the definition

β̃ i
k � − γ

ρkδk
· αi

k

(1− αi
k)
= − [λk]i

[λ̃k]i
(29)

to denote the step length which results in [λk+1]i = 0 when a
step is taken in the direction λ̃k during iteration k.

Remark 4: The definition of β̃ i
k in (29) is well-defined since

ρk > 0, δk < 0 and αi
k ∈ [0, 1). δk < 0 has been established

in Lemma 8, ρk > 0 follows from MkMT
k only becoming
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singular after a constraint has been added to Wk, which implies
that yk = y∗k−1 =⇒ ρk = σk−1 > 0 since Mk−1MT

k−1 was
nonsingular.

Analogous to Lemma 6 for the nonsingular case, we
establish the following properties for β̃ i

k
Lemma 9: If αi

k, α
j
k ∈ [0, 1) then

α
j
k ≤ αi

k ⇔ β̃
j
k ≤ β̃ i

k (30)

Proof: Using the definition of β̃ i
k in (29)

β̃
j
k ≤ β̃ i

k ⇔ −
γ

ρkδk
· α

j
k

(1− α
j
k)
≤ − γ

ρkδk
· αi

k

(1− αi
k)

⇔ (1− αi
k)α

j
k ≤ (1− α

j
k)α

i
k ⇔ α

j
k ≤ αi

k, (31)

where − γ
ρkδk

> 0 and αi
k, α

j
k ∈ [0, 1) have been used in the

second equivalence. − γ
ρkδk

> 0 follows from Remark 4.
The following lemma is analogous to Lemma 7 but for the

singular case. It shows that λ̃k can be considered instead of
y∗k when removing indices from W in the singular case.

Lemma 10: If MkMT
k is singular

1) y∗k ≥ 0⇔ λ̃k ≥ 0.

2) argmin
h∈Wk : [y∗k ]h<0

αh
k = argmin

h∈Wk : [λ̃k]h<0

β̃h
k .

Proof: If MkMT
k is singular we have from Lemma 8 that

y∗k = − γ
δk

λ̃k, hence,

Hk � {h ∈Wk : [y∗k ]h < 0} = {h ∈Wk : [λ̃k]h < 0},
since − γ

δk
> 0, i.e., the same indices of y∗k and λ̃k will

be negative, and these components are given by the set Hk,
which proves 1). Next, [y∗k ]h < 0 inserted into (19) gives
αh

k ∈ [0, 1),∀h ∈ Hk, hence, Lemma 9 can be used and gives
the same ordering of {αh

k }h∈Hk and {β̃h
k }h∈Hk which means

that the same index will give a minimum.
Remark 5: From Farkas’ lemma it is necessary for at least

one component of y∗k , and hence of λ̃k, to be negative if the QP
is feasible, see [11, Th. 1]. Therefore, since we assume that (1)
is feasible, at least one constraint will be removed from Wk

at iteration k if MkMT
k is singular, regaining nonsingularity of

Mk+1MT
k+1.

IV. CERTIFICATION OF NNLS ALGORITHM

We will now use the properties of Algorithm 1, which have
been established in Section III, to certify its iteration com-
plexity for all parameters in �0. This is done by proving that
Algorithm 1 produces the same working-set sequence as a
standard primal active-set method, e.g., [7], [20], [21], applied
to the dual of (1).

After this equivalence has been established, the result
from [15] can be used to determine the working-set changes
and the number of iterations any θ ∈ �0 produces, which is
done by applying the certification method presented in [15] to
the dual of (1). The dual problem of (1), using the definitions
of M and d(θ) from (2), is given by

minimize
λ≥0

1

2
λTMMTλ+ dT(θ)λ, (32)

Algorithm 2 A Standard Primal Active-Set Quadratic
Programming Method Applied to (32) [15]

1: v← L−T(fθ θ + f ); d← (b+Wθ)+Mv
2: k← 1,Wk ← ∅; λk ← 0;
3: while true do
4: if MkMT

k is singular then go to step 16

5: λ∗k ← solution to KKT-system (15)
6: if λ∗k ≥ 0 then
7: μk ← M(MT

k [λ∗k ]Wk)+ d
8: if μk ≥ −ε then
9: return λ∗, x∗ ← −L−1(MT

k λ∗k + v),Wk

10: else i← arg min
i∈W̄k

[μk]i; Wk+1 ←Wk ∪ {i}
11: λk+1 ← λ∗k
12: else l← arg min

h∈W :[λ∗k ]h<0
{ [λk]h

[λk−λ∗k ]h
}; Wk+1 ←Wk \ {l}

13: βk ← [λ]l
[λ−λ∗k ]l

; λk+1 ← λk + βk(λ
∗
k − λk)

14: k← k + 1
15: end while
16: λ̃k ← solution to MkMT

k λ̃k = 0, dT
k λ̃k < 0

17: if λ̃k ≥ 0 then
18: return primal infeasible
19: else l← arg min

h∈W :[λ̃k]h<0

{− [λk]h

[λ̃k]h
}; Wk+1 ←Wk \ {l}

20: β̃k ←− [λk]l

[λ̃k]l
; λk+1 ← λk + β̃kλ̃k

21: k← k + 1
22: go to step 5

Algorithm 2 presents a standard primal active-set method
which is applied to solve (32). A complexity certification
method for Algorithm 2, which determines the working-set
sequences that are produced by Algorithm 2 for every θ ∈ �0,
is presented in [15]. We are now ready to state the main result
of this letter, namely that Algorithm 1 will produce the same
working-set sequence as Algorithm 2, for which there exists
a certification method to determine exactly which working-set
sequence any parameter will generate [15].

Theorem 1: Let k̃(θ) be the number of iterations needed
by Algorithm 2 to terminate and let {W̃k(θ)}k̃(θ)

k=1 be the cor-
responding working-set sequence produced by Algorithm 2.
Then Algorithm 1 terminates in k̃(θ) iterations and produces

the working-set sequence {W̃k(θ)}k̃(θ)
k=1, ∀θ ∈ �0.

Proof: The theorem will be proven by using the proper-
ties derived in Section III to map an iteration of Algorithm 1
to an iteration of Algorithm 2. Table I summarizes the cor-
respondence between each line of Algorithm 1 to lines of
Algorithm 2 and which equation, Lemma or Remark proves
each correspondence. Both the case when MkMT

k is singular
and nonsingular is shown in Table I.

A direct consequence of Theorem 1 is that the worst-case
number of iterations when (1) is solved with Algorithm 1 can
be certified by applying the complexity certification method
from [15] to the dual mpQP given in (32).

Remark 6: There are numerous active-set algorithms that
are equivalent, see [22]. As is discussed in [15], Algorithm 2
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TABLE I
MAPPING FROM ALGORITHM 1 TO ALGORITHM 2

Fig. 1. Number of iterations determined by: (a) Applying the certification
method presented in [15] to the dual mpQP; (b) Executing Algorithm 1
over a two-dimensional grid in the parameter space. θi = 0 for i = 1, 2.

is equivalent to, e.g., Dantzig’s active-set method for QPs [21]
applied to the dual QP. Theorem 1 together with this
equivalence explain the empirical observation in [11] that
Algorithm 1 produces the same number of iterations as
Dantzig’s method.

V. NUMERICAL EXAMPLE

To exemplify the complexity certification method for
Algorithm 1, an mpQP originating from the application of
MPC to an inverted pendulum was considered. The resulting
mpQP had the dimensions, m = 10, p = 8, and n = 5. Further
details about the problem are given in [14].

The certification method was compared with results
obtained by drawing samples from �0 and executing
Algorithm 1 on the resulting QPs. Figure 1 compares such
simulations of Algorithm 1 for θ taken on a grid on a 2-
dimensional subspace of �0, with a slice of the partition,
corresponding to the same subspace, obtained by applying the
certification method from [15] to the dual of the mpQP. As
Theorem 1 predicts, the resulting number of iterations is equal
for the simulation and the certification. In addition, 108 ran-
dom samples of the entire �0 were taken and Algorithm 1
was applied to the resulting mpQPs. As before, these simu-
lation results were compared with the results from applying
the certification method from [15] to the dual of the mpQP.
Again, as predicted by Theorem 1, both the simulation and
the certification resulted in the same number of iterations.

The computation time required for the complexity certifi-
cation of the inverted pendulum example was 7.6 seconds
when executed on an Intel 2.7 GHz i7-7500U CPU. For
more details about the certification method itself, such as
complexity, see [15].

VI. CONCLUSION

This letter has proposed a complexity certification method
for a simple and efficient QP method. The complexity certi-
fication was done by relating the QP method to a standard
primal active-set method applied to the dual of the QP, allow-
ing the complexity certification method in [15] to be directly
applicable. Future research includes certifying the complexity
of the extended method presented in [17], which improves the
numerical stability of the QP method considered in this letter.
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