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Performance-Oriented Model Learning for
Data-Driven MPC Design

Dario Piga

Abstract—Model predictive control (MPC) is an enabling
technology in applications requiring controlling physical
processes in an optimized way under constraints on inputs
and outputs. However, in MPC closed-loop performance
is pushed to the limits only if the plant under control is
accurately modeled; otherwise, robust architectures need
to be employed, at the price of reduced performance due to
worst-case conservative assumptions. In this letter, instead
of adapting the controller to handle uncertainty, we adapt
the learning procedure so that the prediction model is
selected to provide the best closed-loop performance. More
specifically, we apply for the first time the above “iden-
tification for control” rationale to hierarchical MPC using
data-driven methods and Bayesian optimization.

Index Terms—Predictive control for nonlinear systems,
identification for control, machine learning.

[. INTRODUCTION

OWADAYS, Model Predictive Control (MPC) has
become the most popular advanced control technology

for several complex engineering applications [1]. Apart from
computational aspects, it is widely recognized that one key
practical challenge in MPC arises when dealing with uncer-
tainty, especially when the prediction model is identified using
open-loop data taken from a specific operation of the plant [2].
In case of partially known systems, traditional MPC
approaches exhibit some degree of robustness, so that marginal
robust performance can be guaranteed. When intrinsic robust-
ness of deterministic MPC is not enough, robust MPC [3] and
stochastic MPC [2] approaches have been developed to take
into account uncertainties. However, regardless of the specific
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technique, increasing robustness of the MPC controller usually
leads to conservative performance [4].

While there is usually a separation between model identifi-
cation and control design, an alternative approach to managing
uncertainty in designing control systems is to revisit the iden-
tification process as a procedure to be designed by bearing
the final control application in mind. Such a rationale is
known as Identification for Control (14C) and has been widely
studied for fixed-order (oftentimes, PID) control of Linear
Time-Invariant (LTI) systems [5]. According to 14C, the best
model for control may not be the one providing the least output
prediction errors, but the one providing the best performance
on the true system when in closed loop with the associated
model-based controller.

As far as we are aware of, the I4C modeling approach
has never been applied to MPC control. Learning techniques
have instead been shown to be useful for iterative MPC tasks
in [6] and in reinforcement learning applied to MPC [7].
Furthermore, data-driven approaches have been proposed for
direct MPC optimization using open- and closed-loop data,
see, e.g., [8], [9]. Although the above approaches are powerful
tools for control design in case of unknown systems, they fail
to provide a mathematical (albeit control-oriented) description
of the plant. Indeed, the latter can often be useful for physical
interpretation, performance monitoring, and diagnosis [10].

In this letter, we propose an Identification for (Model-
Predictive) Control approach aimed at finding the best
prediction model for MPC from experimental data, by consid-
ering the control objective directly in the model learning phase.
We propose a hierarchical architecture, typically employed in
several industrial applications, in which the inner controller is
a parametric filter (e.g., a PID controller) aimed to stabilize
the system at a fast pace, whereas the outer loop plays the role
of a reference governor (RG) [11], [12] with a twofold goal:
(i) boosting the performance of the inner loop and (ii) han-
dling the signals constraints due, e.g., to actuator bounds or
system limitations. Within this framework, the RG is typically
an MPC law based on a model of the inner loop. According
to the I4C philosophy, we propose a change of perspective
and treat such a model as a design parameter instead. Such
a parameter will be iteratively optimized, together with the
inner controller, using closed-loop data collected on the plant
and Bayesian optimization. Finally, we show that, using the
same rationale and tools, also the prediction horizon, a critical
parameter to tune in MPC, can be optimized from data.

2475-1456 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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For the sake of completeness, the first use of Bayesian
optimization in control-oriented identification was proposed
in [13], based on a simpler control scheme. The same hierar-
chical architecture was instead addressed in [9] to design the
controller from data, but without providing an MPC-oriented
model of the plant.

The remainder of this letter is as follows. In Section II the
control problem of interest is formally stated. The hierarchi-
cal architecture is introduced in Section III, where also the
parameterization of each block is described (and motivated)
in detail. The proposed strategy is described in Section IV,
where a discussion on how to practically restrict the parameter
space is also provided. Section V illustrates the performance
of the method on a benchmark example.

[I. PROBLEM FORMULATION

Consider a multi-input multi-output (MIMO) plant S, with
input # € R™ and output y € R™ signals sampled at a reg-
ular time interval 7. We aim at synthesizing a controller C
for S such that the controlled closed-loop system achieves a
desired engineering objective defined in terms of minimization
of a cost J(y1.1, u1.r), where yj.7 (resp. uj.r) denotes the
sequence of output (resp. input) signals measured at time steps
t=1,...,T,and T is the length (measured in number of sam-
ples) of the experiment where the closed-loop performance
is measured. Besides minimizing the cost J(yi.r, u1.7), the
following constraints on inputs and outputs should be satisfied:

Umin < u(?) < Umax (1a)
Almin < u(t) —u(t — 1) < Aumax, (1b)
Ymin < Y@ =< ymax, t=1,...,T. (1¢)

Constraints (1) are generally imposed by actuator limitations
or might reflect safety conditions. The control design problem
is formulated as the following optimization problem:

min  J(Oyy.7, Uy: s.t. (1), 2
min O, uir) ey 2
with C denoting the set of controller candidates.

We rewrite constraints (1) as #;(t) >0,i=1,...,6, with

hi(0) = u(®) — umin,  h2(1) = Umax — u(?), (3a)
() = u(t) —u(t—1) — Aumin > 0, (3b)
ha(t) = Aumax — u(®) +u(—1) = 0, (3¢)
hs(t) = y() = Ymin,  h6(1) = Ymax — y(1), (3d)
and treat them with penalty functions
glellcl Jrr, urr, C) “)

where

T 6
Jour wer) =Jorr ) + Y Y b)) (5

=1 i=1
and b, : R — R are (possibly time-varying) barrier functions.
Assuming zero initial conditions, clearly y;.7, up.r in (5)
are only functions of the controller C and of the process
model S. Rather than first fixing a model for S (either from
first-principle physical laws or using system identification
techniques), we follow a performance-driven control design

r(t)
MPC K S

Fig. 1. Proposed hierarchical control architecture. S: plant to be con-
trolled; ’C: inner controller; M.: inner closed-loop system; r(t): reference
to be tracked.

paradigm and leave the model of S as a degree of freedom,
used to minimize the closed-loop cost J(y1.7, u1.1).

IIl. CONTROL ARCHITECTURE

We adopt the hierarchical, multi-rate, reference-governor
control architecture in Fig. |, consisting of:

o an inner low-level controller IC which operates at sam-
pling time 7, and it is mainly used to handle fast
dynamics of the system. This controller introduces a
degree-of-freedom in the control design and, in case of
unstable plants S, it might also stabilize the inner closed-
loop system M. Nevertheless, the latter is not a required
condition in our design approach.

« an outer MPC to enhance performance of the inner loop
M an to enforce constraints (1c). The MPC operates
at a sampling time Tppc that is an integer multiple of
Ts, i.e., Tmpc = NT; with N € N. Setting Tpc larger
than 7y (thus, N > 1) may be needed to solve the con-
strained optimization problem on line, i.e., within the
MPC sampling time Typc.

In standard RG approaches, the outer MPC requires a
prediction model of the inner loop M. In accordance with the
performance-driven approach proposed in this letter, we treat
such a model as a design parameter and look for the model
providing the best closed-loop performance according to the
performance index J(yi.r, ui.7). In particular, as detailed in
the following, a model of the plant S will be used neither to
design the controllers nor to evaluate the performance index
J (v1.1, u1:T), which will be instead measured directly from
closed-loop experiments performed on the actual plant.

A. Inner Controller Parameterization

The inner controller K is parameterized by a vector § € R™.
For instance, U can be a simple discrete-time proportional-
integral-derivative (PID) controller, with sampling time 7 and
discrete-time transfer function
Nq

+6p T
1 +NdT5z—_l

(6)

Kz, ) = 6p + 0/T; :

z—1
where 0 = [0p 6; Op] is the design parameter vector and
Ny > 1 limits the high-frequency gain of the PID controller.
Although N; may be treated as a design parameter, its tuning
is generally not critical and thus not included in 6.

B. Outer MPC Parameterization

The most important component of the outer MPC is the
model used to predict the output y and input u as a function
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of the MPC command g. Let M be the dynamical model from
g to [Z], described in the state-space representation

E(t+ 1) = Ay () + Bug()
[y (”] — CyE(D) + Dyg(0), ™

u(t)

where £ € R’ is the state of the closed-loop model. For
instance, in the case of a single-input-single-output plant, the
2 x 1 transfer matrix M can be modelled as a pair of transfer
functions with the same poles. Let © € R"™ be the vector
obtained by stacking the entries of Ay, By, Cyy and Dyy.

At each time instant ¢ integer multiple of the MPC sampling
time Tvpc (i.e., t = hTypc with h € N), the outer MPC solves
the minimization problem

Np

min Q)3 00+ ki) — i+ 0) +
{g(t+k|l)}kNﬁ1v€ k=1

Np
+ Qu Yt + kID) — urer(t + K))* +
k=1
NP
+Onu Y (ult+klk) —ut + k —11)> + Qce>  (8a)
k=1
y(t + k1)
.t. =M =1,...

s.t |:u(t+k|t) (u, gt + kD), k=1,....N, (8b)
Ymin — Vy€ < y(+klp) =< Ymax + Vje, k= ]7""N[7 (8¢c)
Umin — Vue S ut +k|t) < tmax + Vue, k=1,..., Np (8d)
Attmin — Vaue < Au(t+ K1), k=1,...,N, (8e)
Au(t + k|t) < Aumax + Vaue, k=1,...,N, (8f)
g(t+Nu +j|t)=g(t+Nu|t), j=17---7Np_Nu (Sg)

where Au(t+k[t) = u(t+k|t) —u(t+k—1]1), N, and N,, are
the prediction and control horizon, respectively, Oy, Qu, OAu.
QO are nonnegative weights, u.r and r are the input and output
references, respectively, Vy, V,, Va, are positive vectors that
are used to soften the constraints on plant’s input and output,
so that (8) always admits a solution. According to standard
MPC design, in case N, < N, the constraint (8g) enforces a
constant value of g from time N, to N,. The reader is referred
to [1] for an overview on MPC design.

We can also treat the prediction horizon N, as a design
parameter, and denote by v = [u’ N,], v € R™ x N
the overall vector of tuning parameters. The control hori-
zon N, determines, together with the number of constraints
in (8), the computational complexity of the outer MPC con-
troller. Therefore, it is usually fixed by the available online
throughput. Alternatively, we can set N, = N,,.

The remaining MPC parameters (Ny, Oy, Qu, Qau> Oe, Vy,
V, and V) are treated as a specification of the desired closed-
loop performance, and therefore not optimized. More gener-
ally, we could decouple the MPC quadratic cost in (8) from
the closed-loop performance index J(y1.7, u1.7). For instance,
J (v1:1, u1.7) can be a general, possibly non-convex function
reflecting engineering or economic goals, while the cost of
the MPC (8) is quadratic to facilitate online optimization.
Indeed, in case the augmented model M is LTI as in (7),

Algorithm 1 Bayesian Optimization for Controller Design
1. initialize parameters vs performance set

D <« {(01:Ny > VI:Ng)s T1:Ny 15

2. for i =Nj, ..., imax — 1 do
2.1 based on the data D, train a GP approximating J;
2.2 based on the GP, define acquisition function
a0, v|D);

2.3 compute next controller parameters 6;, v; as

i1, vier < argmaxa (9, v|D);
,V
2.4 perform closed-loop experiment and measure
performance index J;; 1;
augment the training set D <« D U
{1 vig1) Jiv11s
2.6 exit for loop if a termination criterion is met;
3. end for
4. compute optimal parameters as 6= and v, with

25

i = argmax J;;
l

Output: Optimal controller parameters 6« and vj».

problem (8) reduces to a quadratic programming (QP) problem
whose solution can be computed both offline using multipara-
metric quadratic programming [14] or online using dedicated
QP solvers based, e.g., on interior-point algorithms [15], fast
gradient projection [16], or active set methods [17].

V. PERFORMANCE-DRIVEN PARAMETER TUNING

Based on the controller parametrization introduced in
the previous section, the closed-loop performance cost
j(yl;T, ur.r) is a function of vectors 6 and v parametriz-
ing the inner controller /U and the outer MPC, respectively.
Thus, under the hierarchical architecture of Fig. 1, the original
control design problem (4) is equivalent to

rgin JOrr, ur; 6, v). ©))
Y

A. Bayesian Optimization for Parameter Selection

The design problem (9) is solved through the Bayesian
optimization (BO) strategy [18] outlined in Algorithm 1. The
algorithm is initialized (step 1) by performing Nj, > 1 closed-
loop experiments for Nj, different (e.g., randomly chosen)
values of controller parameters 6; and v; (withi =1, ..., Niy).
For each pair (6;, v;), a closed-loop experiment is performed
and the performance index J; is measured. In this way, an
initial set D = {(61.n;,, V1N, ), J 1:N,,} of parameters and cor-
responding performance J is constructed, with 01.n,, denoting
the sequence 6; for i = 1, ..., Nj;. In practice, the experiment
can be interrupted and large cost assigned to J; in case of
safety constraint violations.

The algorithm is then iterated until a stopping criterion is
met (e.g., maximum number of iterations reached). At each
iteration i > Nj,, the following two steps are performed.
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o Learning phase (Step 2.1). In this step, a Gaussian

Process (GP) describing our “best guess” of the cost
J 1.1, u1-T; 8, v) corresponding to the design parameters
6 and v is fitted on the available data D. Under the prior
assumption that the cost J is generated by a GP with
zero mean and covariance function x((6, v), (5 , D)), the
posterior distribution of j(yl;r, ur.r; 6*,v*) for generic
controller parameters (6*, v*) can be computed ana-
Iytically. Specifically, ](ylzT, up.r; 6%, v*) is a Gaussian
variable with mean

2 —1.
mi©*v") =K (Ki+02l) T (10a)
and variance
o (6%, v%) = k((6%,v%), (6%, V")) + (10b)

—1
—k;(K,»Jragl) ki +02  (10c)

where the j-th element of the vector k; € R! is
Kk ((0%,v%), (6}, v))); the [j, h]-th entry of the Kernel matrix
K; € R is k((6;, ), (On, vi)); 082 represents the vari-
ance of an additive (Gaussian) noise possibly affecting
the observations of the cost J; and I denotes the iden-
tity matrix of proper dimension. The covariance function
k((0,v), (67, v)) for the GP can be defined, for instance,
in terms of the so-called Squared Exponential (SE)
covariance kernel, defined as
€ (@, v), @, 7)) = o 52?0 w0 W]

The hyper-parameters op and A characterizing the SE
kernel, as well as the noise variance o2, can be chosen

e

by maximizing the log marginal likelihood [19]
log p(J1:i|01:, v1:is 00, A, 0¢) X
0% —% logdet(K,- + 0621) — %~§:i(Ki + 0621) 1]1:,-.
Optimization phase (Steps 2.2-2.4). In this phase, the next
design parameters 6,41 and vy to test are chosen by
maximizing the so-called acquisition function « (6, v|D)
(Step 2.2). The acquisition function « (@, v|D) is con-
structed based on the mean and covariance (eq. (10)) of
the GP estimated in the learning step. The acquisition
function balances exploration (i.e., learning more about
the objective J in regions of the parameter space with
high variance) and exploitation (i.e., search over regions
with high mean to optimize the expected performance
based on past collected data). Different acquisition func-
tions have been proposed in the literature (see [20] and the
references therein for a deep overview). In the example
reported in Section V, we use the Expected Improvement
(ED) acquisition function, defined as

a(®,v|D) = EI(9, v) = E[max{0,J~ —J(0,v)}]. (1D

where J~ represents the best value of objective function
at the i-th iteration, i.e.,

J7 = min JOur, w6, v). (12)

=1

Under the GP framework previously discussed, the EI
in (11) can be evaluated analytically and it is equal to:

EIO,v) = (J~ = mi(6,v))¥(2) + 0i(0, V¥ (Z) (13)
if g;(6, v) > 0, 0 otherwise. In (13), Z is defined as

7 JT —m;(6, v)’ (14)
Ui(e s U)
and ¢ and W are the probability density function and
the cumulative density function of the standard normal
distribution, respectively.

The advantages of using BO for tackling this design
problem are twofold. First, it is a derivative-free optimization
algorithm, which is useful since a closed-form expression of
the performance J as a function of the design parameters 0
and v is not available. Second, it allows us to tune the con-
troller parameters with as few evaluations of J as possible.
The latter point is crucial, since each evaluation can be costly
and time-consuming, as it requires a closed-loop experiment.

B. Restricting the Parameter Space

Bayesian optimization allows setting bounds on the search
space of the parameters 6 and v. These bounds can be included
in the maximization of the acquisition function at Step 2.3 of
Algorithm 1. Restricting the search space generally speeds up
the algorithm’s convergence, thus requiring fewer evaluations
of the functional J. Suitable bounds may be defined exploiting
prior system knowledge and design choices. Some applicable
restrictions of the parameter space are discussed next.

It may be reasonable to assume that the optimal solution is
achieved using an inner controller /C that stabilizes the inner
loop M. Therefore, one may constrain p so that the prediction
model M used by MPC is asymptotically stable.

Some basic control design rules may be also used to restrict
the search space of 6 defining the inner-loop controller /. For
instance, if /C is a PID controller parametrized as in (6), its
static gain should have the same sign of the static gain of the
(stable) system S.

Another significant reduction of the parameter space may be
achieved under the assumption that the prediction sub-model
My (ey) used by the MPC accurately describes the system
dynamics M from g to y. In this case, one can simply derive
the augmented model M providing the relationship from g to
the plant input u and output y as

|:Lt] _ |:K(9)(1_My(,uy))i|g
y My (1)

M (py,0)

15)

Note that in this case 4 = [;'], that is the prediction model
and controller share some parameters.

Other restrictions may be introduced according to the partic-
ular problem at hand and prior knowledge available to the user,
e.g., diagonal models assuming decoupled dynamics, grey-box
models with known intervals for physical parameters, etc.

V. NUMERICAL EXAMPLE

As a case study, we consider the control problem of the
inverted pendulum on a cart depicted in Fig. 2.
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Fig. 2. Schematics of the inverted pendulum on a cart.

A. System Description

The dynamics of the process are governed by the equations
(M + m)p + mLé cos p — mL* sing + bp = F, (16a)
L+ pcosd — gsing +fp =0, (16b)
where p is the cart position, ¢ is the angle of the pendulum
with respect to the upright vertical position, and F is an input
force acting on the cart. The following values of the physical
parameters are used: M = 0.5 Kg (cart mass), m = 0.2 Kg
(pendulum mass), L = 0.3 m (rod length), g = 9.81 m/s?
(gravitational acceleration), b = 0.1 N/m/s, and fy = 0.1 m/s
(friction terms). According to the approach proposed in this
letter, no knowledge of the physical model of the process is
used in designing the controller, and (16) are only used for

data generation and performance evaluation.

The output signals p and ¢ are measured every Ty, = 5 ms
and measurements are corrupted by an additive zero-mean
white Gaussian noise with standard deviation 0.01 m and
0.01 rad, respectively. The input force F is also perturbed
by an additive zero-mean random disturbance with standard
deviation 1 N and bandwidth 10 rad/s.

In performing closed-loop experiments, the system is ini-
tialized at [p(0) p(0) ¢ (0) qB(O)] =100 % 0]. The objective
is to move the pendulum to the vertical position ¢ = 0, while
limiting the cart displacement. The force F is constrained to
belong to the interval /r = [—20 20] N, while the cart position
p should stay within the range I, = [—1 1] m (representing,
e.g., finite length of the track where the cart moves).

B. Control Design

The hierarchical controller in Fig. 1 is designed, with y =
[p ¢] and u = F. The inner-loop controller K is

u=1[0 Kpiz, 01—y, A7)

where Kp;(z, 0) is a discrete-time transfer function of a PID
controller parametrized as in (6), with 6 = [6p 0; Op] € R3
and Ny = 100. Note that only the angle ¢ is actually fed back
in the inner loop, thus the task of the inner controller K is
only to stabilize the dynamics of the angle ¢.

Besides taking care of the control objectives, the outer MPC
shall also enforce constraints on the cart position p and on the
input force F. The model used by the MPC to predict the
dynamics of the inner loop M from the MPC command g to
the plant output y = [p ¢] (see Fig. 1) is parameterized as
the continuous-time state-space model

Eyv = Ay (éEy + By (g, yum = Eu, (18)

where & € R? is the state vector and u € R® contains the
entries of Ay € R2*2 and the second column of By € R2*2.

Because of the structure of the inner controller X in (17), the
position p is not fed back to the inner loop. Thus, the first
column of By is set to zero and not included in the design
parameter vector p. The overall MPC prediction model M is
constructed using (15).

The MPC control law is computed solving (8) and applied in
a receding-horizon fashion, using a sampled version of (18)
with sampling time Tyvpc = 107y = 50 ms, reference r =
[rp 7¢] = [0 O] and real-time constraints on F and p based
on the admissible intervals Ir and I, respectively.

Regarding the MPC design parameters, the weight matrices
are not optimized and set to Q, = diag(0.1,0.1), O, = 0,
Oau = 0.1 and Q. = 10°. The prediction horizon N, is con-
sidered as a free parameter to be adjusted in the Bayesian
optimization, while N, is set equal to N,. The real-value design
parameters 6 and p are constrained to belong to the interval
[—500 500], while the prediction horizon N, can take integer
values between 10 and 20. The MPC control law is computed
using the MATLAB Model Predictive Control Toolbox. All the
computations are carried out on an i5 2.60-GHz Intel core pro-
cessor with 32 GB of RAM running MATLAB R2018a. The
maximum computational time required to evaluate the MPC
law over all the performed closed-loop experiments is 21 ms,
thus lower than the sampling time Tyvpc = 50 ms.

Overall, there are 10 parameters to be designed, namely
0 € R3, n e RO, and N, € N. The closed-loop performance
cost J to be minimized is defined as

T

- 1 1 9
J =log [;Z (Evp — PO+ 5r —¢>(r>|)} +

1 T
+ log [?gb(p(t)) + 1}, (19)
where
_J10(pl = 1) for |p| > 1,
bp) = {0 for |p| < 1. @0)

is the barrier function taking into account violation on the
physical constraints on the cart position p. The cost J is eval-
vated over closed-loop experiments of length 10 s on the
discrete-time samples collected at rate 7. This objective func-
tion reflects the engineering objective of controlling the angle
¢ to 0, limiting the horizontal displacement and keeping the
cart position in the admissible range I,. The constraint on the
force F is enforced by a saturation block at the system input,
and thus it is not penalized in J.

The design problem (9) is solved using the MATLAB
Statistics and Machine Learning Toolbox, setting the EI'in (11)
as acquisition function. Nj; = 10 random values of the
design parameters 6, u and N, are generated to initialize
Algorithm 1, which is then executed for 310 iterations. The
complete test code of this letter is available for download at
http://www.marcoforgione.it/data/code/CSL2019_perf.zip.

C. Simulation Results

The performance cost J vs the iteration index i of
Algorithm 1 is shown in Fig. 3. For each iteration i, the
performance of the current test point (black asterisk) and of the
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Fig. 3. Performance cost J vs iteration i of Algorithm 1.
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Fig. 4. Closed-loop experiment: position p of the cart with the
considered bounds (top plot) and pendulum’s angle ¢ (bottom plot).

current best point up to iteration i (red line) are shown. From
Fig. 3, it can be noticed that the optimal controller parame-
ters are found at iteration 123 (green square). Furthermore, as
the iteration index i increases, more and more test points are
concentrated in an area of low cost J.

A closed-loop experiment is repeated over a longer period
of 20 s using the designed controller. The time trajectories of
the cart’s position p and the pendulum’s angle ¢ are plotted
in Fig. 4, which shows that the designed controller is able to
stabilize the pendulum’ angle in the upright vertical position,
respecting the constraints on the cart’s position p.

For the sake of comparison, the following two non-
hierarchical model-based controllers are designed based on
the physical model of the system (Eq. (16)) linearized around
[p(0) p(0) #(0) $(0)] =[0000]:

o an MPC, with the same sampling rate Typc = 50 ms
considered before, which reflects real-time constraints. At
this sampling rate, the MPC is not able to reject the dis-
turbance and thus fails to stabilize the pendulum around
the upright vertical position. This shows the advantages
of the hierarchical multi-rate controller structure.

e a Linear-Quadratic-Gaussian (LQG) controller, with
sampling rate Ty = 5 ms. This controller stabilizes the
pendulum. However, besides requiring a knowledge of the
plant, it achieves a performance cost J (eq. (19)) equal to
—2.41, which is worse than the cost J = —3.66 obtained
using the proposed performance-oriented approach.

VI. CONCLUSION AND FoLLOW-UP

In this letter, we described a method to learn MPC-oriented
models for hierarchical control schemes via iterative closed-
loop experiments. We showed that such experiments can be
suitably designed using Bayesian optimization. In the proposed
learning framework, the model does not necessarily pro-
vide the highest input/output data fit, which is the typical

objective of system identification, but is the one yielding the
model-based controller corresponding to the best closed-loop
performance. We also argued that the prediction horizon can
be optimized using the same tools and experiments. Numerical
simulations on a benchmark example showed that data can
lead to satisfactory controllers with no knowledge of the
system dynamics and no constraints on modeling accuracy.
Future research will be devoted to the theoretical analysis of
the proposed learning strategy as well as to its experimental
validation on a real-world setup.
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