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Abstract— We present an approach to identify a quasi
Linear Parameter Varying (qLPV) model of a plant, with the
qLPV model guaranteed to admit a robust control invariant
(RCI) set. It builds upon the concurrent synthesis frame-
work presented in [1], in which the requirement of existence
of an RCI set is modeled as a control-oriented regulariza-
tion. Here, we reduce the conservativeness of the approach
by bounding the qLPV system with an uncertain LTI system,
which we derive using bound propagation approaches. The
resulting regularization function is the optimal value of a
nonlinear robust optimization problem that we solve via a
differentiable algorithm. We numerically demonstrate the
benefits of the proposed approach over two benchmark
approaches.

Index Terms— Uncertain systems, Identification for con-
trol, Linear parameter-varying systems

I. INTRODUCTION

FOR synthesizing control schemes for nonlinear systems,
the first step involves identifying a dynamic model via

system identification techniques [2]. Typically, controllers use
the predictive capabilities of these models to optimize per-
formance. This approach, however, might prove inadequate
in scenarios when the underlying system is subject to con-
straints, since the predicted model behavior might deviate from
the system’s response. Robust identification methods address
this by capturing both a nominal behavior and prediction
errors [3]–[5]. Yet, decoupling identification from controller
synthesis can lead to feasibility issues. This has motivated
the development of concurrent synthesis approaches that co-
identify an uncertain model and a robust controller [6], [7].
Some reinforcement learning approaches, e.g., [8], can also
be interpreted in such a framework.

For control-oriented identification, an effective model class
is quasi-Linear Parameter Varying (qLPV) systems [9]. In
qLPV systems, a.k.a. self-scheduled LPV systems, the dy-
namics are described by linear models that change over
time as a function of a scheduling vector, whose values are
generated by a nonlinear function of the model state. This
has led to extensive research on identifying such models [10],
[11]. Recently, in [1] we introduced a concurrent synthesis
framework that guarantees the existence of a robust control
invariant (RCI) set [12] for the identified qLPV model based
on a softmax scheduling function. This in turn ensures that
a feedback controller exists for the plant generating the data.
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The RCI set was parameterized as a configuration-constrained
polytope [13], which provides a convenient representation for
developing such frameworks. At the core of the concurrent
synthesis framework introduced in [1] is a control-oriented
regularization function. This function is defined as the value
function of a convex quadratic program (QP) and quantifies the
size of the largest robust control invariant (RCI) set obtainable
for a given parameterization. In fact, any model for which
this regularization function admits a finite value becomes a
candidate for controller synthesis. By exploiting the softmax
parameterization, invariance is achieved by encapsulating the
qLPV model within a linear time-invariant (LTI) model with
multiplicative uncertainty.

Contribution: This paper improves the approach of [1], by
identifying models that admit RCI sets with reduced conser-
vativeness. We develop a new control-oriented regularization
based on an uncertain linear system that encapsulates the
qLPV system, and is tighter than one used in [1]. The
resulting regularization is optimal value of a nonlinear robust
optimization problem, which is solved using a differentiable
algorithm. The algorithm is then embedded into the con-
current synthesis framework. Through a numerical example,
we demonstrate the benefits of the proposed approach. The
paper is structured as follows: Section II formalizes the
concurrent synthesis problem, and recalls the approach of [1]
to formulate the regularization function; Section III presents
the novel regularization function formulation, along with the
differentiable algorithm to evaluate it; Section IV presents an
algorithm to solve the concurrent synthesis problem; Section V
presents a numerical example, and validates it against bench-
mark approaches; Section VI summarizes the contribution and
discusses future research directions.

Notation: The set Iba := {a, · · · , b} indicates indices be-
tween a and b. Given sets A,B ⊆ Rn, A⊕B and A⊖B denote
their Minkowski sum and difference respectively, with the sum
denoted as a ⊕ B if A = {a} is a singleton. Given a ∈ Rn,
|a| ∈ Rn denotes the element-wise absolute value vector, and
the function softmax : Rn → Rn is defined with components
eai/

∑n
j=1 e

aj for i ∈ In1 . The set CH{xi, i ∈ Im1 } is the
convex hull of vectors x1, · · · , xm. The symbol ⊗ denotes
the Kronecker product.

II. PROBLEM SETUP

We have dataset D := {(ut, yt), t ∈ IN−1
0 } of input-output

measurements from the nonlinear plant

z+ = f(z, u), y = g(z), (1)



where u ∈ Rnu , y ∈ Rny , z ∈ Rnz are the input, output, and
state vectors. Assuming the functions f and g, and state
dimension nz, are unknown, we tackle the following problem:

Problem 1: Identify a model to predict the behaviour of (1)
using D, while ensuring that the model can be used to
synthesize a feedback controller to regulate the plant output
inside a set Y , i.e., y ∈ Y, using control inputs u ∈ U.

While Problem 1 can be tackled stage-wise, i.e., system
identification with uncertainty characterization followed by
robust controller synthesis, it is possible that the latter may
be suboptimal/infeasible. We avoid this using a concurrent
synthesis framework which integrates both phases.

A. Concurrent synthesis framework
Consider the qLPV model

x+ = A(p(x))x+B(p(x))u, ŷ = Cx (2)

of (1), where x ∈ Rnx is the model state, and the matrix-
valued functions A(p) and B(p) are parameterized as A(p) :=∑np

i=1 piAi and B(p) :=
∑np

i=1 piBi respectively. The schedul-
ing function p : Rnx → Rnp is defined as

p(x; θ) := softmax
(
[N (x; θ1), · · · ,N (x; θnp

)]⊤
)
, (3)

where each N (x; θi) is a feedforward neural network (FNN)
whose weights and biases are collected in the vector θi. The
parameterization in (3) enforces p to belong to the simplex

P :=

{
p

∣∣∣∣∣
np∑
i=1

pi = 1, 0 ≤ p ≤ 1

}
.

Remark 1: The results in the sequel can be extended to
parameterizations p(x, u), i.e., with dependency also on u.

The system identification problem computes model param-
eters A := (A1, · · · , Anp), B := (B1, · · · , Bnp), C, and
θ := (θ1, · · · , θnp

) by solving the optimization problem

min
A,B,C,θ,x0

1

N

N−1∑
t=0

∥yt − Cxt∥22 (4)

s.t. xt+1 = A(p(xt, θ))x+B(p(xt, θ))ut, t ∈ IN−1
0 ,

in which also the initial state is optimized. Unfortunately, a
constrained controller for a model obtained from (4) is not
guaranteed to exist, since the output ŷ of (2) might not match
the plant output y exactly. We ameliorate this using a control-
oriented regularization [1] based on the state-observer model

z+ = A(p(z))z +B(p(z))u+ L(p(z))w, (5)

where we parameterize the disturbance as w := y − Cz and
the observer gain as L(p) :=

∑np

i=1 piLi. We now recall [1,
Prop. 1, Prop. 2] to derive an uncertain model based on (5).

Proposition 1: (i) Suppose that the behavior of system (1)
is described by the model

x̂+ = A(p(x̂))x+B(p(x̂))u y ∈ Cx̂+ V, (6)

for some V ⊂ Rny , and there exists some set E ⊆ Rnx that
satisfies x̂0 − z0 ∈ E ⇒ x̂t − zt ∈ E for all t > 0 when (5)
and (6) are excited by the same inputs. Defining

W := CE ⊕ V, (7)

and denoting the set of states reached by (5) at time t from
some z0 for all possible w ∈ W sequences and given input
sequence as Zt, it follows that x̂0−z0 ∈ E ⇒ yt ∈ CZt⊕W
for all t > 0 for all v ∈ V sequences, such that

z+∈A(p(z))z +B(p(z))u⊕ L(p(z))W, y ∈ Cz ⊕W (8)

is a valid uncertain model of (6); (ii) Suppose there exists a
set X ⊆ Rnx and control law µc : X → U verifying

A(p(z))z +B(p(z))µ(z)⊕ L(p(z))W ⊆ X, ∀z ∈ X, (9a)
CX ⊕W ⊆ Y. (9b)

Then from any z0 ∈ X and x̂0 ∈ z0 ⊕ E , the control input
ut = µc(zt) ensures zt ∈ X and yt ∈ Y for all t ≥ 0. □

The first result in Proposition 1 states that the uncertain
system (8) can be forward simulated to bound the plant output
if (7) holds. This is a standard robust control approach using
the observer invariant set E [14]. Through a suitable choice of
V, any system (1) (potentially also including bounded noise)
can be represented as (6). The second result states that if the
state of (8) can be persistently maintained inside X using a
control law µc, then it can be used to regulate the underlying
plant output inside Y . As per (9), X is an RCI set for (8). In
the sequel, we modify Problem (4) to (i) Compute observer
gains L := (L1, · · · , Lnp

), and (ii) Guarantee the existence
of a set X verifying (9). Denoting Θ := (A,B, C,L, θ), we
formulate the modified problem as

min
Θ,x0

1

N

N−1∑
t=0

∥yt − Cxt∥22 + τr(Θ) (10)

s.t. xt+1 = A(p(xt, θ))x+B(p(xt, θ))ut, t ∈ IN−1
0 ,

where the control-oriented regularization r(Θ) is such that

r(Θ) <∞ ⇒ ∃X ⊆ Rnx verifying (9), (11a)
Small r(Θ) ⇒ ∃ Large X ⊆ Rnx verifying (9), (11b)

and τ ≥ 0 is the regularization constant. While the requirement
(11b) is informally stated, we will formalize it in the sequel.
The goal of Problem (10) is to identify a model Θ, while
also maximizing the size of the corresponding RCI set. In this
context, we say a model Θ1 is less conservative that Θ2 if
they admit RCI sets satisfying r(Θ1) < r(Θ2).

B. Control-oriented regularization

We now recall the approach of [1] which formulates r(Θ) as
inverse of the size of the largest RCI set admitted by Θ. This
formulation requires: (i) a characterization of the disturbance
set W; (ii) a description of the RCI set X; and (iii) a suitable
measure to quantify the size of an RCI set.

1) Characterization of W: We utilize a simple data-driven
characterization of W, since the sets E and V required to
compute it as (7) are unknown. Assuming access to a dataset
Dw := {(yt, ut), t ∈ IN

w−1
0 } from (1), we simulate (5)

from the origin using Dw (with wt = yt − Czt), and denote
the resulting state sequence as {zwt , t ∈ INw

0 }. Defining the
sampled disturbances as W := {yt − Czwt | t ∈ IN

w−1
0 }, we

denote w̄ := maxw∈W w and w := minw∈W w, along with



cw := 0.5(w+w) and ϵw := 1
2 (w−w). Then, we characterize

the set W for given Θ as

W := {w | |w − cw| ≤ κϵw}, (12)

where κ > 0 is a user-specified inflation parameter to account
for finite data. Note that W is an inflated bounding box of the
sampled disturbances W built using the dataset Dw. We refer
to [1, Prop. 4] for lower-bounds on κ > 1 to verify (7).

2) Characterization of X: We work with polytopic RCI sets
X parameterized with given matrix F ∈ Rf×nx as

X ← X(q) := {x | Fx ≤ q},

and enforce configuration-constraints C [13] which dictate

q ∈ C := {q | Eq ≤ 0} ⇒ X(q) = CH{Vjq, j ∈ Iv1},

where Vj ∈ Rnx×f are vertex maps. We refer to [13] for
details about computing E and V := (V1, · · · , Vv) given F . To
enforce the RCI constraints in (9), the approach of [1] exploits
the parameterization of the scheduling function in (3), which
implies p(z) ∈ P for all z ∈ Rnx such that

(A(p), B(p), L(p)) ∈ ∆ := CH{(Ai, Bi, Li), i ∈ Inp

1 } (13)

for all p. Then, an RCI set for the uncertain linear system

z+ = Az +Bu+ Lw, (A,B,L) ∈ ∆, w ∈W (14)

is RCI for uncertain system (8). To enforce that X(q) is an
RCI set for (14), we use the following result from [13], where
we denote Uj := e⊤j ⊗ Inu for j ∈ Iv1, and assume that the
output constraint set Y := {y | Hyy ≤ hy}.

Proposition 2: The set X(q) is an RCI set for (14) with
constraints Cz ⊕ W ⊆ Y and u ∈ U if there exists some
v ∈ Rv·nu such that (q, v) ∈ S, where we define

S :=


(
q
v

)∣∣∣∣∣∣
∀(i, j) ∈ Inp

1 × Iv1, Eq ≤ 0, Ujv ∈ U,
F (AiVjq +BiUjv) + di ≤ q,
Hy(CVjq + cw) + κ|Hy|ϵw ≤ hy

 , (15)

with di := FLicw + κ|FLi|ϵw for all i ∈ Inp

1 . □
Essentially, Proposition 2 together with (13) state that

∃ v : (q, v) ∈ S ⇒ X(q) satisfies (9), (16)

with µc(z) being a vertex control law defined by v [13].
3) Size of the RCI set: We define the size of an RCI set

based on the ability of the system to perform safe output
tracking. Denoting the vertices of Y as {yk, k ∈ Ivy1 } and
the mean values of the matrices (Ai, Bi), i ∈ Inp

1 as (A,B),
the size of X(q) is modeled as

d(A,B,C, q) :=min
z,u

vy∑
k=1

M∑
t=1

∥yk − Czkt ∥22 (17)

s.t. zk0 = 0, zkt+1 = Azkt +Buk
t , uk

t ∈ U,
F zkt ≤ q, ∀(k, t) ∈ Ivy1 × IM−1

0 ,

where (z,u) denote the state and input trajectories. The value
d(A,B,C, q) captures how close the output y = Cz of the
nominal system z+ = Az+Bu can be driven from the origin

to the vertices of Y in M -steps while belonging inside X(q).
Note that for any feasible vectors q1 and q2, the inequality

X(q1) ⊆ X(q2) ⇒ d(A,B,C, q2) ≤ d(A,B,C, q1) (18)

holds since the optimizers of the latter problem are feasible
for the former. Using the ingredients in (12), (15) and (17),
the approach of [1] models the control-oriented regularization
function r(Θ) in Problem (10) as the value of the QP

r(Θ) := inf
(q,v)∈S

d(A,B,C, q). (19)

As per (16) and (18), r(Θ) satisfies (11), making it a suitable
control-oriented regularization. However, an RCI set X(q)
obtained by solving (19) might be unnecessarily small, because
the uncertain LTI system (14) encapsulating (8) might be
too conservative. In the next section, we derive an uncertain
LTI approximation that is less conservative, and formulate a
corresponding control-oriented regularization.

Remark 2: The choice of function d should reflect the goals
of the control design procedure, e.g., (i) regulation around an
output setpoint, with d modeled to minimize the volume of
the RCI set about that point [15]; (ii) tuned tube-based model
predictive control schemes [16] for stabilization, etc. Future
research can focus on deriving such formulations.

III. CONTROL-ORIENTED REGULARIZATION WITH
REDUCED CONSERVATIVENESS

While the uncertain LTI system (14) encapsulates the non-
linear system (8), it is possible that the scheduling function
p(z) with z ∈ X(q) does not cover the entire set P , such that
(A(p(z)), B(p(z)), L(p(z))) only evolves in some ∆̃ ⊆ ∆.
We exploit this observation to derive a tightened multiplicative
uncertainty ∆̃, and present an approach to compute an RCI set
for (14) with ∆ replaced by ∆̃.

A. RCI sets with reduced conservativeness

We now present new conditions for a set X(q) to be an RCI
set for (8), which are based on an LTI system with tightened
multiplicative uncertainty ∆̃ ⊆ ∆.

Proposition 3: Suppose the scheduling variable satisfies

0 ≤ ai ≤ pi(z), ∀z ∈ X(q), i ∈ Inp

1 (20)

for given q ∈ C. If X(q) is RCI for the uncertain LTI system

z+ = Az +Bu+ Lw, (A,B,L) ∈ ∆̃, w ∈W, (21)

where ∆̃ := CH{(Ãi, B̃i, L̃i), i ∈ Inp

1 } is defined with

(Ãi, B̃i, L̃i) :=

1−
np∑
j=1

aj

(Ai, Bi, Li) +
np∑
j=1

aj(Aj , Bj , Lj)

(22)

then X(q) verifies the inclusion in (9).
Proof: The proof follows if for all z ∈ X(q), we have

(A(p(z)), B(p(z)), L(p(z))) ∈ ∆̃. To show this, we define

p̃i(z) =
pi(z)− ai

1−
∑np

j=1 aj
, ∀i ∈ Inp

1 .



Since
∑np

j=1 aj ≤
∑np

j=1 pj(z) ≤ 1 holds, we have p̃(z) ∈ P
if z ∈ X(q). Then, A(p(z)) can be written for z ∈ X(q) as

A(p(z)) =
np∑
i=1

p̃i(z) + ai − p̃i(z)

np∑
j=1

aj

Ai

=
np∑
i=1

p̃i(z) + ai

np∑
j=1

p̃j(z)−
np∑
j=1

aj p̃i(z)

Ai

=
np∑
i=1

1−
np∑
j=1

aj

 p̃i(z)Ai +
np∑
i=1

np∑
j=1

aj p̃i(z)Ai =

np∑
i=1

p̃i(z)Ãi,

where the second equality follows from p̃(z) ∈ P , and the
third by interchanging the summation order. Hence, we have
that (A(p(z)), B(p(z)), L(p(z))) ∈ ∆̃ if z ∈ X(q).

The next result derives a set similar to S for (21).
Corollary 1: The set X(q) is an RCI set for (21) with

constraints Cz ⊕ W ⊆ Y and u ∈ U if there exists some
v ∈ Rv·nu such that (q, v) ∈ S̃, where we define

S̃ :=


(
q
v

)∣∣∣∣∣∣∣∣
∀(i, j) ∈ Inp

1 × Iv1, ∃a ∈ [0, p(z)],∀z ∈ X(q),

F (Ãi(a)Vjq + B̃i(a)Ujv) + d̃i(a) ≤ q,
Hy(CVjq + cw) + κ|Hy|ϵw ≤ hy,
Ujv ∈ U, Eq ≤ 0

,

with d̃i(a) := FL̃i(a)cw + κ|FL̃i(a)|ϵw for i ∈ Inp

1 , and the
matrices (Ãi, B̃i, L̃i) depend on ai through (22). □

Proof: The proof follows from Proposition 2, after
observing that S is RCI for (21) for any a verifying (20),
with (Ai, Bi, Li) replaced by (Ãi(a), B̃i(a), L̃i(a)).

Using S̃, we formulate the regularization function as

r(Θ) := inf
(q,v)∈S̃

d(A,B,C, q), (23)

where (A,B) are mean values of (Ãi(a), B̃i(a)), i ∈ Inp

1 . We
always have S ⊆ S̃, since S̃ formulated with feasible value
a = 0 equals S. Hence, (23) is less conservative than (19).
Unfortunately, S̃ is no longer a polytope since it includes the
robust nonlinear constraint (20), such that Problem (23) is a
nonlinear robust optimization problem instead of a QP. We
now develop an algorithm to solve Problem (23).

B. Solving Problem (23)
We use the following observation to solve Problem (23):

Given sets X1 and X2 such that X1 ⊆ X2, if pi(z) ≥ ai
holds for all z ∈ X2, then pi(z) ≥ ai follows for all z ∈ X1.
To exploit this observation, given q ∈ C we define the set

B(q) := {x : |xi − µi(q)| ≤ σi(q) + ζ, i ∈ Inx
1 } , (24)

where we define µi(q) := 1
2 (maxj Vj,iq + minj Vj,iq) and

σi(q) :=
1
2 (maxj Vj,iq −minj Vj,iq), with Vj,i denoting row

i of Vj , and ζ > 0. The set B(q) is a bounding box of X(q)
inflated by ζ > 0. Then, we define the polytope

Ŝ(q̃, a) :=


(
q
v

)∣∣∣∣∣∣∣∣
∀(i, j) ∈ Inp

1 × Iv1, X(q) ⊆ B(q̃),
F (Ãi(a)Vjq + B̃i(a)Ujv) + d̃i(a) ≤ q,
Hy(CVjq + cw) + κ|Hy|ϵw ≤ hy,
Ujv ∈ U, Eq ≤ 0

,

where the parameters a ∈ Rnp depend on q̃ as

0 ≤ ai ≤ pi(z), ∀z ∈ B(q̃), i ∈ Inp

1 . (25)

Algorithm 1 Evaluate r(Θ; q0)

Require: Θ, (cw, ϵw), q0 ∈ C, k̂ > 0
1: For k = 0, 1, 2, . . . , k̂ − 1 do
2: a← BoundProp(qk,Θ), evaluate (Ãi(a), B̃i(a), L̃i(a))

3: qk+1, vk+1 ← arg inf(q,v)∈Ŝ(qk,a) d(A,B,C, q)

4: rk+1 ← d(A,B,C, qk+1)
5: return rk̂, qk̂

The polytope Ŝ(q̃, a) is formulated by replacing condition (20)
over a in S̃ with X(q) ⊆ B(q̃). Since (25) implies a ∈ [0, p(z)]
for all z ∈ X(q), it follows that Ŝ(q̃, a) ⊆ S̃. If q̃ is high
enough such that the constraint X(q) ⊆ B(q̃) is inactive for
all feasible q, the inclusions S = Ŝ(q̃, 0) ⊆ Ŝ(q̃, a) ⊆ S̃
follow for any a verifying (25), which implies that an RCI
set computed by optimizing over Ŝ(q̃, a) is less conservative
than that obtained by optimizing over S. Utilizing Ŝ(q̃, a),
we formulate Algorithm 1 to solve Problem (23). Starting
from some q0 ∈ C, we compute bounds a verifying (25)
using a BoundProp methodology presented next. Then, we
compute (Ãi(a), B̃i(a), L̃i(a)) used to define a QP in Step 3
that optimizes over Ŝ(qk, a) constructed using B(qk). Then,
updating qk to qk+1, we repeat the procedure for k̂ number
of steps. The key feature of Algorithm 1 is that the output
rk̂ is differentiable in Θ, such that it can be plugged into a
gradient-based solver to tackle Problem (10). Future research
can study the theoretical properties of this algorithm.

C. Interval bound propagation

We use interval bound propagation (IBP) [17] to compute
a verifying (25) in Step 3 of Algorithm 1, assuming that
the FNNs N (·; θi) are defined using monotonic activations.
While IBP computes a exploiting this monotonicity, alternative
verification approaches can be used to handle nonmonotonic
activations, see, e.g., [18]–[20]. However, they might be com-
putationally expensive. The IBP approach, while limited to
monotonic activations, is computationally inexpensive. It is
formed by observing that the interval z ∈ [z, z̄] projected
through the linear map h(z) = Wz + b results in h(z) ∈
[Wµ+ b− |W |Σ,Wµ+ b+ |W |Σ] with µ = 0.5(z̄ + z) and
Σ = 0.5(z̄ − z), while through a monotonically increasing
nonlinear map h(z) results in h(z) ∈ [h(z), h(z̄)]. Defining
N(z; θi) := eN (z;θi), a composition of the propagations can
be used to compute the bounds

N(z; θi) ∈ [Ni,Ni], ∀z ∈ B(q). (26)

Proposition 4: Given q ∈ C, suppose (26) holds. Then,

ai :=
Ni(

Ni +
∑

j∈Inp
1 \i Nj

)
verifies (25) with q̃ = q for all i ∈ Inp

1 .
Proof: We observe that (26) satisfies the inequalities 0 ≤

Ni ≤ Ni, and the optimizer of minx,y
x

x+y s.t. (x, y) ∈
[x, x̄]× [y, ȳ] with 0 ≤ x ≤ x̄ and 0 ≤ y ≤ ȳ is (x, ȳ).



Algorithm 2 Solve Problem (10)

Require: (D,Dw), (F, V,E), κ > 1, ζ > 0, k̂, l̂ > 0, Initial
parameters Θ0, x0,0, q0 ∈ C.

1: For l = 0, 1, 2, . . . , l̂ − 1 do
2: Θl+1, x0,l+1 ← Optimizer(∇J (Θl, x0,l; ql))
3: rl+1, ql+1 ← r(Θl+1; ql)
4: return Θl

IV. CONCURRENT SYNTHESIS ALGORITHM

We now develop Algorithm 2 to solve Problem (10), in
which we utilize the fact that Algorithm 1 is parametric in q0.
Towards its development, for a given q̃ ∈ C, we define

J (Θ, x0; q̃) :=
1

N

N−1∑
t=0

∥yt − Cxt∥22 + τr(Θ; q̃),

where r(Θ; q̃) is evaluated using Algorithm 1. We use this
function as an alias for the objective of Problem (10). We
initialize the algorithm with q0 ∈ C being the optimizer
of Problem (19) with Θ = Θ0. In Step 3, with the last
updated RCI set parameter ql, we compute the gradients of
J (Θ, x0; ql), that we pass to an optimizer such as Adam [21]
to compute Θl+1 and x0,l+1. Then, we update ql+1 using
the updated model parameters Θl+1 starting from ql using
Algorithm 1. To compute the initial Θ0 and configuration
triplet (F, V,E), we use the approach in [1, Section IV].

V. NUMERICAL EXAMPLE

We consider data from an oscillator with dynamics given
by 1.5ÿ+ ẏ+ y+ 1000y3 = u, with input u ∈ [−0.5, 0.5][N]
the force applied, and output y [m] the position. While we
focus on the benefits of using the approach of this paper for
concurrent synthesis, we refer to [1] for insights regarding
the qLPV parameterization. We implement Algorithm 2 using
jax [22], and utilize the differentiable QP solver qpax [23]
to implement of Algorithm 1. We evaluate the quality of a
model using the Best Fit Rate (BFR) score [24, Section 3.3]1.

1) Concurrent identification: Using randomly sampled inputs
in [−0.5, 0.5], we build the training dataset D with 10000
points, disturbance dataset Dw with 2000 points, and test
dataset with 10000 points sampled at 0.1s time intervals.
We parameterize (2) with nx = 2, np = 6, and a single-
hidden-layer FNN N (x; θi) with 3 monotonic activation units
elu(x)+1. We compute an initial qLPV model parameterized
as (2) using the jax-sysid [24] toolbox on D, which
achieves BFR scores of 85.887 on D, 85.97038 on Dw,
and 86.8900 on the test set. We use this model to define
Θ0, in which we set each observer gain Li = 0. Using
[1, Proposition 5], we compute a feasible triplet (F, V,E)
with f = v = 4 for X(q). We select M = 5 in (17),
τ = 0.0005 in (10), κ = 1.01 in (12), and compute q0 by
solving Problem (19) to initialize Algorithm 2. We consider the
following benchmarks: (i) Sequential model-based synthesis:
We compute the parameters of (2) starting from Θ0 using
the jax-sysid toolbox, then utilize Dw to identify W and

1Code available on github.com/samku/Con-qLPV

Fig. 1: Output of Algorithm 1 for different ζ, simulated using models
Θζ identified by Algorithm 2. Observe that for chosen ζ, we obtain
dζ significantly lesser than dseq = 22.6924 and dbase = 5.0936.

Fig. 2: Iterations of Algorithm 1 for Θ = Θ0.07 and ζ = 0.07.

compute the maximal RCI set [25] for (14) inside the tightened
output constraint set Cx ∈ Y ⊖ W. Then, selecting (F, q)
such that {x | Fx ≤ q} is the maximal RCI set, we evaluate
dseq := d(A,B,C, q) defined in (17). The identified model
achieves BFR scores of 90.7979 on D, 92.3137 on Dw, and
90.8584 on the test set, along with dseq = 22.6924. (ii)
Baseline concurrent synthesis: We follow the approach of
[1] to formulate the control-oriented regularization as (19). At
the solution, we re-solve (19), and denote its optimal value as
dbase. The identified model achieves BFR scores of 90.6734
on D, 92.0751 on Dw, and 90.6593 on the test set, along with
dbase = 5.0936 indicating the benefits of utilizing concurrent
synthesis for reducing RCI set conservativeness.

To compare against these benchmarks, we simulate Al-
gorithm 2 with ζ uniformly spaced in [0.01, 0.1], and fix
k̂ = 1 such that we perform one iteration of Algorithm 1
per iteration of Algorithm 2. We report that while k̂ > 1
can be chosen to simulate Algorithm 1, it often results in
Algorithm 2 converging to suboptimal points. A study of
escaping such minima is a subject of future study. Using the
model parameters Θζ computed by Algorithm 2 for given ζ,
we recompute the largest RCI set by solving Problem (23)
with Algorithm 1 with q0 as the optimizer of Problem (19). We
denote the output of Algorithm 1 as dζ = rk̂, with k̂ = 200.
We report no reduction in r when Algorithm 1 is applied to
the models identified using the benchmark approaches, since
these models were not optimized for bound propagation. In
Figure 1, we plot dζ for different values of ζ. We observe a
reduction in conservativeness, indicated by smaller values than
dseq and dbase, validating our approach to compute models
that admit RCI sets with reduced conservativeness. We report
that for all models Θζ , we obtain BFR scores in the interval
[90.7303, 90.7371] over D, [92.4489, 92.4633] over Dw, and
[90.8314, 90.8553] over the test set, indicating that a reduction
in conservativeness without degrading the model quality. In
Figure 2, we show the value of rk over iterations of Algorithm
1 with Θ = Θ0.07 and ζ = 0.07, in which we observe
monotonic convergence.

2) Controller synthesis: We use the parameters Θ0.07 for
controller synthesis. While any robust controller that regulates
(9) (or (21)) in X(qk̂) can be used, we consider a simple



Fig. 3: Closed-loop trajectories using tracking controller (27). The
black region in top figure denotes boundaries of Y .

tracking controller formulated as the QP

u(z, y, r) = argmin
u∈U

∥Cz+ − r∥22 (27)

s.t. z+ = A(p(z))z +B(p(z))u+ L(p(z))(y − Cz) ∈ X(qk̂),

which consumes the current state z = zt of (5) and current
output y = yt of the plant, and output reference r = rt.
For sufficiently large values of κ > 1 in (12), Problem (27)
is recursively feasible. A study of stability properties, which
involves the synthesis of ISS-Lyapunov functions to quantify
the effect of w = y − Cx on the closed-loop performance,
are a subject of future research. Note that (u, z+) can be
penalized for controller tuning. In Figure 3, we plot closed-
loop trajectories with piecewise constant references obtained
by solving (27). In Figure 3 (top plot), trajectories in the output
space are plotted. Observe that the plant output attempts to
track the reference signal rt while satisfying yt ∈ Y . Also
plotted are the model output Czt ∈ CX(qk̂). In Figure 3
(bottom plot), the RCI set X(qk̂) is plotted, with the state
trajectory zt ∈ X(qk̂) (in green) of the system in (5).

VI. CONCLUSIONS

We extended the concurrent synthesis approach of [1]
to identify qLPV models with control synthesis guarantees
through the introduction of a novel control-oriented regular-
ization function. In Proposition 3, we derived conditions on
existence of RCI sets based on a linear system with tightened
multiplicative uncertainty, and in Corollary 1, we derived a
new set of configuration-constrained RCI set parameters that
we used to formulate the new regularization function. We then
developed Algorithm 1 to evaluate the function. Our numerical
example demonstrates reduced conservativeness compared to
benchmark approaches. Future research will focus on a)
analyzing Algorithm 1; b) efficient approaches to estimate
a verifying (25) avoiding monotonicity assumptions; and c)
using the framework to for real-world systems.
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