Variance-driven Exploration for
Learning-based Model Predictive Control

Katrine Seel, Alberto Bemporad, Sébastien Gros, Jan Tommy Gravdahl

Abstract—Using model predictive control (MPC) schemes as
function approximators in reinforcement learning (RL) enables
the learning of policies with closed-loop properties that we can
analyze. In general, simple heuristics based on random pertur-
bations are still the most commonly used exploration methods
in RL. This paper considers variance-based exploration in RL
geared towards MPCs as function approximators. We propose
to use a non-probabilistic measure of uncertainty of the value
function approximator in value-based RL methods. Uncertainty
is measured by a variance estimate based on inverse distance
weighting (IDW). The IDW framework is computationally cheap
to evaluate and therefore well-suited in an online setting, using al-
ready sampled state transitions, actions, and rewards to estimate
the uncertainty. The gradient of the variance estimate is then used
to perturb the policy parameters in a direction where the variance
of the value function estimate is increasing. The proposed method
is verified on two simulation examples, considering both linear
and nonlinear system dynamics, and compared to standard
exploration schemes using random perturbations.

Index Terms—Model predictive control, Reinforcement learn-
ing, Exploration, Inverse distance weighting.

I. INTRODUCTION

Reinforcement learning (RL) is a powerful tool for tackling
Markov decision processes (MDPs). Rather than relying on
a model of the state transition probabilities, samples of state
transitions and associated rewards are used to improve the
performance of a control policy. RL has drawn increasing
attention due to its accomplishments in robotics and games,
see e.g., [1] and [2]. However, as neural networks (NNs)
typically are used as function approximators to capture the
policy, guarantees regarding the closed-loop behavior of the
policy are difficult to provide. In [3], the authors suggest using
a parameterized model predictive control (MPC) scheme as
a function approximator of the policy and value function in
RL. Parameterizing the MPC problem allows RL to improve
the policy as data are acquired while maintaining an MPC
structure, for which rich tools are available to analyze the
resulting closed-loop behavior.

RL requires that the actions applied to the real system
undergo some exploration. If the same, deterministic policy
is always applied to the system, it is not possible to discover
alternative actions that may improve closed-loop performance.
One way to quantify an effective exploration is in terms of
regret. The notion of regret in RL is defined as the loss in
reward for choosing a suboptimal over an optimal action. An
effective exploration strategy can then be defined as one that
minimizes the cumulative sum of regrets. However, we cannot
directly obtain the regret as the optimal action is not known.

Hence, the concept of regret in itself cannot be used to perform
effective exploration.

Currently, the most commonly used methods to explore are
simple heuristics. For discrete action spaces, methods such
as e-greedy [4] or Boltzmann exploration [5] are used. For
continuous action spaces, stochastic policies for exploration
are generated e.g. by adding Gaussian noise to a deterministic
policy [6]. In the case of using stochastic policy gradient
methods, the distribution of the stochastic policy itself is
parameterized and adjusted by RL. Exploration is then ensured
by sampling from the resulting distribution that describes the
stochastic policy [4].

A collective term for the aforementioned exploration strate-
gies is dithering strategies. Because the perturbation from one
time step to the next is not coordinated, the exploration is not
temporally-extended or what we refer to as deep. For problems
that require consistent exploration over several time steps in
order to realize improved closed-loop performance, dithering
strategies may in fact prevent efficient exploration. The most
straightforward method for ensuring deep exploration, is ran-
dom perturbations in parameter space, as suggested by the
authors in [7]. A random perturbation in the parameters is
introduced at the beginning of an episode, and fixed throughout
that episode, such that a temporally coordinated sequence of
actions is generated. However, the potential benefit of using
random noise in parameter space rather than in action space is
generally not obvious and needs to be evaluated on a case-by-
case basis. Moreover, when using random parameter noise for
exploration in large parameter spaces, we are at risk of adding
a lot of disturbances that yield little effect on the resulting
policy.

Although the aforementioned heuristics perform well for
many tasks, they are all undirected, and therefore may take
exponentially long to learn the optimal policy [8]. In order to
learn efficiently, the exploration scheme should prioritize po-
tentially informative states and actions. To do this, exploration
should be done with regard to a notion of uncertainty in the
value function.

Directed exploration is well understood for the bandit prob-
lem. One strategy is “optimism in the face of uncertainty”,
which corresponds to preferring actions with uncertain values.
This strategy has led to e.g. the upper confidence bound
(UCB) algorithm. The UCB algorithm acts greedily w.r.t. to
the action-value function added an exploration bonus based
on a confidence interval of the reward, see, e.g., [9]. For
the bandit problem, Hoeffding’s inequality can be applied to
obtain the UCB. Whereas for an MDP in an RL setting, this
is not straightforward.

Thompson sampling (TS) is a related strategy developed
for the bandit problem. A Bayesian model of the posterior
distribution of rewards is consecutively sampled, and updated
as data is gathered. Actions are selected by acting greedily
w.r.t. the current sample [10]. Building a Bayesian model of
the value function for an MDP will for most realistic problem
sizes be computationally intractable. For bandit problems, both
UCB and TS achieves a sublinear total regret. In comparison,
e-greedy has a linear total regret, which is the same as with
no exploration at all.

As a means to reduce the computational burden, yet inspired
by TS, the authors in [11] introduced the concept of random-
ized value functions. The use of randomized value functions
aims to approximate samples from the posterior distribution
of the value function. However, the method is developed for
linear parameterizations of the value function. An extension
was made to nonlinear parameterizations, more specifically to
NNs, in [12], where bootstrapped deep Q-function NNs (DQN)
were used to approximate the posterior distribution of the Q-
function.

The concept of randomized value functions has also moti-
vated the NoisyNets as proposed in [13]. Rather than training
an NN with K outputs or heads to build an approximate
posterior distribution of Q as in [12], the authors in [13] inject
noise in the NN parameters and use RL to tune the intensity
i.e. the variance of the distributions. Samples of the Q-function
are obtained by sampling noise intensities from the tuned noise
distributions, and actions are selected by acting greedily with
respect to the sampled Q-function.

Bootstrapped DQNs have also been used to develop a UCB
approach that applies to RL. Namely, the bootstrapped DQN
was used to create an empirical estimate of the standard
deviation of the Q-function distribution [14]. This was in turn
used to formulate a UCB that was added as an exploration
bonus in the reward function. Along the same lines, the
DQN framework was used by the authors in [15] in order
to obtain confidence intervals to formulate a surrogate of the
regret, which in turn was used to guide exploration. The use
of randomized value functions constitutes an important step
towards more effective exploration strategies in RL, although
it for nonlinear value function parameterizations only applies
to discrete action spaces.

A. Contribution

The goal of this work is to develop a directed and deep
exploration strategy for continuous action spaces, that is
suitable for problems where we wish to use MPC as a
function approximator in RL. For this purpose, we will adopt
the principle of “optimism in the face of uncertainty”. To
the best of the authors’ knowledge, few studies exist on
directed exploration strategies in continuous action spaces.
One important exception is the work in [16], where K value
function approximators are trained independently, and the
agent is encouraged to explore states where the value function
approximators show the largest disagreement. Although the
exploration strategy resembles ours, it is based on knowing
the true model of the MDP, which is not a requirement in

our case. We present an uncertainty-based exploration scheme
not limited to, but particularly suited for MPC, and make the
following contributions:

« we introduce the use of inverse distance weighting (IDW)
to estimate the variance of the MPC function approxima-
tor at a low computational cost;

o we formulate variance-based exploration in parameter
space via the IDW variance estimate;

o we compare the proposed method with random (Gaus-
sian) perturbations in both action and parameter space.

The proposed method is verified on two simulation examples,
considering both linear and nonlinear dynamics, for which
variance-based exploration performs better in terms of signif-
icantly improving the cumulative rewards during learning.

The paper is structured as follows. Section II provides
background information on the problem statement. This is
followed by a short introduction to exploration in parameter
space and its application to MPC-based RL. Section IV details
the IDW framework and how this can be used to obtain a
variance estimate of the selected value function approximator.
The use of the IDW variance in exploration is then detailed
in Section V, followed by two simulation examples in Section
VI. Finally, conclusions are given in Section VII.

II. BACKGROUND

We consider real systems that can be described as discrete-
time systems with continuous state and action spaces. The state
space satisfies the Markov property, i.e. future states depend
only on the current state, and not past states. We denote the
underlying transition probability matrix for the states s € S C
R™ and actions a € A CR™ as T, i.e.

Skr1 = T (5k,ar),)]

where s;1 denotes the next state and k denotes the physical
time of the system. We will assume in the following that a
stage cost

L(sg,ar), 2

is provided. Our goal is to find the parameters 6 of a policy
m(s), that can be both stochastic or deterministic, and maps
from state to action i.e. mp : S — A, so as to minimize the
sum of discounted cost

K
J(m0) = Esynso,snT(s,m(s)) {ZWkL(Skaak) | ar = mo(sk) |,

k=0

3)
where Sy is a distribution of initial states and v € (0,1] is
a discount factor. We recognize that minimization of cost in
(3) aligns with the RL objective of maximizing the sum of
future discounted rewards r(s,a) by stating that r(s,a) =
—L(s,a). In the following we will use E,,[-] as short for
]ESDNS(),SNT(S,TF(S))[.}'

In the next section, we will introduce MPC as a function
approximator. Moreover, we will consider deterministic sys-
tems which is a special case of (1), i.e. dynamical systems of
the form

Sk+1 = f(sk, ax).)

A. MPC as a function approximator in RL

As proposed by the authors in [3], we will use a parametric
MPC scheme as a function approximator in RL. A parameter-
ized finite-horizon MPC scheme is formulated as

Vo(s) = min = Xg(s) + 7" Ty(an) + ¥nTon

N-1
+ D lo(wrur) + 9 on (52)
k=0
st xpy1 = fo(rr,ur), w0 =S5, (5b)
ho(xy,ur) < og, ho(zn) <on, (5¢)
o> 0,08 >0 (5d)
where © = {zg,...,zy} and u = {ug,...,uny—1}. In

the objective fy(x,u) denotes the parameterized stage cost,
Ty(x) the parameterized terminal cost, and \y(s) is a storage
function. The storage function is primarily useful in the case
of learning stable policies for economic problems, where the
economic stage cost is not necessarily positive definite. For
problems that are dissipative, using storage function allows us
to reformulate the cost, such that stability can be proved, while
the solution to the MPC remains unchanged. For more details,
the reader is referred to [3]. A discount factor v € (0,1]
is used to establish the importance of future rewards over
immediate rewards. The function fy(z,u) is used to model the
system dynamics, hg(xy,ur) describes the mixed input and
state constraints, and hg(z) describes the terminal constraint.
Slack variables o and oy are used to prevent the MPC
scheme from becoming infeasible due to the possible model
mismatch between the true system (4) and the prediction
model fy. The constant vectors 5 and 1) should be selected
sufficiently large, such that constraint violations are accepted
as seldom as possible while still ensuring feasibility [17].
Although not clearly visible in the performance measure in
(3), the inequality constraints (5¢)-(5d) may be incorporated
in the cost L(s,a).

Using MPC as a function approximator, the policy is given
by the first element in the input sequence, the solution to (5),
ie.

mo(s) = uo(s,). (6)

Next, we will consider one RL method we can use to update
the parameters 6.

B. Q-learning

Q-learning is an RL method based on learning the optimal
action-value function Q*(s,a) [4]. Using MPC as a function
approximator, we can estimate the optimal Q-function by
constraining the first action in the input sequence, according
to

Qo(s,a) = min — A\p(s) + ’}/NTQ(.’L'N) +yYnTon

N-1
+) A ok, un) +) o (7a)
k=0
st (5b) — (5d), wuo = a. (7b)

It can be shown that the Q-function estimate from (7), the
value function estimate (5), and the policy (6) satisfy the
Bellman equations [3], i.e.

Q*(s,a) = L(s,a) +V*(s),

Vi(s) = Q" (s, 7" (s)) = argmin Q" (s, a),
where st denotes the consecutive state. In a Q-learning
setting, the optimal policy is given by

7 (s) = argmin Q* (s, a).)

We make the following assumption for the choice of parame-
terization, which is a common assumption in theoretical RL.

(8a)
(8b)

Assumption 1. The parameterization is rich enough, i.e. there
exists a parameter vector 0* such that

Qo+ (s,a) = Q*(s,a).

For a rich parameterization, we can characterize the optimal
parameters as those that minimize the following least squares
problem

(10)

0* = argmein E %(Q*(s,a) — Qo(s,0))? (11)
In practice, the selected parameterization of Qg(s,a) will
satisfy Assumption 1 asymptotically as it is added more com-
plexity. Moreover, the least-squares problem in (11) cannot be
tackled directly, as the true Q-function Q*(s, a) is unknown.
A classical approach to Q-learning is therefore trying to
approximate the solution of (11) by updating the parameters
using the temporal difference (TD) error defined as

Ok = L(sk,ax) +7Vo(skt1) — Qo(sk,ar), (12)
used to formulate the following parameter update
Abq = a0rVeQo(sk, ar), (13)

where Afg = 05,41 — 05 and o > 0 is a scalar denoting the
step size. The gradient VgQy (s, ar) can be obtained from
sensitivity analysis of the MPC scheme, as detailed in [3].

An alternative to the incremental update of parameters
in (13), is a batch approach to Q-learning. This method is
known to result in more stable learning [4]. A batch approach
entails introducing an additional set of parameters 6 that is
continuously being updated, e.g.

A0 = ad,V 3Q;5 (s, ar), (14)

where &), = L(sk,ar)+7V;(sp+1)—Qp(sk, ar) whereas ay, is
selected according to a fixed policy obtained from Qg (s, ax).
As the updated parameters 6 converge, we may replace the
fixed parameters 6 with the updated ones, and begin a new
batch.

In order to learn the optimal parameters in (11), we have
to deviate from the current policy estimate, i.e. explore. A
standard strategy for exploring in the case of continuous
actions is adding random perturbations to the policy, e.g. in
the form of Gaussian noise. This results in a stochastic policy
that induces undirected exploration, i.e.,

po(als) = mg(s) + Cas (15)

where (, is normally distributed according to (, ~
N(0,021,). Convergence properties for Q-learning are es-
tablished in e.g. [18] and elaborated further in Section V-B.
The stochastic policy in (15) will serve as a baseline for the
variance-based exploration scheme proposed in this paper.

III. PARAMETER SPACE EXPLORATION

Exploration in parameter space is closely related to the
concept of randomized value functions, which may be used
as an alternative to TS without the need for an intractable
exact posterior representation. Exploration in parameter space
has been studied in, e.g., [7] and [13]. The referenced work
is similar in the sense that NNs are used for approximating
the value function, and that a sample from an approximate
posterior distribution of the value function is used to induce
exploration.

To the best of the authors’ knowledge, only exploration
in action space has been tested for MPC as a function
approximator in RL. Comparing NNs and MPC schemes
as function approximators, we conjecture that exploration in
parameter space is particularly suited when using MPC, as the
parametrization is smaller and less convoluted than for NNs
(due to the layers and consecutive nonlinear activations), and
also more easily interpreted.

We therefore propose to adopt exploration in the parameter
space for MPC, by adding uncorrelated Gaussian noise to the
parameters as follows

0=0+¢, (16)

where (, ~ N(0, aglp). The exploration policy is then
obtained by acting greedily with respect to the Q-function
defined by the perturbed parameters, i.e.
7y = argmin Q,(s, a). (17)
a
Remark 1. We note that exploration in parameter space
in combination with Q-learning, generally calls for a batch
approach to Q-learning as given by (14). For an incremental
approach as in (13) where we only have one set of parameters
0, the resulting TD-error as we update the parameters accord-
ing to (16) would be L(sy, ar)+vVy(sp+1)—Qy(sk, m4) where
Q4(sk,my) = Vy(sk), i.e. we are fitting the V-function rather
than the Q-function.

Depending on the selected parameterization and the re-
sulting range of parameters, which in turn depends on the
problem at hand, we may choose to perturb the normalized
parameters in order to use the same scale for perturbing the
entire parameter vector. Alternatively, the states and actions in
the problem can also be scaled, which will result in a smaller
variation in parameter range, which is also known to speed up
learning.

In the next section, we will consider an alternative to adding
random perturbations to the parameters, namely adding a
perturbation based on the uncertainty of the value function. We
will use the exploration scheme in (16) as a second baseline
for our proposed method.

IV. VALUE FUNCTION IDW VARIANCE

With the goal of guiding exploration using the uncertainty
of our value function estimate, we need a method for quan-
tifying such uncertainty. In Bayesian exploration, we use the
covariance of the resulting posterior distribution of a Gaussian
process (GP), to guide exploration. Alternatively, interpolation
methods can be used to define non-probabilistic uncertainty
measures that are computationally cheaper to evaluate. In
[19], radial basis functions (RBFs) were used to formulate
a measure of uncertainty based on sampled points. In [20],
an uncertainty measure based on IDW was compared to a
Bayesian exploration for global optimization and showed com-
petitive performance. We propose to use IDWs for quantifying
the uncertainty of the value function.

A. Inverse distance weighting

IDW is a method for interpolation given a data set, that also
allows us to define a variance function given a predictor of the
function that is sampled. Let n = (0, s), where n € R?. We
may consider the following scaling function ¢ : R? — RY
in order to be immune to the different scaling of individual
parameters and states

. 2 max T 7Jmin
6(n) = dlag() (n — max = Tmin) (18)
Thmax — T)min 2

so that ¢(n) € [—1,1] for all » € [Mmin, Nmax]. Where
[Mmaxs Thmin] € R%. The min and max values of the states and
parameters can be based on constraints and reasonable bounds
on possible parameter values.

The IDW framework could be used to estimate uncertainty
for both the value function and the action-value function.
Because we will use the IDW variance to measure parametric
uncertainty only, we do not need to consider the additional
argument of the action-value function, and therefore choose
to apply IDW to the value function. For convenience we
define Vj(s) = V(n), where Vy(s) is the parameterized V-
function from (5). We then assume that we have samples of the
true V-function available and that we have collected a vector
Vi = {(V4,,..., Vi, } of M samples where V;, = Vi(n;) at
corresponding points 7;,...,n5. For a new instance of 7,
we consider the (scaled) squared Euclidean distance function
d? : R? x R? — R given as

d*(n,m:) = ($(n;) — S(m) " (d(mi) — d(n)), i=1,.... M.

19)

The inverse distance weighting function w; : R? — R can
then be defined as in [21]

1

wi(n) = 57—,

d2 (777 777,)

and assigns larger weights w;(n) to samples that are close to 7

than to samples further away. In [22], the following alternative

weighting function was suggested

(20)

e—d*(n.n:)
d?(n,mi)
The weighting function in (21) is similar to (20) for small
values of d2, but more quickly reduces the effect of points 7;

w;i(n) = 2n

25 i i+3

Fig. 1: Example of IDW: Function y (green) and samples
(nk,yx) (blue dots). Error bands are given using the IDW
variance estimate in (24) i.e. £3+/72(n) (shaded blue) evalu-
ated for the predictor (7).

far away from 7 due to the exponential term. We then define
the following function v; : R? — R as

1 ifn=mn
vi(n) = {0 if p=m;,j #i (22)
;\2“1(33 o) otherwise
which allows us to define
M
Vin) => vV, (23)

i=1

which is an IDW interpolation of {(n, V;;)}},. Using the
selection function in (22), the function in (23) will be equal
to an already sampled function value in case we have 7 in
our data set, if not we will interpolate on the M existing
samples. It was shown in [23, Lemma 1], for both choices of
the weighting function, (20) and (21), that the interpolation
function V' (n) is differentiable everywhere on R?. Based on
the IDW interpolation function, we define the IDW variance
function r2 : RY — R as given by [22]-[24]

M
() = > vi(n) (Ve, = V(). (24)
i=1

Essentially, the IDW variance estimate is a weighted average
of the squared error between our sampled points V;, and our
predictor V(1)). As V(n) is differentiable, it follows that the
IDW variance estimate is also differentiable everywhere on R9.
Figure 1 is one example of how the IDW variance estimate
can be used to define error bounds for a predictor of, in this
case, a scalar function y.

B. p-step TD prediction of V

Monte Carlo (MC) learning involves learning from expe-
rience, using sequences of states, actions, and rewards. In
fact, MC learning offers an alternative method to TD-learning

based on (13) for learning the action-value or value function.
Whereas TD-learning provides a low variance but high bias
estimate of V', an MC estimate of V' will have a high variance
but a low bias, see, e.g., [4]. Here we propose to use MC
learning for providing V'-targets to be used with IDW. Using
the IDW framework, our variance estimate will be based
on a weighted average of the squared difference between
these targets and our function approximator. The weights are
assigned using inverse distances according to (20), i.e. targets
sampled for states and parameters similar to current values in
n will influence the variance estimate more.

We now consider a policy 75, where 6 denotes the parameter
vector. For notational convenience we let m5 = 7. We consider
a selected number of p states and actions, i.e.

{Skfpaa/kfp7sk7p+17-"aa/kflask} ~ T (25)

where ~ signifies that states and actions were obtained by
acting according to policy 7. The data in (25) is used to
construct a V-function sample by evaluating the sum of
discounted costs. In order to generalize to a continuing task
or very long episodes, we bootstrap on our value function
estimate for the last sampled state. The V-prediction is given
as

Vi(Or, sk—p) = L(Sk—ps ag—p)+

YL(Sk—p+1; Ak—p+1) + ...+ Vg, (s1), (26)

evaluated for the current parameter vector . The V-estimate
provided by (26) can be thought of as a p-step TD prediction of
V' [4], and p thereby becomes a hyperparameter. Because we
bootstrap on our value function, both our targets and predictor
in (24) is based on the function approximator in (5). It is
therefore important that p is large enough, such that the effect
of bootstrapping is small. Moreover, the effect of discounting
will contribute to reducing the bias of bootstrapping. However,
selecting p large relative to the batch size, means that we
obtain few samples of the value function, which will influence
the variance estimate. An alternative to the target we proposed
in (26), is an exponentially weighted estimate as the authors
propose for the advantage function in [25].

Remark 2. As the variance-based exploration scheme is
perturbing in parameter space, we should, as for the random
exploration in parameter space, use a batch manner to Q-
learning as given in (14). This entails having two sets of
parameters, where one set of parameters is continuously
updated 0, whereas the other set of parameters 0 = 0 is used
to define a policy that visits informative states.

The V-function estimate in (26) is particular for the current
policy estimate 7, i.e. we are estimating V™. As the parameters
are updated from @ to #’ at the beginning of a new batch, data
is collected with an updated policy 7', and we are making
p-step predictions of 7 Although the previously sampled
V-functions are made for an outdated policy, they may be
useful for our purpose, which is to estimate uncertainty w.r.t
the parameters. Also, in our choice of weighting function in
the IDW variance estimate, e.g. either (20) or (21), we can
influence the impact of previously sampled targets on our
variance estimate.

Remark 3. IDW methods are known to be successful and ef-
ficient in deterministic settings, but also have some robustness
with respect to measurement noise as demonstrated in [20],
[24]. This means that the selected framework can also be used
for the exploration of stochastic systems.

C. Practical implementation

As the number of samples M increases, the IDW variance
function becomes increasingly computationally heavy to eval-
uate. For a practical implementation, that is able to run fast in
real-time, we set a limit for the maximum number of samples
Max used to evaluate (24). If our data set already contains
Mnax samples, we evaluate the following distance measure for
a new instance of 7

Mlnax Mf“ZIX Mn]ﬂx
> d(n,m) > min{ S dmim)n Y dz(m,anax)}
1=1 =1 =1

27
If the summed distance from a new sample 1 in (27) to our
current samples 71, ..., M, 1S larger than the least different
sample in our dataset, we will replace the old sample with the
new. In the opposite case, we will not update our data set.
The maximum number of samples M, thereby becomes a
hyperparameter.

Remark 4. Although the size of the data set in this framework
can be controlled by limiting the number of samples to include,
the parameter dimension, in addition to the state dimension,
will also affect the size. The IDW variance (24) is only
evaluated at the beginning of each batch, so the computation
time of the variance itself may therefore not necessarily be a
problem. Nonetheless, a small parameter space will ease the
work related to handling the sampled data needed to evaluate
the IDW variance. This framework is therefore particularly
suited for using MPC as a function approximator, which
typically uses much fewer parameters than the standard choice
of NNs.

V. VARIANCE-BASED EXPLORATION

The most common method for ensuring exploration during
learning in RL is using or adding randomness to actions or
parameters. In this section, we will see how we can leverage
an IDW framework as detailed in the previous section, in order
to direct exploration to where we have uncertainty in our value
function estimate. We are then acting according to the strategy
of “optimism under uncertainty”, and hoping that by exploring
areas of high uncertainty our policy will visit more informative
states and actions, and hence explore more efficiently.

Combining a variance-based exploration in the parameter
space with a batch approach to Q-learning, allows us to
consider a perturbation to the parameters at the beginning of
each batch, and keep these parameter values for the duration of
one batch. The advantage of this approach is that we induce a
state-dependent change in the policy over multiple time steps,
what is often referred to as deep exploration.

A. Variance-based perturbations in parameter space

We therefore propose to use the variance estimate obtained
in (24) to perturb the parameters at the beginning of each
batch, in a more meaningful way than adding pure random
perturbations as in (16). We first define the gradient of the
IDW variance function w.r.t. the parameters:

M
Vor?(n) = Z Vovi(n)(Vi, — V(n))?

—2v;(n)(V, — V(n))VeV(n%

in order to highlight the fact that the sensitivity of the MPC
scheme, in terms of ng/(n), is used in evaluating the gradient
of the variance. We propose the following update of the
parameters in order to efficiently explore

(28)

0=0+Ver?(0,s)+ %gp, (29)
where ¢, is a noise term as defined for (16) and Vo2 (0, s)
is the bounded gradient of the variance estimate w.r.t. the
parameters, obtained using IDW. The gradient of the IDW
function is added to the parameters, in the hope that exploring
parameter values in a direction where our value function is
uncertain, may improve our estimate. The noise term is added
to ensure some random exploration in parameter space, in
order to collect data such that the variance estimate of our
function approximator is meaningful. We propose to bound
the variance gradient by using the standard deviation used for
Gaussian exploration in parameter space, which first of all
makes the two methods highly comparable, and also prevents
the addition of yet another hyperparameter, e.g.,

Voi?(0, s) = sat(Ver?(0, s), —20,,20,). (30)

A policy estimate based on the perturbed parameters in (29),
is obtained according to

mg(sk) = argmin Qg(sk, ax). (€29)

The formulation in (29) and (31) resembles the exploration
scheme of randomized value functions, where a value function
is sampled from an approximate posterior distributed and then
used for greedy action selection. However, our approach is not
completely random in sampling the value function but uses
the estimate of variance to guide the sampling. We make the
prediction of V for each realization of § as well as different
states, using p samples of states and actions during a batch, and
store it in the data set D. The data set is used to re-evaluate
the variance at the beginning of the next batch, in order to
generate a new (perturbed) parameter vector to be used. This
is summarized in Algorithm 1.

B. Convergence properties

Q-learning will converge under the assumption of satisfying
two conditions: (1) Greedy in the limit with infinite exploration
(GLIE), (2) the step-sizes «y satisfy the Robbins-Munro
sequence. For more details, the reader is referred to [18]. The
GLIE condition entails that all state-action pairs are explored
infinitely many times, and that, as time goes to infinity, the

Algorithm 1: Variance-based exploration

1 Input : Initial MPC parameters 6, initial learning
parameters 50, initial state s, data set D, batch
update frequency b, learning step size «, number of
samples used to generate V-target p, maximum
number of samples in data set M., parameter noise
distribution o;

2 Output : Optimal policy 7y

3 while k& < k,,,. do
4 if mod(k,b) = 0 then

5 Update MPC parameters with learned
parameters 6, = 05
6 Perturb parameters to get 6, according to (29)
based on D
7 Ensure that the IDW variance gradient respects
bound (30)
8 end

9 Act greedily w.r.t. current Q-estimate (31)
10 if mod(k,b) > p then

11 if |D| < Mgy or (|D]| > My and (27)) then
12 Calculate p-step prediction of V4, from (26)
13 Add {Vtk_,sk,ak,ék} to D

14 end

15 end

16 Update ék according to (14)
17 k< k+1
18 end

policy converges to the optimal policy. The second condition
(2) is not directly related to the exploration scheme and is
most commonly satisfied in practice by the selection of small
constant step sizes. Formally, we can ensure GLIE for the
proposed exploration scheme in Section (V-A). The first part
of GLIE is ensured by keeping a random term in (29) so
that we ensure sufficient exploration even though the gradient
of variance eventually may converge to a small number. The
second part of GLIE can be ensured by using a decaying scalar
i.e. B(Vo, 7 (0k, sk) + £(p) where B = f3, exp(—wk) and w
is a hyperparameter.

VI. SIMULATION EXAMPLES

We apply the proposed exploration scheme to two sim-
ulation examples, namely on an LQR problem and a cart
pendulum system. The latter is a popular example in the
control systems literature, as it is open-loop unstable and
nonlinear. For each simulation example, we will benchmark
our method with respect to both () Gaussian action noise and
(¢¢) Gaussian parameter noise.

A. LOR

The following example is adopted from [26]. We consider
a discrete linear system of the form

Sp+1 = Asy, + Bay, (32)

with system matrices

_|cosB sinf |11 0
A=r {Sinﬂ cosﬂ] » B= [0 0.9} ’

where we use k = 0.95, and 8 = 22° [deg]. The baseline
stage cost is selected as

(33)

1 1
L(s,a) = §Hs—sref||2+§||a—aref||2, 34)
where s, = [0.1,0.1]7, and the reference input is found
accordingly. The prediction model is defined as
cosB sinB 1 0
A = ~ ~ B - 35
0" [sinﬁ COSﬁ:| r 0 [0 1} ’ (35)

where B = 20°. The parameterized MPC scheme reads as

N-1 2
. N B 2 k|l | Tk — TLref
min V + |zn — Tretl| P + ,;:0 v Lk B uref] (36a)
S.t Tp+1 = Aoxg + Bouk, x0 = s, (36b)

using a prediction horizon of N = 10 and P is the solution
to the discrete Riccati equation obtained using the inaccurate
system dynamics in (35). We let the parameter vector be
0 = {Zrer, Urer, Vo} and use Q-learning with a learning rate
of v = 0.1. We consider a continuing task and let v = 0.99.
We simulate the system for a total of 5000 time steps, and
use Q-learning in batches of length 200, i.e., we update
the parameters in the MPC scheme every 200 time steps.
For each exploration scheme, we consider a range of noise
distributions. For brevity, only the best-performing ones are
reported. The system states and actions are plotted both
during exploration and exploitation, i.e., we use the learned
parameters to simulate the system, for Gaussian action noise
and variance-based exploration, see Figure 3. We also plot
the norm of the parameter updates resulting from the different
exploration schemes, in order to give an indication of when
the algorithm converges. Additionally, we state the cost of
exploration, i.e. the sum of cost over all time steps needed
to see a convergence of the parameters, as well as the sum of
cost over simulations in exploitation, see Table 1. The numbers
reported in Table I are found for a total of 5 simulations run
in each category.

For the variance-based exploration scheme, we use p =
10, do not pose any restrictions on the data sampled, i.e.,
Mnax = 5000 and use the weighting function in (21). The
resulting IDW variance estimate (24) is plotted over learning
batches in Figure 2. We see that the mean of the variance
is initially small but eventually grows. The peak around 5
batches, seems to result in a larger parameter update which can
be spotted in the lower-right plot in Figure 3. As increasingly
more parameter values are tried out in the simulation, and
data is gathered, the variance estimate starts decreasing. From
the resulting statistics in Table I, we see that Gaussian action
noise for this particular problem obtains the best performance,
in terms of minimizing the cost during exploitation, but at
a much higher cost than both random perturbations as well
as variance-based perturbations in parameter space. Variance-
based exploration in this case obtains a slightly higher cost in

0.6

0.4

0.0

—0.2

—-0.4
0 5 10 15 20
Batch
Fig. 2: The mean and two standard deviations of the IDW
variance estimate (24) over learning batches.

exploitation compared to Gaussian action noise, although the
same as Gaussian parameter noise, while being the cheapest
alternative during exploration. In Figure (3), we see that
the empirical standard deviation of the simulated states and
actions are visibly larger for variance-based exploration than
for Gaussian action noise in exploitation, however, we note
that the resulting standard deviation in the accumulated cost
is small in exploitation, see Table I.

B. Cart pendulum

We consider the cart-pendulum system as depicted in Figure
4.

z

Fig. 4: Cart-pendulum system, with model parameters as
specified in Table III.

The dynamics of the cart pendulum, neglecting friction, are
given by

1 . 1 .
(M +m)z+ §mlq§ cos ¢ = §mlq’)2 sin ¢ + u, (37a)
1 - 1 1
ngQ(b + imli cos ¢ = —imgl sin ¢, (37b)

where z and Z are the cart position and velocity respectively,
and similarly ¢ and ¢ are the pendulum’s angle from the
vertical axis and angular velocity. The force u is the control

input and g is the acceleration of gravity. Hence, the state
is s = [2,2,6,6]" and the action a = u. We use the
model parameters as listed in Table III. The dynamics in (37)
are converted to a state space representation, discretized, and
used to simulate the system. A linearized version of the state
space representation is used as the prediction model in the
MPC scheme. The state space representation and the linearized
dynamics are found in e.g. [27].

A 4"-order Runge Kutta scheme is used to discretize the
dynamics in (37), using the step size dt = 0.1 s. We consider
the following constraint, in newtons, on the force acting on
the cart

7T<a<T. (38)

Moreover, we use a discounting factor of v = 0.99 and use
the following RL cost

T
S — Sref 1, 0 S — Sref
a } {O 0.01} { a } ’ (39)

where s.f = [0.5,0,0,0] . The linearized prediction model in
the MPC scheme, defined by A and B, is obtained from lin-
earizing the system dynamics (37) at ¢ = 0, corresponding to
the pendulum being in an upright position. The parameterized
MPC scheme reads as

L(s,a) = [

N—-1
min VO + ’)/NH§N - gref”% + Z 7k£9(§7u) (403’)
S,u =0
S.t 81 = A§k + Buk, Ty = S, (40b)
—7<u, <7, (40c)

where 3 is the predicted state, P is found using A, B and N =
30. We assume that we know all state references, except the
cart position, i.e. §f = [0, 0, 0, 0]. Moreover, we parameterize
the stage cost using a quadratic function according to

lo(3,u) = [3 - Sf} : M(6) [8 B Sf] , (41)

U U
where M (6) is a positive definite matrix. The parameter
vector can be written as, with some abuse of notation, 0 =
{Vo, M(0),0.}. We learn in an episodic manner, considering
episodes of length 300, and let one episode correspond to one
batch in terms of when we update the parameters. We learn for
a total of 1000 batches and use a learning rate of a = 0.5. We
test all three exploration schemes, for an interval of Gaussian
distributions, and report the best-performing distribution in
each category. For the variance-based exploration scheme, we
use p = 110, My.x = 5000, and the weighting function in
21 .

As for the previous example, we have plotted the simulated
states and actions during both exploration and exploitation,
for Gaussian action noise and variance-based exploration, as
well as the normed parameter updates, see Figure 5. Table
IT lists the sum of the cost for exploration and exploitation.
The main goal of learning, in this case, is to obtain the
true desired cart position. We see from plotted cart position
during exploration, that variance-based exploration causes the
system to visit positions closer to the true reference, than using
Gaussian action noise. Here, this results in a small, but still

TABLE I: Cost statistics for LQR simulations. The mean and standard deviation (in parentheses) are found for a total of 5
simulations in each category.

Exploration method Exploration Exploitation

o k S L(s,a) k S L(s,a)
Variance-based 0.1 5000 28.74 (16.52) 20 0.021 (0.00)
Gaussian noise in parameter space 0.1 5000 57.66 (6.55) 20 0.021 (0.00)
Gaussian noise in action space 0.1 5000 132.66 (1.721) 20 0.020 (0.00)

S S9 52
0.5 0.5 0.95
0o 1 HH“H“ 0.0 “mmm#m 0.00
—0.5
0 5000 0 5000 0 5000 0 5000
aq a (45} az
0.5 0.5 0.2 0.2
—0.2
—0.5 =0.5 —0.2
0 5000 0 5000 0 5000 0 5000
k k k k
S1 52 51 52
0.10 0.10
0.10 0.10
0.00 0.00 0.00 0.00
0 10 0 10 0 10 0 10
ay a2 ap a2
5 0.05
0.05 0.05 0.05
0.00 0.00 0.00 0.00
0 10 0 10 0 10 0 10
k k k k
1A0]] A6
1073
1073
1074
1074
0 5 10 15 20 25 0 5 10 15 20 25
Batch Batch

Fig. 3: LQR simulation results. Upper plots: the mean and two standard deviations of states and actions during exploration, with
Gaussian action noise (left) and variance-based exploration (right). Middle plots: the mean and two standard deviations of states
and actions during exploitation, using parameters learned with Gaussian action exploration (left) and variance-based exploration
(right). Bottom plots: the mean of parameter updates using Gaussian action noise (left) and variance-based exploration (right).

TABLE II: Cost statistics for cart pendulum simulations. The mean and standard deviation (in parentheses) are found for a
total of 3 simulations in each category.

Exploration method Exploration Exploitation
o k > L(s,a) Kmax > L(s,a)
Variance-based 0.1 300000 58071.39 (235.94) 100 47.86 (0.01)
Gaussian noise in parameter space 0.1 300000 60558.04 (155.20) 100 47.46 (0.03)
Gaussian noise in action space 0.0001 300000 61586.95 (0.033) 100 48.86 (0.00)
z z z z

T O Ut

o

—1 -1 -1
¢ ¢ ¢ é
0.2 1
0.0 L --------------- 1 A 0.0 r\w --------------- A
—0.2 J 0 2 —0.2 , 0 72
u {(s,a) u {(s,a)

|

ot o o
o N
o W

|

or o ot

&

=) N
=) ot

k k k k
z z z z
O.n) 05 040 05
0.0 00 f 0.0 00 f S——————
—05 —0.5 \/ —0.5 —0.5 \/
10) 1) 10) 10)
1 1
0.0 /\W ------ /\ 0.0 /_/—4 --------- /\
0 LR 0 LR
—0.2 v —0.2 v
u ((s,a) u ((s,a)
5 5
2.5 2.5
0 j\w -------- ’ /k 0 j\,— ------ ’ /\
=5 T -5 T e —
0 50 100 0 50 100 0 50 100 0 50 100
A0 lao]
107! 107!
1072 102
—3
10 10°*
1074
1074
0 200 400 600 800 1000 0 200 400 600 800 1000
k k

Fig. 5: Cart pendulum simulation results. Upper plots: the mean and two standard deviations of states and actions during
exploration, with Gaussian action noise (left) and variance-based exploration (right). Middle plots: the mean and two standard
deviations of states and actions during exploitation, using parameters learned with Gaussian action exploration (left) and
variance-based exploration (right). Bottom plots: the mean of parameter updates using Gaussian action noise (left) and variance-
based exploration (right).

visible improvement in both the plotted cart position as well
as the calculated cost of exploitation in Table II.

The statistics in Table II are found for a total of 3 sim-
ulations in each category. For Gaussian exploration in action
space, we see that very little noise is needed in order to obtain
the best performance in exploitation, namely o, = 0.0001.
By using a Gaussian perturbation in parameter space with a
larger standard deviation we are actually able to improve the
performance in exploitation, while also reducing the cost of
learning. Combining Gaussian parameter noise with the vari-
ance gradient, we are able to make exploration even cheaper
while achieving a similar improvement in performance.

VII. CONCLUSION

We have presented a first attempt at variance-based explo-
ration particularly suited for using a model predictive control
(MPC) scheme as a function approximator in RL. The method
is based on inverse distance weighting (IDW) to build a
variance estimate of the V-function approximator, which is
computationally cheap compared to probabilistic methods such
as Gaussian processes (GPs) and well-suited in an online
setting. The proposed exploration scheme is tested in simula-
tion and benchmarked against Gaussian perturbations in both
action and parameter space. The results show that exploration
in parameter space generally is cheaper than exploration in
action space while achieving at least a similar performance in
exploitation using the learned parameter values. This suggests
that Gaussian exploration in parameter space, as already sug-
gested for NNs as function approximators in RL, successfully
can be used also with MPC. The simulation results also
revealed that variance-based exploration in parameter space
further reduces the cost of exploration, compared to Gaussian
perturbations, with the same performance in exploitation. This
means that exploration can be made even cheaper, with only
a small increase in computational cost and with minor overall
changes to the existing implementation.

APPENDIX

TABLE III: Cart pendulum model parameters

Description Symbol Value
Cart weight M 24 kg
Pendulum weight m 0.23 kg
Acceleration of gravity g 9.81 m/s?
Pendulum length l 0.36 m
ACKNOWLEDGMENT

The authors gratefully acknowledge the support by the
industry partners Borregaard, Elkem, Hydro, Yara and the
Research Council of Norway through the project Towards Au-
tonomy in Process Industries (TAPI), project number 294544,
and the project Safe reinforcement learning using MPC (SAR-
LEM), project number 300172.

[1]

[2]

[3]

[4]
[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]
[19]

[20]

[21]

(22]

[23]

[24]

REFERENCES

P. Abbeel, A. Coates, M. Quigley, and A. Ng, “An application of
reinforcement learning to aerobatic helicopter flight,” Advances in neural
information processing systems, vol. 19, 2006.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, 1. Antonoglou, V. Panneershelvam,
M. Lanctot et al., “Mastering the game of Go with deep neural networks
and tree search,” Nature, vol. 529, no. 7587, pp. 484-489, 2016.

S. Gros and M. Zanon, “Data-driven economic NMPC using reinforce-
ment learning,” IEEE Transactions on Automatic Control, vol. 65, no. 2,
pp. 636-648, 2020.

R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

N. Cesa-Bianchi, C. Gentile, G. Lugosi, and G. Neu, “Boltzmann
exploration done right,” Advances in neural information processing
systems, vol. 30, 2017.

J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust
region policy optimization,” in International conference on machine
learning. PMLR, 2015, pp. 1889-1897.

M. Plappert, R. Houthooft, P. Dhariwal, S. Sidor, R. Y. Chen, X. Chen,
T. Asfour, P. Abbeel, and M. Andrychowicz, “Parameter space noise
for exploration,” International Conference on Learning Representations,
2018.

M. Kearns and S. Singh, “Near-optimal reinforcement learning in
polynomial time,” Machine learning, vol. 49, pp. 209-232, 2002.

P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multiarmed bandit problem,” Machine learning, vol. 47, no. 2, pp. 235-
256, 2002.

W. R. Thompson, “On the likelihood that one unknown probability
exceeds another in view of the evidence of two samples,” Biometrika,
vol. 25, no. 3-4, pp. 285-294, 1933.

I. Osband, B. Van Roy, and Z. Wen, “Generalization and exploration via
randomized value functions,” in International Conference on Machine
Learning. PMLR, 2016, pp. 2377-2386.

I. Osband, C. Blundell, A. Pritzel, and B. Van Roy, “Deep exploration via
bootstrapped DQN,” Advances in neural information processing systems,
vol. 29, 2016.

M. Fortunato, M. G. Azar, B. Piot, J. Menick, M. Hessel, I. Osband,
A. Graves, V. Mnih, R. Munos, D. Hassabis, O. Pietquin, C. Blundell,
and S. Legg, “Noisy networks for exploration,” in International
Conference on Learning Representations, 2018. [Online]. Available:
https://openreview.net/forum?id=rywHCPkAW

R. Y. Chen, J. Schulman, P. Abbeel, and S. Sidor, “UCB and infogain
exploration via Q-ensembles,” arXiv preprint arXiv:1706.01502, vol. 9,
2017.

N. Nikolov, J. Kirschner, F. Berkenkamp, and A. Krause, “Information-
directed exploration for deep reinforcement learning,” International
Conference on Learning Representations, 2019.

K. Lowrey, A. Rajeswaran, S. Kakade, E. Todorov, and 1. Mordatch,
“Plan online, learn offline: Efficient learning and exploration via model-
based control,” International Conference on Machine Learning, 2018.
E. C. Kerrigan and J. M. Maciejowski, “Soft constraints and exact
penalty functions in model predictive control,” Proceedings of the
UKACC International Conference on Control, 2000.

J. N. Tsitsiklis, “Asynchronous stochastic approximation and Q-
learning,” Machine learning, vol. 16, no. 3, pp. 185-202, 1994.

H.-M. Gutmann, “A radial basis function method for global optimiza-
tion,” Journal of global optimization, vol. 19, no. 3, pp. 201-227, 2001.
A. Bemporad, “Global optimization via inverse distance weighting and
radial basis functions,” Computational Optimization and Applications,
vol. 77, no. 2, pp. 571-595, 2020.

D. Shepard, “A two-dimensional interpolation function for irregularly-
spaced data,” in Proceedings of the 1968 23rd ACM national conference,
1968, pp. 517-524.

V. R. Joseph and L. Kang, “Regression-based inverse distance weighting
with applications to computer experiments,” Technometrics, vol. 53,
no. 3, pp. 254-265, 2011.

A. Bemporad, “Global optimization via inverse distance weighting and
radial basis functions,” Computational Optimization and Applications,
vol. 77, no. 2, pp. 571-595, 2020.

, “Active learning for regression by inverse distance weight-
ing,” Information Sciences, 2023, in press. Also available on
http://arxiv.org/abs/2204.07177. Code: http://cse.lab.imtlucca.it/ bempo-
rad/ideal.

[25]

[26]

[27]

J. Schulman, P. Moritz, S. Levine, M. 1. Jordan, and P. Abbeel,
“High-dimensional continuous control using generalized advantage es-
timation,” International Conference on Learning Representations, vol.
abs/1506.02438, 2015.

S. Gros and M. Zanon, “Towards safe reinforcement learning using
NMPC and policy gradients: Part I-stochastic case,” arXiv preprint
arXiv:1906.04057, 2019.

S. L. Brunton and J. N. Kutz, Data-driven science and engineering: Ma-
chine learning, dynamical systems, and control. Cambridge University
Press, 2022.

