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Abstract—In this paper a Model Predictive Control (MPC)

method for torque control of a Permanent Magnet Synchronous

Motor (PMSM) is presented. The proposed approach takes into

account constraints on voltages and currents, and allows the use

of modulation techniques that eliminate the side effects caused

by the direct transistor actuation performed by Model Predictive

Direct Torque Control (MP-DTC) approaches. The optimization

problem resulting from the proposed MPC formulation is solved

online, in contrast with what is done in explicit MPC, where

the optimal control law is obtained offline by multiparametric

optimization. The performance of the proposed control strategy

is evaluated in Processor-In-the-Loop (PIL) experiments, carried

out on a low cost Digital Signal Processor (DSP) commonly used in

motion control. Results show that the proposed approach is able

to improve the torque dynamics with respect to a conventional

controller, and that an embedded implementation is feasible in

terms of required computational power and memory.

I. INTRODUCTION

Permanent Magnet Synchronous Motors (PMSMs) are
widely used in applications where high-performance, fast
torque response and high power density are required, such as in
robotics and machine tool drives. The standard control method
for both PMSMs and induction machines is Field Oriented
Control (FOC) with a cascade structure, where three linear
controllers (usually PI) are employed, one for tracking the
reference position/speed and two for the regulation of currents
in the direct-quadrature (d, q) reference frame. When Pulse
Width Modulation (PWM) is used, this control architecture is
often referred to as PI-PWM.

In recent years Model Predictive Control (MPC) has gained
considerable attention in the field of power converters and
electrical drives [1]–[3]. The main idea of MPC is to obtain
the control actions by solving at each sampling time a finite-
horizon optimal control problem based on a given prediction
model of the controlled process and an estimation of its current
state. At the cost of a relatively high on-line computational
burden, it provides a coordinated operation of the available
actuators to track multiple references and satisfy bounds on
inputs, outputs, and states of the process. As such, it is
well suited to handle multivariable and constrained control
problems. The application of MPC in the power electronics
and electrical drives field is mainly motivated by two facts: the
mathematical models of these systems, needed by MPC, are
well known, and several constraints have to be considered in
the design of the controller. In particular, voltage and current
constraints must be respected due to the physical limits of
the system and to safety reasons. MPC could be applied
to other areas of electric motor control such as Electronic

Throttle Control (ETC) and Hybrid Electric Motor control
in automotive applications. The ability to enforce constraints
using MPC could benefit motor control performance and
component protection.

To avoid the computational load required by online MPC
two main techniques have been widely adopted in recent years:
explicit MPC [4] and Finite Control Set MPC (FCS-MPC) [5].
In explicit MPC the optimization problem is pre-solved offline
via multiparametric Quadratic Programming (mpQP), and the
MPC solution turns out to be an easy-to-implement PieceWise
Affine (PWA) function of the parameters, for example via a
binary search tree evaluation [6]. The search time, in this case,
is logarithmic and the memory occupancy is polynomial in the
number of PWA regions, thus the explicit controller is well
suited for small problems only. The explicit MPC approach
has been successfully applied to motion control, see, e.g., [7]–
[11].

The FCS-MPC was initially applied in the field of power
converters and drives. It exploits the discrete nature of those
systems by manipulating the inverter switch positions directly.
The approach results in a combinatorial optimization problem
that is solved on line by enumeration and provides a sequence
of switch positions over the considered prediction horizon.
This technique has received considerable attention in recent
years and has been successfully implemented in motion control
[12]–[17]. FCS-MPC has been shown to significantly reduce
the switching losses and the harmonic distortions when com-
pared to standard methodologies. Unfortunately, such results
are only achieved with high control frequency (e.g., 40 kHz in
[15]), as this direct actuation couples the switching frequency
with the controller sampling time. As a consequence, even
though the optimization problem is relatively simple to solve,
a powerful digital controller is required to guarantee improve-
ments. Furthermore, the involved computational load scales
exponentially with the MPC prediction horizon, due to the
combinatorial nature of the problem. A review of the strategies
developed to achieve a long prediction horizon while keeping
the control problem tractable is presented in [18].

Other MPC approaches that have been proposed for this
kind of problem do not model the discrete nature of the system,
and can be formulated as convex optimization problems. In
this field, such strategies are referred to as Continuous Control
Set MPC (CCS-MPC). Several comparisons have been carried
out between FCS-MPC and CCS-MPC, and they have been
shown to provide similar performances [19]–[21]. However,
CCS-MPC has several advantages over FCS-MPC: it works
well with longer sampling intervals, it allows for decoupling
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of the switching frequency from the controller sampling time,
and it operates the inverter at a fixed frequency.

In this paper an online MPC method for torque control of
a PMSM is proposed, that we refer to as Model Predictive
Torque Control (MP-TC). The goal of the control action is to
provide an optimal amount of torque that allows to drive the
motor at a desired speed profile given the load torque, while
satisfying voltage and current constraints. Similar to the stan-
dard FOC based on PI, the architecture of the proposed method
consists of an outer loop that controls the motor speed, and an
inner loop that regulates the (d, q) currents. In the proposed
approach, MPC replaces the linear controllers of FOC in the
inner loop, while the outer loop is left unchanged. This choice
is motivated by two primary reasons: the mechanical dynamics
are slower compared to the electrical ones, and the critical
constraints on the system concern the electrical variables
that are dealt with in the inner loop (voltages and currents).
Compared to Model Predictive Direct Torque Control (MP-
DTC), where the transistors are actuated directly and the
control action is obtained by enumeration [12]–[14], [22], MP-
TC guarantees a fixed switching frequency, which is of utmost
concern in industrial applications where losses and thermal
stress have to be taken into account. Moreover, the modulator
decouples the switching frequency from the sampling time,
allowing the use of a less powerful Micro Controller Unit.

The proposed MP-TC approach belongs to the class of
CCS-MPC, where the control move is obtained by solving an
optimization problem at each sampling instant. In particular,
the proposed method amounts to solving online a Quadratic
Programming (QP) problem, where a quadratic cost function
of the variables of interest is minimized, subject to linear
constraints. Hence, in order to implement the MP-TC on
a digital controller, a QP solver needs to be embedded in
it. To the best of the authors’ knowledge, online MPC for
electrical drives on a low-power platform has been discussed
only in [23]. However, in that work no input constraints are
taken into account, the prediction horizon is short (one or two
prediction steps), and no information about the optimality of
the achieved solution is provided. In this paper, the authors
have implemented an efficient QP solver and carried out
Processor-in-the-Loop (PIL) experiments to prove the feasi-
bility of the proposed approach. The controller and the QP
solver have been embedded in a Texas Instruments DSP, and
simulated in closed-loop with an accurate model of a PMSM
provided by the drive manufacturer, Technosoft SA. As a novel
contribution, the authors demonstrate that MPC for constrained
torque control can be successfully implemented on low-power
DSPs commonly used for motion drive, without sacrificing
control features.

The paper is organized as follows. The mathematical model
of the considered system is presented in Section II and the
design of the proposed online MPC method is described in
Section III. PIL results are reported in IV, including a com-
parison with a standard FOC controller. Finally, conclusions
and considerations on future work are reported in Section V.

II. MATHEMATICAL MODEL

With respect to the (d, q) reference frame rotating syn-
chronously with the rotor, the electrical subsystem of a PMSM

can be modeled as follows:
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where t 2 R+ is the time index, R is the stator resistance [⌦],
L
d

and L
q

are the stator inductances [H] on the d-axis and the
q-axis, respectively, i

d

(t) and i
q

(t) are the stator currents [A],
and u

d

(t) and u
q

(t) are the stator voltages [V]. The quanti-
ties on the d-axis are the direct voltage/current components,
whereas those on the q-axis are the quadrature components.
The mechanical motion of the motor can be described by the
following equations:
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where !(t) is the electrical rotor speed [rad/s], B is the
coefficient of viscous friction [N·m·s], � is the motor flux
leakage [Wb], J is the inertia coefficient [kg·m2], ⌧(t) is the
electrical torque [N·m], ⌧

l

(t) is the load torque [N·m], and p
is the number of pole pairs. Considering an isotropic PMSM
where L

d

= L
q

= L, the simplified and complete model can
be written as follows:
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where ⌧(t) = K
t

i
q

(t) = 3
2p�iq(t) and K

t

the torque constant.
In the following we will assume p = 1. This assumption holds
true for the PMSM considered in this work. In this case the
electrical quantities correspond to the mechanical ones.

III. CONTROL DESIGN

The architecture of a standard FOC based on proportional-
integral controllers (PI-FOC) consists of an outer speed loop
and an inner current loop (see Figure 1). In order to achieve
the desired motor speed, the outer loop provides a torque
reference ⌧ref to the inner loop, that runs at higher frequency
and regulates the (d, q) currents in order to track the torque
reference. When no flux weakening is considered, the field
component i

d

is steered to zero and the quadrature component
i
q

is controlled to track a reference i
q,ref, which is obtained

by scaling the torque reference ⌧ref by the constant K
t

. Setting
the current i

d

to zero is a good solution for isotropic machines
where maximum current implies maximum torque. In order
to take field weakening into account, Maximum Torque per
Ampere (MTPA) tracking could be adopted [13], [23], however
this is out of the scope of this paper. The rotor speed is esti-
mated from the position information provided by the encoder,
and two of the three phase currents are measured to derive
the (d, q) currents, since the system is balanced. In PI-FOC,
the actuation commands computed by the linear controllers are
usually saturated to avoid violations of electrical constraints.

In the proposed MP-TC architecture, the current controllers
in the inner loop are replaced by MPC, while the outer loop
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remains unchanged (see Figure 2). As briefly mentioned above,
this hierarchical structure is justified by several reasons. First,
the dynamics of the mechanical part of the system are slower
than those of the electrical part. Furthermore, since the main
constraints in a motor involve stator voltages and currents,
MPC is especially useful in the inner loop, where those
constraints can be modeled as bounds on input and output
variables. Finally, the bilinear model (3) can be decoupled in
two linear models that can be used for MPC predictions.

A. MPC formulation

Let us focus on the inner loop to derive the formulation of
the proposed MPC problem. The current equations (3a)-(3b)
can be linearized by imposing a nominal speed !(t) = !0

in the bilinear terms !(t)i
q

(t) and !(t)i
d

(t). Discretizing the
resulting model with the inner loop sampling time T

s

yields a
discrete-time linear time-invariant (LTI) system of the form

x(k + 1) = Ax(k) +Bu(k) +Gv(k) (4a)
y(k) = Cx(k), (4b)
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are the matrices of the continuous-time system. The LTI
model (4) is used as the prediction model in the MPC problem.

At every time step k, the optimal control move for the
inner loop is obtained by solving the following MPC control
problem:
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�u

N�1X
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�u
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u
k+i|k 2 U, (5f)

x
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i = 0, 1, . . . , N � 1, (5h)
j = 0, 1, . . . , N �N

u
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where N is the prediction horizon, N
u

is the control horizon,
Q, R, and P are weight matrices of appropriate dimension,
x
k+i|k denotes the prediction of the variable x at time k + i

based on the information available at time k, and �u
k+i|k =

u
k+i|k � u

k+i�1|k, i = 0, 1, . . . , N � 1, is the vector of the
input increments, with u

k�1|k = u(k � 1).

The goal of minimizing the cost function (5a) is to track the
output reference r(k) = [i

d,ref(k), ⌧ref(k)]0, while penalizing
actuation activity. As previously mentioned, in this formulation
i
d,ref = 0 and ⌧ref is provided by the outer loop. Constraints

(5b) set the initial state as the current state x(k), (5c)-(5d) rep-
resent the prediction model, and (5e) force the input to remain
constant after the control horizon, to reduce the complexity of
the problem. Equations (5f)-(5g) impose constraints on inputs
and states. In order to guarantee the feasibility of problem (5)
at every time step, the state constraints (5g) are imposed
as soft constraints, i.e., small violations of those constraints
are allowed with a large penalty in the cost function. The
constraints on inputs and states are defined in the following
section.

B. Constraints

Since the MPC acts on the current-voltage subsystem, it
cannot handle constraints on mechanical quantities such as
motor speed. As discussed above, however, the most critical
constraints concern the electrical components [24]. The phase-
voltage limit is imposed by the maximum DC-bus voltage tol-
erated by the inverter. The phase voltage is intrinsically related
to the modulation scheme and, given a DC-bus voltage VDC,
the maximum allowed voltage can be set to Vmax = VDCp

3
, both
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for space vector modulation and pulse-width modulation [23].
On the other hand, the maximum current I

max

is chosen so
as to prevent overheating, and peaks larger than this limit are
usually allowed for short time intervals. This justifies the of use
soft constraints for (5g). In the (d, q) reference frame, those
constraints correspond to norm constraints on inputs and states:

u 2 Ũ = {u 2 R2 : kuk2  Vmax}, (6a)
x 2 X̃ = {x 2 R2 : kxk2  Imax}. (6b)

Equations (6) would translate into quadratic constraints. In
order to retain the linearity of the constraints in (5), polytopic
approximations of (6) can be considered [9], [23]. In this
paper we approximate the feasible region of (6) with octagons,
that resulted in an acceptable trade-off between accuracy of
the approximation and number of constraints. Since the direct
component of the stator current i

d

is almost always very close
to zero, except during flux weakening operation when it takes
negative values, we consider the constraint i

d

 0 to reduce
the number of constraints that have to be imposed in the online
MPC problem. The constraints u 2 U, x 2 X that are used
in (5) are shown in Figure 3.

C. Online Optimization

Problem (5) can be cast in the form of the following
convex QP:

min
z

q(z) , 1

2
z0Hz + p(t)0F 0z (7a)

s.t. Gz  W + Sp(t), (7b)

where z is the vector of optimization variables and p of
time-varying affine parameters. With the limited computational
power and memory available on embedded platforms, solving
such a problem within the available time interval can be a
challenging task. The timing constraints in motion control
are very restrictive, especially when electric quantities are
considered as variables. It is a common choice to require
1kHz sampling frequency for the speed loop and 10kHz
sampling frequency for the current loop. In this work we have
implemented an efficient QP solver, that is shown to solve the
problem (7) within the allowed time limit. Experimental results
are discussed in the next section.

Table I. MP-TC PARAMETERS

Prediction horizon N 5
Control horizon Nu 2
Voltage limit Vmax 36/

p
3 V

Current limit Imax 0.8 A

Output weights Q and P


0.1 0
0 0.5

�

Input increments weights R


0.05 0
0 0.05

�

Sampling Time Ts 0.3ms

IV. RESULTS

The proposed MP-TC has been tested and compared to
a standard PI-FOC controller, and the performance in terms
of speed tracking and load disturbance rejection have been
evaluated. Processor-in-the-loop simulations have been carried
out to accurately assess the feasibility of online MPC in terms
of required computational power and memory.

The tests have been carried out on a F28335 Delfino DSP
by Texas Instruments, which belongs to the TI C2000 series
commonly used in motion control. The DSP has a 32-bit,
150 MHz CPU and an IEEE-754 single-precision Floating-
Point Unit (FPU) with one hardware multiplier (32x32 bit).
The DSP is connected through a serial port to a PC, where
a MATLAB/Simulink R� model of the PMSM simulates the
controlled process and sends the measurements back to the
DSP where the control algorithm runs, closing the control
loop. The simulation model of the PMSM is provided by
Technosoft SA and is related to the MBE.300.E500 PMSM,
which is commercially available. The motor has a 4.3⌦ line-
to-line stator resistance R, a 3.56mH line-to-line stator induc-
tance L, and the flux linkage �0 is 0.0245Wb. The model
takes into account the quantization error due to the AC/DC
acquisition and the encoder resolution. The inverter is not
modeled and consequently switching noise is not considered;
in experimental setups with a real motor such noise can be
handled by a Kalman filter.

The sampling time adopted for the outer speed loop is 1ms
for both MP-TC and PI-FOC, while the sampling time of the
inner loop is 0.1ms in PI-FOC and 0.3ms in MP-TC. This
longer sampling interval is motivated by the computational
burden of the optimization problem which must be solved
at every iteration in the MP-TC approach. The parameters
of the MPC controller are reported in Table I. We verified
that longer control or prediction horizons do not improve
the performance of the closed-loop system noticeably. The
control algorithm was implemented in plain C and involves
only floating-point operations, to exploit the potential of the
MCU and optimize the execution time. The PI controllers have
been tuned considering the speed-to-torque and the current-
to-voltage transfer functions. Tests in simulations have been
carried out to fine tune the controllers and obtain the best
performance in terms of reference tracking.

The rotor speed profile used in simulation is shown in
Figure 4: it includes constant speed operations, an acceleration
at 0.1s, and an abrupt brake at 0.4s. During the constant speed
profile, the load torque ⌧

l

is suddenly changed at time 0.2s
and 0.3s. These abrupt changes are considered in order to
have the system operating close to the imposed constraints,
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where the optimal control action is not simply the solution of
the unconstrained control problem, so to stress the QP solver
and better evaluate its performance. The load-torque profile,
the reference torque and the actual mechanical torque with PI-
FOC and MP-TC are shown in Figures 5 and 6, respectively.

Simulation results show that MP-TC provides an improved
closed-loop performance with respect to PI-FOC, even though
the inner-loop sampling time in MP-TC is three times longer
than the one in PI-FOC. In particular, MP-TC yields a faster
response and smaller overshoots in torque tracking. As ex-
pected, improvements in speed tracking are less significant
because the speed loop is regulated by a standard PI con-
troller. Performance of MP-TC and PI-FOC are quantitatively
compared in terms of integral square error (ISE). The proposed
MP-TC grants an improvement of 2.3% and 4.2% in speed and
torque tracking, respectively. Figure 7 shows a detail of torque
tracking after a set-point change. It is worth noting that both
the controllers are able to handle the physical constraints of the
system. From the three-phase current plots shown in Figure 8,
it is clear that the drive operates close to the output constraints
during transient phases. Figure 9 shows the times t

sol

needed to
compute the optimal control action at every sampling instant.
These times have been measured on the DSP with an internal
clock. The results are very promising: even when the system
is controlled near the system constraints, the limit of 0.3ms
imposed by the sampling interval is always respected.

The controller is also minimal in terms of memory al-
location. The data needed by the MPC are stored in about
2.5KB out of the 34KB of memory provided by the DSP. The
memory occupied by the code is not considered in this amount,
but it is negligible with respect to the space required by the
QP data. Thus, all the control algorithm fits into the volatile
SRAM memory, avoiding the access to flash memory at every
iteration which could significantly slow down the execution of
the control algorithm.

V. CONCLUSIONS

In this paper an online model predictive torque control
method for a permanent magnet synchronous motor has been
proposed. An embedded QP solver is used to solve the MPC
problem at each sampling instant. The feasibility of online
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MPC in terms of required computational power and memory
has been demonstrated through Processor-in-the-Loop tests
on a low power DSP. PIL experimental results showed that
MPC can provide performance improvements with respect
to standard controllers. Future work includes extending the
proposed strategy to consider the speed loop and to handle
flux weakening. Furthermore, the effect of winding resistance
increase due to temperature rise will be considered to assess the
robustness of the controller. Applications of motor control by
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Figure 7. Zoom of the torque response profile with PI-FOC and MP-TC
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online MPC in the automotive domain will also be investigated.
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