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Abstract. Rising fuel prices and tightening emission regulations have
resulted in an increasing need for advanced powertrain systems and sys-
tematic model-based control approaches. Along these lines, this paper
illustrates the use of hybrid modeling and model predictive control for a
vehicle equipped with an advanced hybrid powertrain. Starting from an
existing high fidelity nonlinear simulation model based on experimen-
tal data, the hybrid dynamical model is developed through the use of
linear and piecewise affine identification methods. Based on the result-
ing hybrid dynamical model, a hybrid MPC controller is tuned and its
effectiveness is demonstrated through closed-loop simulations with the
high-fidelity nonlinear model.

Keywords: Hybrid systems, model predictive control, powertrain con-
trol, hybrid electric vehicles, piecewise affine systems, piecewise affine
system identification.

1 Introduction

The complexity of powertrain systems is increasing in response to tightening
fuel economy and emission requirements. In particular, the powertrains have now
more subsystems, components, inputs, outputs, operating modes and constraints
than in the past. Their effective treatment benefits from systematic modeling and
model-based control approaches.

In the paper we demonstrate how a hybrid dynamical model of an advanced
powertrain can be developed using linear and piecewise affine identification
techniques. The resulting hybrid model can be used as a basis for the design
of a hybrid Model Predictive Controller which uses mixed integer quadratic
programming (MIQP) solvers for the on-line optimization to coordinate com-
mands to powertrain subsystems and enforce pointwise-in-time state and control
constraints.
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Fig. 1. Configuration of the 4x4 hybrid electric vehicle

A specific case study based on a parallel Hybrid Electric Vehicle (HEV) in-
troduced in [1] has been chosen to demonstrate the proposed approach. This
vehicle relies on two electric motors (one in the front and one in the rear of the
vehicle), in addition to a turbocharged diesel engine and a high voltage battery.
A realistic simulation model with detailed component representations will be
used as a basis for deriving a hybrid model; the hybrid model will than be used
for prediction in a model predictive control (MPC) strategy. Any upfront man-
ual simplification of the simulation model is avoided to demonstrate how hybrid
modeling and piecewise affine system identification techniques can be directly
and systematically applied to the high fidelity industrial models.

2 Model

Our case study is an advanced 4x4 hybrid electric vehicle configuration discussed
by Dextreit et al., in [1]. This vehicle is equipped with a turbocharged diesel
engine, a high voltage electric battery and two electric motors one acting on
the front axis and one acting on the rear axis. The front electric motor is the
Crankshaft Integrated Starter Generator (CISG), which is directly mounted on
the engine crankshaft and is used for starting and assisting the engine and for
generating electric energy. An Electric Rear Axle Drive (ERAD) motor is located
on the rear differential. The ERAD can operates as a traction motor to drive
the rear wheels or as generator, either during regenerative braking or when the
battery needs to be charged.

Our developments are based on a high fidelity simulation model of the over-
all vehicle. The simulation model is based on the nonlinear maps of the HEV
components, including nonlinear models of battery and vehicle dynamics, and
switching components such as gears. The simulation model can be subdivided
into the following subsystems:

Electrical battery, describes the dynamics of the NiMH high voltage battery
on board of the vehicle. The model equations are

dSoC(t)
dt

=
Pw(t)

Vbatt(t)
· 1
CCh

, Vbatt(t) = OCV (t) − Pw(t)
Vbatt(t)

· R(t), (1)

dOCV (t)
dt

=
Pw(t)

Vbatt(t)
· f1(SoC(t)) − OCV (t), R(t) = f2(SoC(t), T (t)),
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where 0 ≤ SoC ≤ 1 is the State of Charge of the battery, Pw (W) is the electrical
power entering the battery, Vbatt (V) is the output voltage, CCh (F) is the charge
capacity, OCV (V) is the open circuit voltage, R (Ω) is the internal resistance,
and T (◦C) is the temperature. The input of (1) is the power requested (Pw ≤ 0)
or generated (Pw ≥ 0) by the electrical motors and by the auxiliary devices. The
outputs are the actual voltage Vbatt, the delivered current Ibatt = Pw

V , and the
state of charge SoC.

Vehicle longitudinal dynamics model. The model which describes the lon-
gitudinal vehicle dynamics has the form

Mtot(t)v̇veh(t) = F (t), (2)

where Mtot(t) (kg) is the sum of the vehicle mass M and the inertial mass Mi(t).
Here the inertial mass is calculated as the ratio between the overall inertia at
wheels J(t) (kg m2) and the square of the wheel radius rw (m). In (2), F (t) (N)
is the sum of all the equivalent forces acting on the vehicle

F (t) = Fdrl(t) + Fae(t) + Frol(t) + Fbrake(t) + Fgr(t) (3)

The forces involved in (3) are the driving force Fdrl, which is a function of the
total torque at wheels τwheel = τfdrl + τERAD (Nm) applied by the motors, the
aerodynamic force Fae(t), the rolling resistance forces, Frol(t) and the braking
force Fbrake(t) which are functions of the vehicle speed, and the force due to the
gravity on a non-zero road grade, Fgr(t). The inputs in (2), (3) are the torques
applied to the wheels τtot = rw ·F (t) coming from the driveline subsystem. The
output is the vehicle speed vveh (m/s).
Powerplant model models the internal combustion (IC) engine through differ-
ent maps which characterize its instantaneous efficiency, fuel consumption, and
operating limits. The inputs are the torque requested τIC,req (Nm) to an existing
torque controller, and the actual shaft speed ωshaft (rad/s), which is also the
speed of the CISG motor. We denote by JIC (kg m2) the inertia of the engine.
The outputs are the torque τIC (Nm) actually delivered by the engine, and the
fuel flowrate, frate.

Driveline model is composed by front and rear drivelines. The model of the
front driveline includes maps representing the losses along the driveline. The
rear driveline model includes maps for losses, efficiency, and limits in generating
and motoring modes for the ERAD motor. The inputs are the battery states
(1), the torque requested τerad,req (Nm), which is positive during the motoring
and negative during the generating phase, and the torque τgear delivered to the
front driveline. The outputs are the torque to each wheel and the power PERAD

(W) requested or generated by the ERAD.

Transmission model includes the maps of the CISG and of the gearbox, which
characterize the efficiency, the operating limits, and the transmission reductions.
The main inputs are the selected gear, gear� ∈ {N, 1, 2, 3, 4, 5, 6}, the battery
states, and the requested CISG torque τcisg,req . The outputs are the transmission
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Fig. 2. Overall schematics of the HEV hybrid dynamical model

output torque τgear , the rotational speed of the gear shaft ωshaft, and the power
PCISG (W) drained from or supplied to the battery by the CISG.

3 Hybrid Dynamical Model of the HEV

Hybrid dynamical models have been used in recent years to analyze and optimize
a large variety of systems in which physical processes interact with embedded
digital controllers and switching devices. Several modeling formalisms have been
developed to represent hybrid systems [2,3,4], including Mixed Logical Dynami-
cal (MLD) systems [5], which are discrete-time hybrid models useful to formulate
optimization problems involving hybrid dynamics. The language HYSDEL (HY-
brid Systems DEscription Language) was developed in [6] to obtain MLD models
from a high level textual description of the hybrid dynamics. MLD models can
be converted into piecewise affine (PWA) models [7] through automated proce-
dures [8,9]. HYSDEL, MLD and PWA models are used in the Hybrid Toolbox for
MatlabTM [10] for modeling, simulating, and verifying hybrid dynamical systems
and for designing hybrid model predictive controllers.

The complex model described in Section 2 is approximated by a discrete-time
hybrid model with sampling period Ts = 1s that is described in HYSDEL and
automatically converted in MLD form. The procedure to obtain such a model
involves the following operations:

1. Linear identification and time-discretization of the continuous dynamics.
Sections 3.2 and 3.3 below describe the identification of discrete-time lin-
ear models of the battery (1) and of the vehicle longitudinal dynamics (2),
respectively.

2. Piecewise affine identification. The nonlinear model is based on intercon-
nected nonlinear maps in the form of lookup tables. These are identified
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as static piecewise affine maps through the bounded-error approach [11] to
hybrid system identification as detailed below in Section 3.1.

3. Setup of the HYSDEL model. Once each subsystem ismodeled in discrete-time
piecewise affine form, all the submodels are assembled and interconnected in
a single HYSDEL model. This is used to generate the corresponding control-
oriented MLD model and to synthesize MPC algorithms for the energy man-
agement of the HEV under consideration.

The overall hybrid dynamical system is constructed by looking at the energy
distribution among the different components that constitute the HEV, rather
than at the mechanical devices that compose the nonlinear simulation model, in
accordance with the overall scheme depicted in Figure 2. The components of the
hybrid dynamical model are described in the following section.

3.1 Piecewise Affine Identification

In order to apply linear hybrid modeling and optimization techniques, nonlinear
relations between input/output variables of different subsystems must be ap-
proximated by static piecewise affine (PWA) functions. This identification task
(or “hybridization” process of the model) is performed algorithmically from in-
put/output data samples. Such samples can be either measured experimentally
or obtained by evaluation of existing nonlinear models that have been previously
calibrated on measured data. The identification algorithm automatically parti-
tions the input data set into a finite number of polyhedral regions and defines a
linear/affine map in each region.

In this paper we use the bounded-error approach of [11] to hybrid system
identification. Consider a static PWA model in the form

yk = f(uk) + εk, where f(uk) =

⎧
⎪⎨

⎪⎩

θ′1 [ uk
1 ] if uk ∈ χ1

...
...

θ′s [ uk
1 ] if uk ∈ χs,

(4)

where uk ∈ R
n are the input samples, yk ∈ R are the corresponding output

samples, εk ∈ R are the error terms, k = 1, . . . , N . χi = {x : Hiuk ≤ Ki},
are polyhedral sets defining a partition of the given set of interest χ ⊆ R

n, and
θi ∈ R

n+1, i = 1, ..., s, are the parameter vectors defining the affine submodels.
Given the tolerated bound δ > 0 on the fit error εk, the bounded-error ap-

proach determines a PWA model (4) satisfying the condition |yk − f(uk)| ≤ δ.
The bound δ is the tuning knob of the procedure. It determines the tradeoff
between complexity and accuracy of the model to fit samples. In this paper we
have modified the toolbox of [12] to approximate PWA functions based on a
maximum “relative” error δrel > 0

|yk − f(uk)|
1 + |yk| ≤ δrel , ∀k = 1, . . . , N. (5)

Compared to the original absolute error proposed in [11], we have found that the
criterion (5) leads to a reduced complexity in terms of number s of affine models.
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Fig. 3. Open-loop validation of the linear ARX model of the battery and of the vehicle
chassis model

Given N data points (yk,uk), k = 1, . . . , N and a chosen δrel > 0, the three-step
procedure proposed in [11] is applied to look for the minimum positive integer s,
for a partition χ1, . . ., χs, and for a set of parameter vectors θ1, . . ., θs such that
the corresponding PWA model (4) satisfies the bounded error condition (5).
As detailed in the next sections, different parameters δrel were optimized for
each identified map, depending on the relevance of the fit error on the dynamic
behavior of the overall hybrid system. The N data points for each PWA model
are chosen using the response of the nonlinear model controlled by a rule-based
controller developed in [1] and a collection of points uniformly distributed on the
input range of the nonlinear map. The toolbox of [12] has also been interfaced
to the Hybrid Toolbox [10] by automatically generating the HYSDEL code that
describes the identified PWA function.

3.2 Battery Model

In order to model the battery described by the nonlinear dynamics (1) in a
hybrid form oriented toward the synthesis of MPC controller, the model was
approximated as a piecewise affine autoregressive exogenous (PWARX) model
via the parametric identification procedure [11].

By restricting the safe range of the State of Charge, SoC ∈ [0.2, 0.8], ne-
glecting the dependence on temperature (we assumed T = 25◦C constant) and
assuming that the charging and discharging characteristics are equal, a satisfac-
tory fit has been obtained by a multi-output PWA autoregressive model that
consists of only one partition, that is, by the linear autoregressive model

[
SoC(k)
Vbatt(k)

]

= b0Pw(k) + b1Pw(k − 1) + a1sSoC(k − 1) + a2sSoC(k − 2)

+ a1vVbatt(k − 1) + a2vVbatt(k − 2)
(6)

where k denotes the sampling instant for sampling period Ts = 1s, a1s, a2s, b0,
b1, a1v, a2v ∈ R

2 are the coefficient matrices. The model was validated against
the response of the nonlinear model using Nv = 1000 samples of a real use of the
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battery during a driving cycle. The results of the comparison, obtained using
open-loop simulation, are reported in Figure 3. The fit on validation data is
� 96% for the SoC and � 77% for Vbatt.

In order to account for modeling errors, the State of Charge constraints en-
forced by the controller are set tighter than real safety and realistic limits

0.3 ≤ SoC(t) ≤ 0.7, ∀t ≥ 0. (7)

Since in fact the real SoC safe range is is wider, this constraint is treated as soft,
i.e., its violations will cause an increased value of the cost, which means that
they are tolerable, but only during short transients.

3.3 Vehicle Model

For the purpose of power management only the force Fdrl delivered by the con-
trolled motors to the driveline, Fdrl ≥ 0, is considered as a manipulated input to
the linear model (2) of the vehicle longitudinal dynamics. The remaining forces
Fae(t), Frol(t), Fgr(t) model resistance effects on the car. The braking force
Fbrake is considered as a disturbance, since it is actuated by the driver. The
full nonlinear model of the vehicle longitudinal dynamics takes into account the
fact that the equivalent inertia of the system is not constant and in particular
it depends on the engaged gear. Nonetheless, the simple mass-damper model

Mv̇veh + βvveh =
1
rw

· τwh (8)

was fit to N simulation data of wheel torque τwh, speed vveh, and acceleration
v̇veh obtaining a good approximation. The parameters M and β were simply
estimated by solving the standard least square estimation problem

[
M
β

]
= (XT X)−1XT Y, X =

[
v̇(0) v(0)

...
...

v̇(N−1) v(N−1)

]

, Y =
1
rw

[
τ(0)

...
τ(N−1)

]

. (9)

Figure 3(c) compares the vehicle speed signal generated by the open-loop sim-
ulation of the estimated linear model excited by τwh against the vehicle speed
signal obtained by simulating the full nonlinear model. The open-loop simulation
error over a period of 300 s is bounded and does not tend to diverge; it is smaller
than 2 m/s for the most part of the simulation.

3.4 Internal Combustion Engine

Since the aim of the hybrid dynamical model is to synthesize a control algorithm
for managing power flows within HEV, the engine and its low-level torque regu-
lator are modeled as a subsystem whose inputs are the desired torque τIC,req to
the crankshaft and engine speed ωshaft, and whose outputs are the actual deliv-
ered torque τIC and the fuel flowrate frate, therefore assuming torque generation
dynamics are fast enough to be negligible. This assumption is justified by the
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(a) CISG electrical motor (b) ERAD electrical motor

Fig. 4. PWA maps of the electric motors

fact that energy management is performed at a much slower rate than torque
control. Accordingly, two of the following PWA output maps were identified

τIC,req − τIC = fPWA,τ (τIC,req, ωshaft), (10)

which consists of 4 regions, with a fit error below 10%, and

frate = fPWA,f (τIC,req, ωshaft), (11)

which consists of 5 regions, with a fit below 5%.

3.5 Electric Motors

The electric motors are assumed to have fast dynamics and generate torque
equal to the requested torque unless limits are exceeded by the requested torque,
in which case the actual torque is saturated. The limits are not modeled in
the hybrid model, but rather calculated and imposed by the MPC controller
externally through a piecewise affine bound. The elimination of the limit maps
from the model is justified by the fact that the saturation limits are never reached
in simulation as long as the constraints on the State of Charge SoC of the
battery are enforced, and this reduces the complexity of the hybrid dynamical
model. The mechanical power delivered by the CISG and ERAD motors are
PCISG,mec = τCISG · ωshaft and PERAD,mec = τERAD · ωERAD, respectively. The
following PWA maps represent the actual delivered electrical power PCISG,ele

and PERAD,ele

PCISG,ele = fPWA,c(τCISG, ωshaft), PERAD,ele = fPWA,e(τERAD, ωERAD). (12)

The functional relationships in (12) have been identified from the full nonlinear
model and are reported in Figure 3.4. The maps (12) incorporate the effect of
electro-mechanical losses.
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Table 1. Elecrical Motor PWA maps limits

max speed (rad/s) torque range (Nm) max power loss (kW)

CISG 700 -200 ÷ 200 13

ERAD 1300 -300 ÷ 300 21
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(b) Fuel flowrate

Fig. 5. Open-loop validation of the IC engine model: PWA model (dashed), nonlinear
model (solid)

The ERAD motor operates in a wider range than the CISG motor (see Table 1).
The latter mainly assists the IC engine. A reasonable tradeoff between accuracy
of the maps and model complexity has been reached by setting a relative max-
imum fitting error of 15% in the PWA identification algorithm for both maps.
The number of regions for the ERAD and CISG electrical power maps is 6 and
4, respectively.

3.6 Gear Model

The model of the gearbox is split in two different maps. As sketched in Figure 2
the PWA map of gear torque models the effects of the mechanical reduction on
the torque entering the gearbox, τingear = τIC + τCISG [Nm], as a function of the
selected gear, gear�,

τgear = fPWA(τingear, gear�). (13)

A second one-dimensional map defines the transmission ratio TR� for each gear,
where 
 denotes gear number. The transmission ratio relates the shaft speed
ωshaft [rad/s] and the actual vehicle speed vveh [m/s]

ωshaft = vveh · TR� · SF, (14)

where SF is the scaling factor due to the front differential.
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3.7 Overall Hybrid Dynamical Model

The overall hybrid dynamical model is constructed according to the structure
depicted in Figure 2, where each component has been approximated through
linear or piecewise affine identification as described in the previous sections.
The model has been validated by running an open-loop simulation on the New
European Driving Cycle (NEDC), which defines a vehicle speed reference profile,
vveh,ref , to be tracked for a duration of 20 minutes, along with the gear to engage.
Figure 5(a) reports the traction force acting on the vehicle, Figure 5(b) the fuel
flowrate consumed by the vehicle. The quality of the fit is considered adequate,
as the mere role of the model is to predict the behavior of the HEV over a short
time horizon as required for model predictive control.

In order to track the vehicle speed with zero steady-state offset the model
is extended by introducing integral action. The sampled desired vehicle speed
vveh,ref and the integral Iv,err of the difference between vveh,ref and vveh are
included as additional states

vveh,ref (k + 1) = vveh,ref (k)
Iv,err(k + 1) = Iv,err(k) + Ts(vveh(k) − vveh,ref (k))

where Ts = 1s is the sampling period. With the aim of reducing the prediction
horizon of the hybrid MPC controller based on the hybrid dynamical model
developed above, rather than considering the tracking error of the state of charge
we consider its one step ahead prediction, obtained by iterating (6) for one step
under the assumption that the electrical power satisfies Pw(k + 1) = Pw(k).

The braking force Fbrake from the driver is also modeled as a constant state
Fbrake(k + 1) = Fbrake(k), although it will be assumed to be unknown in the
following simulations by the controller, and hence set Fbrake = 0.

The overall hybrid dynamical model has been described in HYSDEL and
converted to MLD form using the Hybrid Toolbox for Matlab [10]. The result-
ing MLD model has 9 continuous states (vveh(k), Iv,err(k), vveh,ref (k), SoC(k),
SoC(k−1), Vbatt(k), Vbatt(k−1), Pw(k−1), Fbrake(k)), 7 binary states storing the
current engaged gear (Neutral, 1st, . . . , 6th) and subject to an exclusive-or con-
straint, 3 continuous inputs (τIC,req, τERAD,req, τCISG,req), 32 binary inputs used
to detect the active regions in the 6 PWA maps (for each map the corresponding
group of binary inputs is subject to an exclusive-or constraint), 56 continuous
auxiliary variables, used for representing the PWA maps, engine speed, engine
torque, and other ancillary variables, 1 continuous output, fuel consumption
frate, no binary auxiliary variables, and 490 mixed-integer inequalities.

4 Model Predictive Control Design

MPC was used in many industrial applications [13], and more recently model
predictive control of hybrid dynamical systems has shown potential for appli-
cations in the automotive domain [14,15,16,17,18,19]. In this section we design
an MPC controller for the HEV based on the overall hybrid dynamical model
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described in Section 3. In the MPC approach, at each sampling instant a finite
horizon open-loop optimization problem is solved, using the current state as the
initial condition of the problem. The optimization provides a control sequence,
only the first element of which is applied to the process. This process is itera-
tively repeated at each subsequent time instant, thereby providing a feedback
mechanism for disturbance rejection and reference tracking. The optimal control
problem is defined as:

min
ξ

J(ξ, x(t)) � Qρρ
2 +

N∑

k=1

(Γxxk − xref )T S(Γxxk − xref )+ (15a)

+
N−1∑

k=0

(Γuuk − uref)T R(Γuuk − uref ) + (yk − yref )T Q(yk − yref ),

subj. to

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x0 = x(t),
xk+1 = Axk + B1uk + B3zk,
yk = Cxk + D1uk + D3zk,
E3zk ≤ E1uk + E4xk + E5,
0.3 − ρ ≤ SoCk ≤ 0.7 + ρ,

(15b)

where N is the control horizon, x(t) is the state of the MLD system at sampling
time t, ξ � [uT

0 , zT
0 , . . . , uT

N−1, z
T
N−1, ρ]T ∈ R

59N+1×{0, 1}32N is the optimization
vector, Q, R and S are weight matrices, Qρ is a large weight used to enforce
the softened version (15b) of constraint (7), and Γu ∈ R

3×36, Γx ∈ R
3×16 are

matrices that select the subset of vector components to be weighted (Γu, Γx are
formed by rows of identity matrices). In particular we define the reference signals
used in (15) for the output and for the components selected by Γu, Γx as

yref � frate,ref, (16a)

uref � [τIC,req τERAD,req τCISG,req]′, (16b)

xref � [vveh,ref Iv,err SoCref ]′, (16c)

and, accordingly, we set the cost weights in (15b) to be

Q = qfuel, R =
[

rτ,IC 0 0
0 rτ,CISG 0
0 0 rτ,ERAD

]

, S =
[

sv,veh 0 0
0 sSoC 0
0 0 sv,int

]

, Qρ = 105,

where the components of vector uref are all zero in order to minimize the control
action.

Problem (15) can be transformed into a mixed integer quadratic program
(MIQP), i.e., into the minimization of a quadratic cost function subject to linear
constraints,where someof thevariables arebinary.Even if this class ofproblemshas
exponential complexity, efficient numerical tools for its solution are available [20].

5 Simulation Results

The closed-loop behavior of the HEV in closed loop with MPC controller has
been evaluated in simulations by using the high-fidelity nonlinear model de-
scribed in Section 2. The design parameters for the MPC (15) are the prediction
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Table 2. MPC design parameters (rτ,IC = 6·10−2, rτ,CISG = 3·10−2, rτ,ERAD = 3·10−2,
sv,veh = 5·103). The number in the first column represents the MPC design number (0 =
conventional vehicle). The fuel consumption values are normalized to the conventional
vehicle consumption.

qfuel sSoC sv,int fuel cons (norm) max |vveh − vveh,ref | max |SoC − SoCref |
0 ∗ ∗ ∗ 1 ∗ ∗
1 1e-2 2e6 10 0.79 2.105 0.1364

2 1e1 1e6 1 0.76 2.789 0.2484
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Fig. 6. MPC design #1: closed-loop response

horizon N = 1, and weights rτ,IC = 6·10−2, rτ,CISG = 3·10−2, rτ,ERAD = 3·10−2,
sv,veh = 5 · 103. The weights qfuel, sSoC and sv,int are reported in Table 2 for
two different MPC designs. Note that the weight on rτ,IC is much greater than
rτ,CISG, rτ,ERAD to force the use of torque from electric motors rather than from
the IC engine, and that sv,int is used to maintain the speed tracking performance.

For both controllers it took approximately 175.5 s to simulate the closed-loop
system on a PC Intel Centrino Duo 2.0 GHz with 2GB RAM running the Hybrid
Toolbox for Matlab [10] and the MIQP solver of CPLEX 9 [20], of which 156.7 s
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Fig. 7. MPC design #2: closed-loop response

are spent by CPLEX, that is an average of approximately 0.13 s per time step. The
control action is computed in the worst case in approximately 0.29 s. The closed-
loop dynamics obtained from the first MPC design are described in Figure 6.

In this simulation qfuel has a small weight as the fuel consumption is less
important than keeping the battery SoC close to the setpoint. To improve fuel
consumption the internal combustion engine is turned off when the torque re-
quest is lower than a given threshold, see Figure (6(a)). The results of the second
MPC design are shown in Figure 7, where a higher emphasis to fuel consumption
is given, where more freedom to draw power from the battery (lower sSoC) is
allowed to the controller, which also has a lower weight on the speed tracking
integral action (sv,int). The weight on sv,veh allowed to maintain the maximum
error in speed tracking smaller than 3.2 [m/s]. The SoC signal violates the soft
constraint (15b) on minimum charge for a maximum time of 92s. However, it
should be noted that the SoC always remains in the physical battery safety and
reliability range SoC ∈ [0.2, 0.8]. For both MPC designs the fuel consumption
is reduced with respect to a conventional vehicle. In the first simulation the fuel
consumption improvement is 20.7%. In the second simulation the controller is
allowed to use more electric power due to smaller weight on sSoC , and this results
a slight violation of the soft constraint. On the other hand the fuel consumption
improvement is 23.8%. These improvements are similar to the values reported
in [1], but it is interesting to observe that in this paper the MPC controller does
not exploit any knowledge of the driving cycle but only of the vehicle model.

6 Conclusions

In the paper we have exemplified an effective control approach for advanced pow-
ertrain systems which combines hybrid modeling, identification and model pre-
dictive control. In this approach, piecewise affine system identification techniques
serve as a bridge between detailed nonlinear simulation models (or experimental
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powertrain hardware) and hybrid models in such a way that the on-line imple-
mentation of model predictive control becomes feasible using a mixed integer
quadratic programming. In the paper, a realistic (industrial strength) simula-
tion model with high fidelity components representation was used as a basis for
deriving an approximate hybrid model: the latter was used to define the hy-
brid MPC optimization problem. This design approach could have been equally
applied to experimental vehicle data or to a mixture of experimental data and
simulation data.
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