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Abstract. Networked control systems enable for flexible systems oper-
ation and reduce cost of installation and maintenance, potentially at the
price of increasing the uncertainty due to information exchange over the
network. We focus on the problem of information loss in terms of packet
drops, which are modelled as stochastic events that depend on the cur-
rent state of the network. To design reliable control systems the state
of the network must be estimated online, together with the state of the
controlled process. This paper proposes various approaches to discrete
and hybrid stochastic estimation of network and process states, where
the network is modelled as a Markov chain and the packet drop probabil-
ity depends on the states of the Markov chain. The proposed techniques
are evaluated on simulations and experimental data.

1 Introduction

Advances in network technology increase the flexibility of modern control sys-
tems. Networked control systems[1], in which the controller is remotely located
with respect to the plant, are becoming more and more tested and used in
industrial applications [2,3]. The advantages of such architectures are in the
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costs, since a single shared network is less expensive than many point-to-point
connections, in the flexibility, since networks are usually capable of automatic
reconfiguration, and in the control system maintenance, since the control unit
can be deployed far from the plant, that often operates in extreme environmental
conditions. Such advantages are further increased when one considers wireless
networked control systems, since the absence of wiring further reduces mainte-
nance and deployment costs and increases flexibility. However, when designing
a networked control system new issues must be taken into account. The com-
munication network introduces information losses, bandwidth limitations and
time-varying delays [4]. These problems are more important in wireless net-
works [5,6] than in wired networks, as the radio channel performance is affected
by many environmental factors and changes rapidly.

When controlling a system over a network, the performance of the network
may drastically affect the performance of the system. Several studies have been
developed for the particular case in which the network behavior is time invari-
ant, for both, controller and estimator design (see [1,4] for extensive surveys).
However, the network characteristics often changes dynamically depending on
several factors including network load, number of active users, and environmen-
tal conditions [7]. An estimator for a network with piecewise constant statistical
properties has been proposed in [8], while a Markov chain model of the network
channel has been used for instance in [9,10,11].

When the network is time varying, the overall system state is constituted by
the states of the process, of the controller, and of the network. Henceforth, when
performing the estimation, it is important to estimate also the current network
state. As an example, consider a control system that is composed of a local con-
troller, enforcing stability, and of a remote optimal planner, that communicates
via a wireless network, see [12] for a particular example. When the network is
reliable, aggressive plans leading to high tracking performances can be safely ex-
ecuted. On the other hand, when the network is unreliable, more cautious plans
should be chosen. As another example, consider Alice, the autonomous vehicle
of Team Caltech in the 2007 Urban Challenge. Alice’s architecture is based on a
complex network of sensors, actuators, and computational units. The estimation
of the network characteristics can help in revealing whether missing sensor data,
such as the localization system data, are not received due to network overload
or because the hardware failed, so that the appropriate fault-handling actions
can be taken.

This paper analyzes the problem of jointly estimating the network state and
the process state under various conditions. Since the physical network models are
in general too complicated for control design purposes, we use an abstract model
which is simple enough to be analyzable, and still capture the main character-
istics of the network phenomena [6]. We focus on networks affected by packet
drops, where some of the packets never reach the receiver. The packet drop is
an abstract phenomenon representing the loss of information, either physical or
logical, in the transmission of a data packet from a sender to a receiver. Many
network protocols already provide reliable message delivery through services such
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as ARQ (automatic repeat request), but these operations introduce delays, and
when used in real-time control systems delayed packets can have major influence
on closed-loop performance.

We model a discrete-valued network state. Hence, the joint estimation of the
continuous-valued process state and of the network state reduces to the estima-
tion of a particular type of hybrid system. We also aim at understanding when
the performance of the process state estimation does not affect the network
state estimation. In Section 2 we propose the system model and we formulate
the estimation problems. In Section 3 we consider the cases in which the network
state estimate can be separated from the process estimate. In Section 4 we con-
sider the joint network state and process state estimation. These problems are
first analyzed for a networked control system where the network is connecting
the controller to the process, and in Section 5 we extend to the different cases
involving an additional network between the sensor and the estimator. Simula-
tions of the estimation algorithms are presented in Section 6 together with some
experimental results, and the conclusions are summarized in Section 7.

2 Modelling and Problem Formulation

Consider the networked system shown in Figure 1. A discrete-time signal u(·)
is transmitted through network N1 and the received signal ũ(·) is the input to
a dynamical process Σ(x, ũ, y), where x is the process state. The output (or
measurement) y(·) is transmitted through network N2, and the received signal
ỹ(·) reaches an estimator Θ(u, ỹ) that knows the signal u(·). The estimator solves
a hybrid estimation problem: it provides an estimate x̂ of the continuous process
state x, and, at the same time, it estimates the discrete states of the networks
N1 and N2, N1 and N2, respectively. Note that the signals u, ỹ available to the
estimator may be different from the actual system input ũ and output y. We
call N1 the actuation network and N2 the sensing network, ũ(·) and ỹ(·) the
network filtered input and measurement, and the packets containing u and y are
the command packet and the measurement packet, respectively.

Let Σ(x, ũ, y) be a linear discrete-time process subject to disturbances

x(k + 1) = Ax(k) + Bũ(k) + w(k), (1a)
y(k) = Cx(k) + Dũ(k) + v(k), k ∈ Z0+ (1b)

where Z0+ is the set of nonnegative integers, x(k) ∈ R
n is the process state,

y(k) ∈ R
p is the process output, ũ(k) ∈ R

m is the commanded input, and
w(k) and v(k) are the process noise and the measurement noise, respectively.
We assume w(·) and v(·) to be white Gaussian random processes with zero
mean and covariance matrices Q and R, respectively: for all k ≥ 0, w(k) ∼
N(0, Q), v(k) ∼ N(0, R). Hence, the state and output dynamics of Σ(x, u, y)
are Gaussian distributed stochastic processes.

We model the dropping of the packets by a stochastic discrete signal (event)
e(k) ∈ {0, 1}, where 0 means that the packet at time k has been dropped, while
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Fig. 1. Process and networked control architecture

1 means that the packet has been received. Consider a discrete-time signal a(·)
with domain Da. In our context a(·) can be either u(·) or y(·). The relation
between a(·) and the corresponding network filtered signal ã(·) is given by

ã(k) =
{

a(k) if e(k) = 1
ε if e(k) = 0,

(2)

where ε is a special symbol indicating the lack of information, and the domain
of ã(·) is Dã = Da∪ε. When the loss occurs in N1 at time step k, we assume the
process applies a backup input ũ(k) = ubu(k). Common choices for the backup
input are ubu(k) = 0, ubu(k) = ũ(k−1), and ubu(k) = ũ(k−1)+(ũ(k−1)−ũ(k−
2)). The backup input choice depends on the control strategy. In this paper, we
consider the strategy as given, and known by the estimator.

We propose a stochastic network model with discrete state N(k)∈{0, 1, . . . , s}.
The network dynamics are modelled as a Markov chain,

π(k + 1) = MT π(k), (3)

where π ∈ R
s is the vector of state probabilities at time k, i.e. πi(k) = P[N(k) =

i], i ∈ {0, 1, . . . , S}, the superscript T indicates transposition, and M ∈ R
s×s is

the transition matrix of the Markov chain. The packet drop probability is state
dependent, i.e. p(k) = p(N(k)), to represent different operating conditions of the
network corresponding to different packet reception rates (PRR).

The proposed network model incorporates common models in the literature.
The Poisson process model of packet drops with parameter p, P[e(k) = 0] = p,
P[e(k) = 1] = 1 − p, ∀k ∈ Z0+, that results in a constant drop probability,
is a particular case of model (3), where i ∈ {0}. Gilbert model [7] is another
particular case of model (3), obtained for i ∈ {0, 1}, p(0) = 0, and p(1) = 1.

Two network states can model appropriately behaviors such as network over-
load and quality of service degradation [7]. We will focus on a two states Markov
chain for notational simplicity; the presented approaches can be straightfor-
wardly extended to the case where the Markov chain has a larger number of
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states. The dynamics of N(k) and the packet drop probability are described by

π(k + 1) = MT π(k), P[e(k) = 0|N(k) = R] = pr, P[e(k) = 0|N(k) = U ] = pu,
(4)

where M =
[ pR,R pR,U

pU,R pU,U

]
, and π(k) =

[
πR(k)
πU (k)

]
, πi(k) = P[N(k) = i], i ∈ {R, U}

is the vector containing the state probabilities, and we assume pu > pr. When
N(k) = R the network is operating in normal (Reliable) state, ensuring a certain
performance. In the case N(k) = U the network is in degraded (Unreliable) state,
and the performance decreases. We assume that the communications are instan-
taneous, meaning that u(k) sent through N1 is received at step k by Σ(x, ũ, y),
and that y(k) sent through N2 is received at step k by Θ(u, ỹ). This is reasonable
because in general communications are much faster than the process dynamics.

In general the state of the network is not directly observable since it depends
on the interferences among network users sharing the same channel. We can only
observe its effects, the packet drops, either by direct knowledge or by inference
based on the process measurements. We model this estimation problem as a
hidden Markov model (HMM) estimation problem [13]. Let Ni = I indicate the
situation in which the ith communication link is a perfect link, ã(k) = a(k) , ∀k ≥
0. Hence, there is no estimation of Ni. Moreover, let Ni = Nj , i �= j indicate
that two logical communication links correspond to the same physical network,
hence Ni = Nj. For the system described in Figure 1 we analyze the problems:

P1. Estimate N1 and x, when N2 = I .
P2. Estimate N2 and x, when N1 = I .
P3. Estimate N1, N2 and x when N1,N2 �= I, for (a), N1 �= N2, (b), N1 = N2.

The case where both links are perfect, N2 = I and N1 = I, reduces to the
well known problem of estimating the state of a stochastic linear process, easily
addressed by Kalman filtering. We first solve Problem P1, where we assume to
know e(k) (e.g., by an acknowledge signal). Then, we extend the approach to the
case where e(k) must be inferred from the process output, so that the estimation
of the process state and the estimation of the network sate are treated as a single
hybrid estimation problem. We show that Problem P2 can be solved by the
approach proposed for Problem P1, where the packet behavior for N2 is always
known. Finally we combine the approaches to solve Problem P3.

3 Estimation of Sensing Network State

First, we propose a solution to Problem P1, the state estimation of a single
network N , assuming to have direct knowledge about the drop events e(k).
In this case no process information is used for network state estimation hence
process and network state estimation are separated.

Let πs|t(k) = P[N(k) = s|e(k) = t], s ∈ {R, U}, t ∈ {0, 1}. By Bayes’ rule,

πs|t(k) =
P[e(k) = t|N(k) = s] πs(k)

P[e(k) = t]
,
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and then by the total probability theorem

πs|t(k) =
P[e(k) = t|N(k) = s] πs(k)∑

j∈{R,U} P[e(k) = t|N(k) = j]πj(k)
, (5)

where P[e(k) = t|N(k) = j], j ∈ {R, U} is defined by (4). If e(k) is measured,
the estimation of the network state is independent from the estimation of the
process state. Moreover, if pr = 1 − αε, pu = βε, where α, β > 0, if ε → 0, then
πR|1 = 1, πU|0 = 1. Hence, estimation (5) applied to the Gilbert model in [7]
results in a state with probability 1, and the other with probability 0, because
the packet behavior is a perfect indicator of the network state.

In (5) we need to compute π(k). We present two estimators that differ on the
way such a computation is performed: a static estimator that at each step uses
only the current measurement, and a dynamic estimator.

Assumption 1. Markov chain (4) has reached its steady state.

The stationary probability distribution of the Markov chain states
limk→∞ P[N(k) = U ] = π∞

U , limk→∞ P[N(k) = R] = π∞
R can be computed

from the equilibrium [
π∞

R

π∞
U

]
= MT

[
π∞

R

π∞
U

]
, (6)

that has a unique solution for an irreducible Markov chain. The static estimator
is obtained by plugging the solution of (6) in (5):

πs|t =
P[e(k) = t|N(k) = s] π∞

s∑
j∈{R,U} P[e(k) = t|N(k) = j]π∞

j

, s ∈ {R, U}, t ∈ {0, 1}. (7)

The maximum likelihood estimate is

N̂(k) = argmaxj∈{R,U}πj|t if e(k) = t, t ∈ {0, 1}. (8)

The stationary estimator is simple, since the estimate can be statically com-
puted by evaluating (7) and (8) at every step. In particular, since all the terms
in (7) are constant, a lookup table mapping the packet event into the most likely
network state can be precomputed and no memory is required. However, such
an estimation scheme often leads to poor performance, because only the cur-
rent measurement is considered, and this information is not used to update the
probability of the network state.

We develop a dynamic estimator that uses memory to maintain an estimate
of the probability of each network state value and uses the measurements on the
packet drop to update such an estimate. We can perform estimation by using (3)
to compute the predicted state probability to be used in (5), then using the
result of (5) as the state probability estimate. This procedure is summarized in
Algorithm 3.1, where πs(k|k) = P[N(k) = s|e(k)], s ∈ {R, U}.

The main advantage of Algorithm 3.1 is that the measurements of e(k) are
used not only in the decision of the current state, but also to update the state
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1. set k = 0 and let the initial probability vector be π(k|k − 1) =
�

πR(k)
πU (k)

�
;

2. while (true)

2.1. given e(k) ∈ {0, 1} perform measurement update π(k|k) =
�

πR(k|k)
πU (k|k)

�
;

2.2. if (πR(k|k) ≥ πU (k|k)) then N̂(k) = R else N̂(k) = U ;

2.3. perform prediction by flowing the Markov chain π(k + 1|k) = MT π(k|k);

2.4. set k← k + 1 and π(k|k − 1)← π(k + 1|k);

end

Algorithm 3.1. Dynamic network estimation algorithm

probability, which will affect the future estimation steps. From another point of
view, the estimate at time k is directly affected by e(k) and indirectly by e(j),
j = 0, . . . , k − 1, whose effects are stored in the current state probability. Algo-
rithm 3.1 is the discrete-state version of the Kalman estimator. The algorithm
can be initialized by setting π(0| − 1) to the solution of (6).

Proposition 1. The network state estimate N̂ obtained by Algorithm 3.1 is
asymptotically independent of the algorithm initialization value.

Proposition 1 states that when k → ∞ the value N̂ does not depend on the
value of π(0| − 1). This property follows straightforwardly from the exponential
forgetting property of the HMM filter, that states that for k → ∞, π(k|k) is
independent of π(0| − 1). The exponential forgetting property of HMM filters,
which include Algorithm 3.1 was proven in [14], where upper bounds on the
exponential forgetting rate are also given.

4 Estimation of Sensing Network and Process States

We give now a solution to Problem P1, relaxing the hypothesis that e(k) is
measured. We modify the estimation algorithm to infer the value of e(k) from
the measurement ỹ(k), where ỹ(k) = y(k), since N2 = I. A simple way to obtain
information about e(k) is to add one bit in the measurement packet. The same
logic that activates the backup input will also set such a bit to 1 if the command
packet has been received, to 0 otherwise. When this strategy is applied, the
results of Section 3 hold, and the network state estimation is separated from the
process estimation. However, we develop here an estimation approach that is not
based on such an additional information, which is useful when the measurement
packet cannot be modified, and when N2 �= I.

Let ρt|y(k) = P[e(k) = t|y(k)], t ∈ {0, 1}. Then P[N(k) = s|y(k)] =
∑

t∈{0,1}
P[N(k) = s|y(k), e(k) = t]ρt|y(k), s ∈ {R, U}, t ∈ {0, 1}. The information
given by y(k) about N(k) is entirely contained in the packet event, hence
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P[N(k) = s|y(k), e(k) = t] = πs|t(k), and

P[N(k) = s|y(k)] =
∑

t∈{0,1}
πs|t(k)ρt|y(k). (9)

In this case the disturbances acting on the process affect also the estimation
of the network state. We introduce the joint hybrid-space probability density
function f (k)(e, y)1, where e ∈ {0, 1}, and y is the process measurement. At a
given time k ∈ Z0+, f

(k)
y|t is the probability density function of y(k) assuming the

event e(k) = t. The function f
(k)
e|y is

f
(k)
e|y =

∑
t∈{0,1}

fy|t(y(k))∑
j∈{0,1} fy|j(y(k))

δ(e(k) − t), (10)

where δ(·) is Dirac’s distribution. As a consequence

ρt|y(k) =
fy|t(y(k))∑

j∈{0,1} fy|j(y(k))
, (11)

to be used in (9). Note that the additional uncertainty given by the process noise
is contained in the factors ρt|y(k), t ∈ {0, 1}. If the noise vectors in (1) are null
and the state is known, there exists t̄ ∈ {0, 1} such that ρt̄|y(k)=1, and hence
ρ1−t̄|y(k) = 0, since the inference on packet behavior is deterministic. Let x̂(k|k)
be the estimate of the process state at step k, based on measurements available
up to step k, and f

(k)
x be the process state distribution function. Algorithm 3.1

is modified into Algorithm 4.1, where x̂(k|k, t) is the estimate of the process
state at time k using measurements until time k and assuming e(k) = t, f

(k)
x|i ,

i ∈ {0, 1} is the process state probability density under the assumption the
packet has been dropped or received, respectively, and f

(k)
y|i , i ∈ {0, 1} is the

corresponding output probability density. In order to compute f
(k)
y|i which is used

in (10), we need to estimate the probability density function of the process state
f

(k)
x|i , i ∈ {0, 1}, under the assumption the packet has been dropped or received,

respectively. Since we consider linear systems subject to Gaussian noise, the
obvious choice for the process state estimation is the Kalman filter. The values
ρi|y(k), i ∈ {0, 1} are computed from the output error densities f

(k)
εy|i, i ∈ {0, 1},

that are a shifted version of f
(k)
y|i , i ∈ {0, 1}. At each step of the process state

estimation: (i), compute ŷ(k|k, i), i ∈ {0, 1}, the estimated output under the
assumption that the packet has been dropped or received, respectively; (ii),
compute εy(k|k, i) = y(k) − ŷ(k|k, i), i ∈ {0, 1}, the output estimation errors in
the above cases; (iii), compute the probabilities in (11) by the Kalman Filter
output error densities estimation f

(k)
εy|i, i ∈ {0, 1}. Since only a deterministic

1 For simplicity, we will drop the superscript (k) when clear from the context.
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1. set k = 0 and let the initial probability vector be π(k|k − 1) =
�

πR(k)
πU (k)

�
;

2. while (true)

2.1. compute x̂(k|k, t), f
(k)
x|t , f

(k)
y|t , t ∈ {0, 1} ;

2.2. compute ρt|y(k), and τ = argmaxj∈{0,1}ρj|y(k);

2.3. compute πs|t(k) using (5) for t ∈ {0, 1}, s ∈ {R, U} ;

2.4. compute πs(k|k) = P[N(k) = s|y(k)], s ∈ {R, U}, by (9);

2.5. if (πR(k|k) ≥ πU (k|k)) then N̂(k) = R else N̂(k) = U ;

2.6. perform prediction π(k + 1|k) = MT π(k|k);

2.7. update the process state probability density to fx(k) = f
(k)

x|τ ;

2.8. set k← k + 1 and π(k|k − 1)← π(k + 1|k);

end

Algorithm 4.1. Network estimation algorithm with packet behavior inference

value in the process state is affected by e(k), f
(k)
y|0 and f

(k)
y|1 have the same shape

(same covariance), but they are shifted (different average).
By construction, Algorithm 4.1 is the one-step maximum likelihood estimate

of the network and process states. The performance of the continuous state
estimate affects the discrete estimation by the terms ρi|y, i ∈ {0, 1}, hence the
process and network estimation performances are related.

Remark 1. Algorithm 4.1 assumes that the distribution functions f
(k)
y|e=1 and

f
(k)
y|e=0 are different. If this is not the case, y(k) does not give any information

about N(k), because the effects of the input on the measurement are delayed.
Hence, the estimation must be delayed as well, performing the measurement
update to obtain N(k − δ|k), where δ ∈ Z0+ are the steps of delay, followed by
δ steps of prediction. Furthermore, when the current input u(k) and the backup
input ubu(k) are the same, it is not possible to distinguish the packet drop
and the packet reception from the measurement, similarly to what discussed
in [15]. However, this does not degrade the estimation of the process state, since
u(k) = ubu(k).

5 Estimation of Sensing and Actuation Network States

We analyze now Problem P2, where packet drops occur in the sensing network,
i.e., N2 �= I, and all the command packets reach the process, i.e., N1 = I. The
process state can be estimated by applying a Kalman filter modified as in [16],
where the authors perform the measurement update only if the measurement
packet is received. However, in [16] the network model is static, hence there is
no network state estimation. In the case of model (4), the estimation of N2(k)
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can be performed by Algorithm 3.1, since the value of e2(k) is always available
to the estimator (it knows whether the measurement packet has been received
or not), and the process state estimation does not affect the system state, thus
the separation between network state estimation and process state estimation
holds. On the other hand, the estimation of the process state is affected by the
behavior of the network, since when the measurement packet is dropped, the
process state estimate has to be updated in open-loop [16].

Consider now Problem P3a, where packet losses occur both in the actuation
network and in the sensing network, Ni �= I, i = 1, 2. The uncertainties intro-
duced by N1 and N2 are different: a packet loss in N1 causes the process to
evolve in a different way from the commanded one. However, such a drop do
not affect the measurements, and the estimation can still be performed by Algo-
rithm 3.1, or by Algorithm 4.1. On the other hand, when packet losses occur in
N2, the measurement is not available, and the only way to update the process
state estimate (and the estimate of N1 if Algorithm 4.1 is used) is by prediction.
Thus, losses in N2 are more critical than losses in N1 for the estimation problem.

Algorithm 5.1, where ei is the packet event in Ni, i = 1, 2, can be applied
for estimation in the case N1,N2 �= I, N1 �= N2. We consider the case where
e1(k) is not measured, hence if e2(k) = 0 no measurement is received, and the
estimate of x(k) and N1(k) is updated by prediction. If e1(k) is measured, the
measurement update is always performed also on N1 (Algorithm 3.1 is used).

1. set k = 0 and for Ni, i = 1, 2, set π(i)(k|k − 1) =

�
π
(i)
R

(k)

π
(i)
U

(k)

�
, respectively;

2. while (true)

2.1. compute π2(k|k) and N̂2(k) by Algorithm 3.1;

2.2. if (π
(2)
R (k|k) ≥ πU (k|k)) then N̂2(k) = R else N̂2(k) = U ;

2.3. if (e2(k) = 1)

2.3.1. compute x̂(k|k);

2.3.2. compute π(1)(k|k) and N̂1(k) by Algorithm 3.1 or by Algorithm 4.1;

2.4. else

2.4.1. set x̂(k|k) = x̂(k|k − 1) (open-loop prediction);

2.4.2. set π(1)(k|k) = π(1)(k|k − 1) (open-loop prediction on (4)).

2.5. if (π
(1)
R (k|k) ≥ πU (k|k)) then N̂2(k) = R else N̂2(k) = U ;

end

Algorithm 5.1. Estimation algorithm for the case N1 �= I , N2 �= I , and N1 �= N2

We finally consider Problem P3b, where the actuation and sensing networks
correspond to the same physical network, hence N1 = N2 and N1 = N2 = N .
Since all the packet events refer to the same network, at each step we have up
to two measurements that we can use to update the network state estimate.
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In (4) the drop probability depends on the state of the network, and not on
the behavior of the other packets, hence P[ei(k)|ej(k), N(k)] = P[ei(k)|N(k)],
i, j ∈ {1, 2}, i �= j, and P[e1(k), e2(k)|N(k)] = P[e1(k)|N(k)]P[e2(k)|N(k)]. The
measurement update of the network state estimate with two data is

P[N(k)|e1(k), e2(k)] =
P[e1(k)|N(k)]P[e2(k)|N(k)]P[N(k)]∑
N(k)={U,R} P[e1(k)|N(k)]P[e2(k)|N(k)]

. (12)

If the measurement packet is dropped, a single-measurement update (5) is per-
formed, hence packet drops in N2 results again to be more critical for estimation.

6 Simulations and Experiments

We consider N2 = I, and N1 defined by M1 = [ 0.98 0.02
0.06 0.94 ], p

(1)
r = 0.15, p

(1)
u = 0.80.

The process is a linear system with transfer function G(s) = 2.44
s2+2.4s+2.44 , sam-

pled at 2 Hz to obtain a discrete-time representation (1), where A =
[

0.96 −0.60
0.5 0

]
,

B = [ 0.5
0 ], C = [ 0.40 0.54 ], D = 0. We have used as backup strategy ubu(k) = 0,

and the noise terms are v(k) ∼ N(0, 0.6), w(k) ∼ N (0, [ 2 0
0 2 ]). All the simulations

have been run for 500 steps and the packet drop events e1(k) and the random
signal that generates the transitions of N1(k) are always the same. An extended
discussion on the simulations is available in [17].

Table 1. Results of the simulations of the proposed estimation strategies

N(k) Estimator e1(·) v(k) �= 0 w(k) �= 0 x(k) Estimator N2 EN

Static meas - - - I 79
Dynamic meas - - - I 39
Dynamic inf yes yes yes I 48
Dynamic emb no no no N2 �= N1 �= I N1 : 63, N2 : 31
Dynamic emb no no no N2 = N1 �= I 27

The simulation results are summarized in Table 1, where EN =
∑

k εN(k) is
the cumulative network state estimation error, ( εN(k) = |N(k)−N̂(k)|). Column
e1(·) refers to the knowledge about e1(k), where meas stands for measured, inf for
inference, and emb means that the information on the reception of the command
packet is embedded in the measurement packet. First we have simulated the
strategies described in Section 3 based on measured e(k). Table 1 shows that
the performance of the dynamic estimator is clearly higher than the one of
the static estimator. Next, we have simulated Algorithm 4.1 that is based on
inference on the process measurements, and we have used a Kalman filter for
hypothesis test, as described in Section 4. Table 1 shows that the network state
estimate performance is degraded because of the effects of the process noise.
The estimation of the process state is shown in Figure 2(a), where the estimated
state components x̂i(k), i = 1, 2, are plotted in black, the real state components
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(b) Network state estimation

Fig. 2. Joint actuation network and process states estimation with inference on e(k)
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(a) Actuation network (N1)
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(b) Sensing network (N2)

Fig. 3. Actuation and sencing network states estimation N1,N2 �= I , N1 �= N2. The
measurement packet contains information on command packet reception.

xi(k), i = 1, 2, in gray, and εxi(k) is the estimation error on the ith component of
the process state vector at time k. The estimation of the network state is shown
in Figure 2(b), where in the upper plot N is the dashed line, and N̂ is the solid
line, and in the lower plot P[N(k) = R] is in gray, P[N(k) = U ] is in black.

Finally, we have introduced another network N2 �= N1 between the process
and the estimator. The model of N2 is described by M2 = [ 0.97 0.03

0.09 0.91 ], p
(2)
r = 0.05,

p
(2)
u = 0.87. We have simulated Algorithm 5.1, in the case where the information

about the command packet reception is embedded in the measurement packet. As
a consequence, when this is dropped the estimate of N1 is updated by open-loop
prediction. Figure 3 reports the results of the simulation, with the same format as
Figure 2(b). Table 1 confirms that the estimation of N2 is more precise than the
estimation of N1, because it is always known whether the measurement packet
has been received or not. The last line of Table 1 refers to a simulation where
N2 = N1, which results in the most precise estimation, because at each step at
least one data (and at most two) for the network state estimate is available.
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Fig. 4. Application of the Algorithm 3.1 to a wireless sensor network with intermittent
shadowing

As experimental validation, we have run Algorithm 3.1 on a dataset obtained
from a real wireless sensor network composed of Telos T-mote Sky nodes where
an object was sometimes shadowing the receiver node, similarly to what dis-
cussed in [6]. Part of the dataset was used to estimate the transition proba-
bilities of the Markov chain, and the packet drops probabilities in each state,
obtaining pR,U = 10−3, pU,U = 1.5 · 10−3, pr = 0.10, pu = 0.75. We have run
Algorithm 3.1 on the remaining data using the sequential packet ID to identify
the occurrence of packet drops. The results are shown in Figure 4(a) where the
estimated network state is plotted as a black line while the packet reception
rate (PRR) obtained by averaging over a symmetric window of 30 packets is
plotted as a gray line. The tracking is good, except for some false positives in
which nonexistent state switches are detected. These can be removed by tun-
ing the prediction model of the estimator. The behavior obtained by setting
pr = 0.20, pu = 0.60 is shown in Figure 4(b), where the false positives are
eliminated.

7 Conclusions

This paper has proposed different approaches to estimate the state of a net-
worked control system, composed of the process state and the network state.
We have shown the approaches in which the network state estimation can be be
separated from the process state estimation and we have shown how the infor-
mation losses in different places of the networked system affect the estimate. As
shown in comparative simulations, the performance of the different approaches
varies, and the choice of the one to be applied mainly depends on the overall
networked system architecture.

The authors want to thank Pan Gun Park for performing the experiments on
the wireless sensor network.
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