
Event-Based Model Predictive Control
and Verification of Integral Continuous-Time

Hybrid Automata

Alberto Bemporad1, Stefano Di Cairano1� and Jorge Júlvez2

1 Dip. Ingegneria dell’Informazione, Università di Siena, Italy
bemporad,dicairano@dii.unisi.it

2 Dep. Informática e Ingenieŕıa de Sistemas, Universidad de Zaragoza,
julvez@unizar.es

Abstract. This paper proposes an event-driven model predictive con-
trol scheme with guaranteed closed-loop convergence properties for the
class of integral continuous-time hybrid automata (icHA). After con-
verting icHA to a corresponding event-driven representation that allows
one to compute the model predictive control action by mixed integer
programming, sufficient conditions ensuring event-asymptotic and time-
asymptotic convergence are proved. The paper also shows how the same
modeling methodology can be employed to efficiently solve problems of
verification of safety properties.

1 Introduction

Hybrid systems are complex dynamical systems in which continuous and discrete
variables coexist and are mutually dependent. The trajectory of a continuous-
time hybrid system can be represented as a sequence of continuous evolutions
interleaved by discrete events [1, 2], which cause changes in the equations defin-
ing the continuous flow, thus changing the operating mode of the system. The
continuous flows and the instants at which the discrete events occur are further
influenced by exogenous discrete and continuous input signals.

When optimal control is applied to continuous-time hybrid systems [3–5], the
resulting computational problem is usually hard to solve, since it involves the
solution of non-convex problems [5]. A numerically efficient approach is based on
the application of mixed-integer programming (MIP) to a discrete-time represen-
tation of the system, in order to solve finite-horizon optimal control problems [6].
A drawback of this technique is that events (such as mode switches) can only
occur at sampling instants, which can induce non-negligible modeling errors [7].
Modeling precision can be clearly improved by reducing the chosen sampling
period; however, in a model predictive control (MPC) context [8, 9], the obvious
disadvantage is that, for a given time-horizon of prediction, a larger number of

� Corresponding author. This work was partially supported by the European Commu-
nity through the HYCON Network of Excellence, contract number FP6-IST-511368.

control variables is involved in the optimization problem. Better model accuracy
is paid by increased computation complexity.

A different approach recently proposed in [7] exploits a continuous-time
model of the hybrid system, called integral continuous-time hybrid automaton,
and abstracts an event-driven representation of it, in which the time is an ad-
ditional state variable and events, which can occur at any time instant, cause a
change of the speed of the continuous states. Moreover, constraints on state and
input variables are enforced along the whole continuous-time trajectory, contrar-
ily to discrete-time approaches that do not ensure constraint satisfaction during
the inter-sampling period.

Under the modeling assumption that dynamics are piecewise integral (ẋ =
Biu+fi) and input functions u are piecewise constant over time, continuous-time
optimal control problems over a finite horizon on integral continuous-time hybrid
automata can be solved by MIP, by exploiting an event-driven representation of
the system [7].

In this paper, after defining the integral continuous-time hybrid automaton
in Section 2, we explain in Section 3 how to represent it as an event-driven
model that can be exploited for formulating optimal control problems as mixed-
integer programs. In Section 4 we discuss an event-driven model predictive con-
trol scheme, providing sufficient convergence conditions and presenting a simple
numerical example. Finally, in Section 5 we show how the event-driven model
can be exploited for verification of hybrid systems, and test the approach on the
well-known train-gate benchmark [10].

2 Integral Continuous Hybrid Automaton

In this paper we consider the class of integral continuous (-time) Hybrid Au-
tomata (icHA) [7]. Such systems are a continuous-time version of the Discrete
Hybrid Automaton (DHA) [11], with integral continuous-state dynamics. The
icHA has the same structure of the DHA, consisting of the four components
reported in Figure 1: the integral Switched Affine System (iSAS), the Event
Generator (EG), the Mode Selector (MS) and the asynchronous Finite State
Machine (aFSM). The iSAS represents a collection of possible continuous-time
integral dynamics (i.e., the system modes) for the continuous states,

ẋc(t) = Bi(t)uc(t) + fi(t), (1)

where xc ∈ R
nc and uc ∈ R

mc are the continuous components of the state and
input vectors, respectively, and i ∈ I = {1, 2, . . . s} is the system mode. While
the main reason for focusing the attention to integral dynamics is computational
(see [7] and Equation (6) below), the class of continuous-state dynamics (1) has
been widely exploited for modeling and verification of hybrid systems [1, 10],
showing to be powerful enough for modeling many practical problems3.
3 Given a nonlinear (possibly discontinuous) dynamical model ẋ = f(x, u), model (1)

can be interpreted as a zero-order approximation of the state-transition function

aFSM

EGMS

iSAS

ub

uc

ξb

xc

e

i

[e = 1] ↔ [f(xc, uc, t) ≤ 0]i = fb(ξb, e, ub)

ẋc = Bi uc + fi

i = 1 . . . s

t

Fig. 1. Integral continuous-time Hybrid Automaton (icHA)

The EG defines the endogenous binary inputs e by linear threshold conditions

[ex
i (t) = 1]↔

[
Ex

i

[
xc(t)

t

]
≤ F x

i

]
, i = 1, . . . nx

e (2a)

[eu
i (t) = 1]↔ [Eu

i uc(t) ≤ Fu
i] , i = 1, . . . nu

e (2b)

where nx
e + nu

e = ne and e = [ex
1 . . . ex

nx
e
eu
1 . . . ex

nu
e
]T ∈ {0, 1}ne is the vector

of endogenous binary input variables. The icHA is also excited by exogenous
binary input signals ub ∈ {0, 1}mb . We say that an event occurs whenever an
endogenous input e or an exogenous input (uc, ub) changes its value. Accordingly,
event instants t0 < t1 < . . . are defined as

tk = min
t>tk−1

{t : (uc(t), ub(t), e(t)) �= (uc(tk−1), ub(tk−1), e(tk−1))}, (3)

where we assume that the minimum in (3) exists. As a consequence, the set of
admissible input functions is the set PC(mc,mb) of piecewise constant functions
u = [uc

ub
], u : R → R

mc × {0, 1}mb such that u(t) = u(tk), ∀t ∈ [tk, tk+1),
∀k = 0, 1,

The Boolean state ξb ∈ {0, 1}nb is defined as ξb(t) � xb(tk) for tk−1 ≤ t < tk
and

xb(tk+1) = faFSM(xb(tk), ub(tk), e(tk)), (4)

where faFSM : {0, 1}nb+mb+ne → {0, 1}nb is a Boolean function. The Boolean
state ξb(t) remains constant, ξb(t) ≡ xb(tk), during the whole interval tk−1 <
t < tk. At the event instant tk, the Boolean state switches to the new value

with respect to the state vector x and a first-order approximation with respect to
the input vector u. Piecewise affine (PWA) models ẋ = Aix+Biu+fi are first-order
approximations with respect to both x and u.

faFSM(xb(tk), e(tk), ub(tk)), and remains at that value for tk ≤ t < tk+1. While
we are assuming that the transitions of the aFSM are instantaneous, delays
can be easily modeled by introducing additional events and states. Note that
transitions of icHA can occur at any time instant, not only at multiples of a
given sampling period as in DHA [11].

The different operating modes of the system represented by the variable i(t)
are selected by the MS through the scalar product

i(t) = [1 2 . . . s] · fMS(ξb(t), ub(t), e(t)), (5)

where fMS : {0, 1}nb+mb+ne → {0, 1}s is a Boolean function satisfying the mutual
exclusivity relation [1 . . . 1] ·fMS = 1, ∀(ξb(t), ub(t), e(t)) ∈ {0, 1}nb+mb+ne . Note
that if the inputs and the e variables are constant, the Boolean state and the
system mode are also constant.

3 Event-Driven Representation of icHA

An icHA (1)-(5) can be converted to an event-driven representation that is suit-
able for computing solutions to optimal control problems. If the system mode i(t)
and the input uc(t) are constant for t ∈ [tk, tk+1), k = 1, . . . , h, the continuous
state at th is

xc(th) = xc(t0) +
h−1∑
k=0

(
Bi(tk)(tk+1 − tk)uc(tk) + fi(tk)(tk+1 − tk)

)
. (6)

Thus, the system dynamics can be rewritten as the linear difference equations

xc(k + 1) = xc(k) + Bi(k)vc(k) + fi(k)q(k) (7a)
t(k + 1) = t(k) + q(k) (7b)

where k is the event counter, xc(k) = xc(tk), t(k) = tk, i(k) = i(tk), q(k) is
the time interval between events k and k + 1, vc(k) = q(k)uc(k) is the integral
over time period q(k) of the input uc(k) = uc(tk), and time t is an additional
state variable. The controlled variables are the input integral vc(k) and the input
duration q(k); the input uc(k) = vc(k)

q(k) applied to the continuous-time system is
computed from them.

The event generator becomes

[ex
i (k) = 1]↔

[
Ex

i

[
xc(k)
t(k)

]
≤ F x

i

]
, i = 1, . . . nx

e (8a)

[eu
i (k) = 1]↔ [Eu

i vc(k) ≤ Fu
i q(k)] , i = 1, . . . nu

e (8b)

where e(k) = e(tk), and e(t) = e(tk), ∀t ∈ [tk, tk+1) by the definition of tk in (3).
Note that the dependence on time becomes a dependence on a state variable,
because of (7b) and (8b) is obtained from (2b) by multiplying by q(k) both sides.
The mode selector equation becomes

i(k) = [1 2 . . . s] · f̃MS(xb(k), ub(k), e(k)), (9)

where i(t) = i(k), ∀t ∈ [tk, tk+1) as a consequence of the event definition, and
f̃MS(xb(k), ub(k), e(k)) = fMS(faFSM(xb(k), ub(k), e(tk)), ub(k), e(k)) because of
(5) and the definition of ξ(t). Equation (4), is already defined with respect to
the events.

Equations (4), (7), (8), (9) define the behavior of the components of the
icHA in an event-driven representation. To take into account (3), however, the
following condition must be ensured:

[(e(tk), uc(tk), ub(tk)) = (ē, ūc, ūb)]→ [(e(t), uc(t), ub(t)) = (ē, ūc, ūb), ∀t ∈ [tk, tk+1)].
(10)

We consider two different cases: (i) the value uc or ub changes, so that an event is
externally forced, (ii) an endogenous event occurs (e changes its value). The first
case is caused by an arbitrary decision (e.g., by a controller), and no additional
constraints are needed. Thus, we only need to ensure that

[e(tk) = ē]→ [(e(t) = ē), ∀t ∈ [tk, tk+1)]. (11)

Note that the e variables in (2b) can change only when the input changes, thus
they can be dealt with as for externally forced events. Hence, we only need to
enforce (11) for (2a).

Let the mapping cod() : {0, 1}nx
e → N associate an integer number j to

each allowed value of vector ex = [ex
1 . . . ex

nx
e
]T defined in (2a). For example j

may be the integer whose binary encoding is ex. Define the matrix Ēx(j) and
the vector F̄ x(j) by collecting the rows in the inequalities of the EG (8) which
are satisfied for ex such that cod(ex) = j. In addition, define Êx(j), F̂ x(j) by
collecting as rows the inequalities of the EG (8), which are not satisfied for ex

such that cod(ex) = j. In this way, for all the values of state and input such
that cod(ex(k)) = j, Ēx(j) [x

t] ≤ F̄ x(j), Êx(j) [x
t] > F̂ x(j). As an example,

consider two thresholds [ex
1 = 1] ↔ [x ≤ 0], [ex

2 = 1] ↔ [x ≤ 1]. The matrices
associated to ex = [0 1]′, where cod(ex) = 1, are Ēx(1) = 1, F̄ x(1) = 1, collecting
the second threshold condition (satisfied), and Êx(1) = 1, F̂ x(1) = 0.

As detailed in [7], in case of integral dynamics, (11) is guaranteed by the
mixed-logical constraint

[cod(ex(tk)) = j]→
[[

Ēx(j)

−Êx(j)

] [
x(tk+1)
t(k+1)

]
≤

[
F̄ x(j)

−F̂ x(j)

]
+ ε1

]
, (12)

in which ε is an arbitrary small positive constant that ensures that e(t) = e(tk),
∀t ∈ [tk, tk+1−σ(ε)], and σ(ε) tends to zero as ε tends to zero. Note that x(tk+1)
is a linear function of x(k), q(k), and v(k) =

[
vc(k)
vb(k)

]
, where vb(k) = ub(k) , so

that (12) is reformulated as mixed-integer inequalities on x(k), q(k), v(k), e(k).
Equations (4), (7), (8), (9), (12) represent a DHA that can be modeled in

Hysdel [11] through which we can obtain an event-driven MLD (eMLD) system

x(k + 1) = Ax(k) + B1w(k) + B2e(k) + B3z(k) + B5, (13a)
t(k + 1) = t(k) + q(k), (13b)

E2e(k) + E3z(k) ≤ E1w(k) + E4x(k) + E5. (13c)

where w(k) =
[

v(k)
q(k)

]
. Differently from the standard discrete-time MLD sys-

tem [6], in (13) k is an event counter.

Remark 1. Discontinuities of the continuous state trajectory can be introduced
by resets. To model resets, additional reset modes i ∈ {s+1, . . . , sr} are included,
(7a) is modified into xc(k +1) = (Eixc(k)+hi)+Bi(k)v(k)+ fi(k)q(k), and (7b)
into t(k + 1) = t(k) + Giq(k). In modes i = {1 . . . s}, Ei = I (where I is the
identity matrix), hi = 0 and Gi = 1, while in reset modes i = {s + 1 . . . sr}
Bi = 0, fi = 0 and Gi = 0. Note that resets are instantaneous.

The definition of the event-driven dynamics of the icHA by an eMLD system
allows the definition of finite horizon optimal control problems that can be solved
by mixed-integer programming (MIP) as shown in [6]. With respect to MLD
models, the only difference is that the horizon represents the number of events
occurred, and the time elapsed along the horizon is a continuous state variable.

4 Event-Driven Model Predictive Control

In [7] event-driven open-loop optimal control strategies are proposed with differ-
ent cost functions: minimum-time, minimum-effort, and minimum displacement.
They are computationally less expensive than their discrete-time counterparts
and the system’s constraints are satisfied along the whole trajectory instead of
only at sampling instants. However, the approach of [7] is an open-loop control
strategy. We introduce an event-driven MPC closed-loop strategy here.

Given an icHA, the eMLD model is obtained as explained in Section 3 so
that a finite horizon optimal control problem can be formulated as in [6]

min
q,v

J(x, t, v, q) (14a)

s.t. system dynamics (13) (14b)
g(x, t, q, v) ≤ 0 , (14c)
x(0) = x0, t(0) = t0, (14d)

where t = {t(k)}Nk=0 are the event instants, x = {x(k)}Nk=0 are the corresponding
state values, q = {q(k)}N−1

k=0 are the durations of the time intervals between two
consecutive events and v = {v(k)}N−1

k=0 are the input integrals during [tk, tk+1).
We consider cost functions of the form

J(x, t, v, q) = F (x(N)) +
N−1∑
k=0

L(x(k), t(k), vc(k), q(k)) (15)

where L(x(k), t(k), vc(k), q(k)) = ‖x(k)− x̂‖Q1
p + ‖t(k)− t̂‖Q2

p + ‖v(k)− v̂‖R1
p +

‖q(k)− q̂‖R2
p is the stage cost, F (x(N)) = ‖x(N)−x̂‖QN

p is the terminal cost, p =
1, 2,∞, ‖z‖Q∞ = maxi |(Qz)i|, ‖z‖Q1 =

∑
i |(Qz)i| and ‖z‖Q2 = zT Qz, and if not

differently stated q̂ = 0, v̂ = 0. In (15), N is the number of allowed events, and

as a consequence, the time period considered in the optimization problem will
depend on the chosen input profile through the system dynamics: For a fixed N ,
when the continuous state evolves quickly and switches are frequent, the resulting
time horizon will shrink because the system requires a tighter control action;
on the contrary, when the dynamics is slow and few mode switches occur, the
time-horizon will increase without increasing the complexity of the optimization
problem, so that a smaller amount of computation per time unit is required.

Constraint (14c) represents additional constraints in the optimal control
problem that have different purposes. Bounds on the continuous-time input value
u ≤ uc(t) ≤ u can be cast as the linear constraints

uq(k) ≤ v(k) ≤ uq(k). (16)

Different input bounds for different modes can be enforced as [i(k) = ı̄] →
[uı̄q(k) ≤ v(k) ≤ uı̄q(k)], where uı̄ and uı̄ are the input upper and lower bounds
while the system remains in mode ı̄. Additional operating constraints may be
imposed on time intervals between two events

q ≤ q(k) ≤ q. (17)

A finite value of q imposes a maximum time for each control action, in order to
prevent the system from running in open-loop with a constant input for too long,
because of the receding horizon mechanism. A minimum duration q ensures a
minimum time interval between two events (thus, between two mode switches),
therefore avoiding undesirable effects such as high frequency chattering and Zeno
behaviors. Additional constraints in (14c) may concern terminal constraints on
the final state and on the final time of the optimization problem. In this case,
we consider

x(N) ∈ XT , t(N) ∈ TT , (18)

as terminal constraints, where XT , TT can be either polyhedra or isolated points.
The event-driven Model Predictive Control (eMPC) strategy is defined as

follows:

1. Let N be the event horizon, and consider the initial instant t̃ and the corre-
sponding state value x(t̃).

2. Solve the optimal control problem (14) with t0 = t̃ and x0 = x(t̃) and
let [v∗(0), . . . , v∗(N − 1)] be the sequence of optimal input integral values,
[q∗(0), . . . , q∗(N−1)] be the sequence of input action durations, [x∗(1), . . . , x∗(N)]
be the predicted state values at event instants and [t∗(0), . . . , t∗(N)] be the
corresponding time instants at which the events occur.

3. Compute the input value uc(t̃) = v∗
c (0)

q∗(0) , and apply u(t) ≡
[

uc(t̃)
v∗

b (0)

]
to the

icHA during the time interval [t̃, t̃ + q(0)]. 4

4 Different strategies may be proposed here, for example apply uc(t) ≡ v∗
c (0)

q∗(0)
for t ∈

[t̃, t̃ + min{q(0), Ts}], where Ts is a given maximum time interval the system can
be run in open-loop, or apply the optimal input trajectory in open-loop for a fixed
time interval (possibly covering more than one optimal event instants) to prevent
out-of-time computation problems due to an excessively small duration q∗(0).

4. Set t̃← t̃ + q(0), x(t̃)← x̆ = x(t̃ + q(0)) and go to 2.

Note that the actual state x̆ at the end of each control action can be different
from the predicted one x∗(1), because of external disturbances and modeling
errors. Clearly, the main advantage of the eMPC strategy with respect to open-
loop optimal control [7] is its closed-loop nature, since after each predicted event
the real state is read or estimated again and a new optimal input sequence is
computed from it. In the current event-driven approach also the prediction of
the time instants at which events occur can be updated.

4.1 eMPC Example

In this section we present a simple numerical example showing the behavior of
the eMPC strategy and its robustness with respect to disturbances. We consider
a system having two continuous states x1 and x2, and two state thresholds [ex

1 =
1]↔ [x1 ≤ 0], [ex

2 = 1]↔ [x2 ≤ 0], so that the system has four modes. Each mode
corresponds to an orthant of the Cartesian plane, where i = 1 corresponds to
the positive orthant and the other orthants are numbered clockwise. The system
has two inputs −50 ≤ u1 ≤ 50 and −50 ≤ u2 ≤ 50, and the vectors and matrices
that define Equation (1) for i = 1, . . . , 4 are f1 = f4 = [1

0], f2 = f3 =
[−1

0

]
,

B1 = [0 0
0 1.4], B2 = [0 0

0 1.5], B3 = [0 0
0 1.15], B4 = [1 0

0 2.3]. Moreover, there are
additional constraints on the inputs: when in mode i = 1 it must hold that
u2 ≥ −2, for i = 2 u2 ≤ −0.5, for i = 3 u2 ≤ 2, and for i = 4 u1 ≤ 2 and
−0.5 ≤ u2 ≤ 2.

We want to bring the state of the system from x0 = [0.1
2] to xf =

[−1
3

]
while minimizing function (14a), where p = ∞, Q1 = [10 0

0 10], Q2 = [0 0
0 0], R1 =

[10−3 10−3], R2 = 1, x̂ = xf and 0.1 ≤ q ≤ 50. We have set q̂ = 0.1, v̂ = u∞q̂,
where u∞ =

[−1
0

]
. The system is perturbed by input-additive disturbances,

so that the continuous state dynamics is ẋ(t) = Bi(tk)

(
u(tk) + ξk

)
+ fi(tk), ∀t ∈

[tk, tk+1), where ξk is a sequence of time-uncorrelated stochastic vectors in which
each component is independent from the other and uniformly distributed in
[−0.1, 0.1].

Figure 2 reports the continuous-time trajectories generated by the eMPC
controller with a prediction horizon of 4 events applied for 8 steps. In the undis-
turbed case (Figure 2(a)) the closed-loop eMPC strategy trajectory coincides
with the open-loop optimal one; four control actions, corresponding to four mode
switches, are required to bring the system to the target state. In the presence
of disturbances (Figure 2(b)) the eMPC is able to counteract them, and to
still bring the system close to xf , even if a larger number of control actions
with respect to the undisturbed case is required. The trajectory obtained by
the open-loop optimal policy under the effect of the same disturbance realiza-
tion is reported in Figure 2(c), showing that the effects of the interaction of the
disturbance with the switching nature of the system are not negligible.

−1.5 −1 −0.5 0 0.5 1
−1

0

1

2

3

(a) eMPC, undis-
turbed.

−1.5 −1 −0.5 0 0.5 1
−1

0

1

2

3

(b) eMPC, dis-
turbed.

−1.5 −1 −0.5 0 0.5 1
−1

0

1

2

3

(c) Open-loop, dis-
turbed.

Fig. 2. Example, controlled system trajectory

4.2 Conditions for Convergence of eMPC

We consider the case in which the terminal sets XT , TT are isolated points or
polytopes separately.

Definition 1. A state value x̄ =
[

x̄c
x̄b

]
is an equilibrium point for the icHA in

mode ı̄ if and only if there exists a steady state input value ū∞ =
[

ūc,∞
ūb,∞

]
and

ē∞ such that:

1. ē∞ = fEG(x̄c, ūc,∞, t), ∀t ≥ 0, where fEG is the event generator (2);
2. x̄b = faFSM(x̄b, ūb,∞, ē∞);
3. ı̄ = [0, 1, . . . s] · fMS(x̄b, ūb,∞, ē∞);
4. Bı̄ ūc,∞ + fı̄ = 0 .

This definition of equilibrium requires that the input ū∞ maintains the con-
tinuous state, the discrete state, and the mode constant. Note that the target
state xf in the example of Section 4.1 is an equilibrium point of mode i = 4 with
steady-state input u∞ =

[−1
0

]
.

Terminal equality constraint. If the terminal set reduces to a point, Con-
straint (18) can be written as

x(N) = x̂, t(N) = t̂ , (19)

where x̂ and t̂ are referred to as target state and target time, respectively. As
a consequence, the terminal cost can be removed from (15). In the following we
denote by χ(k) =

[
x(k)
t(k)

]
the state of the eMLD system.

Consider an initial state χ0 = χ(k) and solve Problem (14), obtaining the
optimal cost J∗(χ0), the optimal state trajectory X∗(χ0) = [χ∗

1(χ0) . . . χ∗
N (χ0)]

and the optimal input w∗(χ0) = [w∗
0(χ0), . . . w∗

N−1(χ0)], where wi = [vi
qi]. Let

the eMPC control action at step k be wMPC(k) = w∗
0(χ0) and let the initial

state for the next optimization problem be χ1 = χ(k + 1) = G(χ0, wMPC(k)),
where G(χ(k), w(k)) is the state update function (13).

Theorem 1. Let q = 0 in (17), x̂ be an equilibrium point with steady-state input
ū∞, q̂ = 0, v̂ =

[
0

ūb,∞

]
, and Q1, Q2, R1, R2 full rank. If Problem (14) is feasible

for x0 = x(k), t0 = t(k), then it is feasible for x0 = x∗
1(x(k)), t0 = t∗1(x(k)) and

the state and time converge to the target state x̂ and target time t̂, respectively,
as the number of events tends to infinity.

Proof. Let χ1 = χ∗
1(χ(k)). The input sequence w̃(χ1) =

[
w∗

1(χ0), . . . w∗
N−1(χ0),

[
0

ūb,∞
0

]]
obtained by shifting w∗(χ0) to the left is feasible for Problem (14), when χ0 is
replaced by χ1. Then χi(χ1) = χi+1(χ0) for i = 0, . . . , N − 1 and χN (χ1) =

G
(
χ∗

N−1(χ1),
[

0
ūb,∞

0

])
is equal to χN−1(χ1) = χN (χ0). Thus, the dynamics and

the operating constraints are satisfied at χN (χ1) and the sequence w̃(χ1) satisfies
the constraints in (14).

Next, we show that the sequence of cost values is decreasing by applying the
same approach of [6]. Because of optimality, J∗(χ1) ≤ J(χ1, w̃(χ1)), where

J(χ1, w̃(χ1)) = J∗(χ0)− L(x(0), t(0), v(0), q(0)), (20)

and hence J∗(χ1) ≤ J∗(χ0). Since J(χ(k)) is lower bounded by 0 and the se-
quence is not increasing, limk→∞ J(χ(k)) = J∞, so that limk→∞ J(χ(k + 1))−
J(χ(k)) = 0, implying that limk→∞ x(k) = x̂, limk→∞ v(k) = v̂, limk→∞ q(k) =
0, limk→∞ t(k) = t̂. �

Note that convergence is asymptotic with respect to the number of events, but
nonetheless the state converges to the target state x̂ in the finite time t̂. In the
more common case of t(N) unconstrained and Q2 = 0, limk→∞ x(k) = x̂ but
it is possible that limk→∞ t(k) = ∞, thus having time-asymptotic convergence;
the proof follows directly from the previous one.

Remark 2. When q∗0 is very small the time required for solving the next opti-
mization problem may be insufficient An approach to avoid q(k) → 0 is to set
q̂ = q∞ > 0, Q2 = 0, v̂ = 0 and R1 = 0. In this way, if a steady state input ū∞
exists, eventually unknown, then wMPC(k) =

[ūc,∞q∞
ūb,∞
q∞

]
when x(k) = x̂, which

has zero cost. It must be noted that solutions in which q(k) = 0 are still feasible,
but not optimal.

Next, we consider the case q > 0 in (17), that ensures a minimum dwell time.

Theorem 2. Let ū∞ be the steady-state input corresponding to the equilibrium
point x̂, let v̂ =

[
ūc,∞ q̂
ūb,∞

]
and q ≤ q̂ ≤ q. Let Q2 = 0 and t(N) be unconstrained.

If Problem (14) is feasible for χ0 = χ(k), it is also feasible for χ(0) = χ1 =
G(χ0, wMPC(k)) and the state converges to x̂.

Proof. Let w∗(χ0) be the optimal input sequence of the problem with initial
state χ0. Then w̃(χ1) = [w∗

1(χ0), . . . w∗
N−1(χ0),

[
v̂
q̂

]
] is feasible since x(N + 1) =

x(N) = x̂, while fulfilling also all the other constraints. Furthermore, (20) holds
and convergence is ensured. �

Note that the eMPC controller in the example of Section 4.1 was designed basing
on the hypotheses of Theorem 2.

Remark 3. When the constraint q ≥ q > 0 is added, the optimal control problem
might become unfeasible. A sufficient condition for feasibility is that ∀i, ∃ūi that
satisfies the constraints of mode i and verifies Bi ūi + fi = 0. Such condition
ensures the existence of an input that blocks the system state in each mode.

Terminal cost and terminal set. The terminal constraints are defined by

Sx(N) ≤M, ST t(N) ≤MT , (21)

where S is a suitable matrix and M , ST , MT are suitable vectors. For the sake
of simplicity, we discuss the case in which the target time is not constrained nor
weighted (thus ST , MT are empty and Q2 = 0), x̂ = 0 and v̂ = 0, and the icHA
system is time invariant (i.e. conditions in (2) do not depend on t), so that we can
disregard the eMLD additional state t (the extensions are straightforward). We
assume that there are no Boolean inputs, and that in a neighborhood of the origin
the mode i is such that fi = 0 in (1) and the discrete state is constantly xb =
[0 . . . 0]T . The last two conditions ensure that the translation of the eMLD yields
an equivalent piecewise affine (PWA) model [12] that is linear in a neighborhood
of the origin. We use here the results of [13] for convergence of MPC in discrete-
time.

Let XT be the polytope {x : Sx ≤ M}, W (x) = {V (x) × Q} be the set of
feasible solutions w∗

0(x) =
[

v∗
0 (x)

q∗
0 (x)

]
to Problem (14) when x0 = x, and consider

an auxiliary state-feedback controller

w̃(k) = h
(
x(k)

)
. (22)

The results on [13] ensure that if (i) h
(
x(k)

)
∈ W (x) ∀x ∈ XT , (ii) XT is

a positively invariant set for system (13) in closed loop with (22), and (iii) the
inequality

F (G(x(k), h(x(k))) − F (x(k)) + L(x(k), h(x(k))) ≤ 0, (23)

is satisfied, then if Problem (14) is feasible at step k, it is feasible at step k + 1
and the state converges asymptotically to the target state.

The problem reduces to computing the auxiliary controller, that for the event-
driven approach of this paper has the structure

w(x) =
[
v(x)
q(x)

]
=

[
f1(x(k))
f2(x(k))

]
. (24)

Consider the discrete-time system Σd with sampling time Ts described by
equations (13a), (13c) in which q(k) = Ts and the index k represents the sam-
pling step counter. Let Jd(x, v) = Fd(x(N)) +

∑N−1
k=0 Ld(x(k), v(k)) be the cost

function, where Ld(x(k), vc(k)) = ‖xc(k) − x̂‖Q1
p + ‖vc(k) − v̂‖R1

p , Fd(x(N)) =

F (x(N)), and hd(x(k)) be an auxiliary piecewise linear (PWL) state-feedback
controller. The decreasing cost condition of [13] for asymptotic stability is

Fd(Gd(x(k), hd(x(k))) − Fd(x(k)) + Ld(x(k), hd(x(k))) ≤ 0. (25)

The following proposition shows that the auxiliary controller for Σd allows prov-
ing convergence of the event-driven system.

Proposition 1. Let Ts be such that q ≤ Ts ≤ q, q̂ = Ts, Q2 = 0 and hd

(
x(k)

)
be a discrete-time PWL controller with sampling time Ts, such that hd(x) ∈
V (x) ∀x ∈ XT . Let XT be a positively invariant set for system Σd in closed-loop
with hd(x), and (25) be satisfied. Then x(k)→ 0 for k →∞.

Proof. System (13a), (13c), when q(k) = Ts is a discrete-time MLD system of
the form x((k+1)Ts) = Gd(x(kTs), v(kTs)) for which an equivalent PWA system
can be computed [12]. Since we have supposed that in a neighborhood of the
origin the continuous-time system has no affine terms and that the Boolean state
is [0, . . . , 0], also the discrete-time PWA system is linear in such a region and
the results of [13] hold. The discrete-time controller is equivalent to an event-
driven controller that raises an event every Ts time units. Then the controller
w(k) = h(x(k)) =

[
hd(x(k))

Ts

]
is an auxiliary event-driven controller for system

(13) that respects condition (23), since (23) is equal to (25) because of the chosen
cost function (q̂ = Ts, Q2 = 0).

Thus h(x(k)) is a state-feedback controller that respect hypotheses of [13]
for system (13) interpreted as discrete-time systems, proving convergence of
x(k)→ 0 as k →∞. �

Proposition 1 ensures that if a discrete-time PWL controller respecting the
hypotheses of [13] exists, for instance computed as in [14], then the eMPC con-
troller is converging. The sampling time of the auxiliary controller is used to
compute a valid XT and can be changed in the design phase, without changing
anything in the event-driven system but the parameter q̂. In order to relax the as-
sumption xb = [0, . . . , 0]T , one may require convergence only for the continuous
state as in [15], thus without weighting xb in the cost function.

5 Event-Based Verification of icHA

In Section 4 we have exploited the icHA and its discrete-event reformulation for
MPC design. However, this model can be conveniently exploited also for verifi-
cation of safety and liveness properties. The main advantage of the event-based
approach is that verification queries, whenever their negation can be formulated
as a combination of linear and logical constraints, can be posed as feasibility

problems of mixed-integer programs

min
q,v

0

s.t. system dynamics (13) (26a)
g(x, t, q, v) ≤ 0 , (26b)
x(0) ∈ X0, t(0) ∈ T0. (26c)
H(x(N), t(N)) ≤ 0 (26d)

where (26a) and (26b) are the same as in (14), (26c) defines the set of possible
initial states and (26d) is the region in which the query to be verified is false
and it is enforced on the system’s final state. Note that since we are considering
mixed integer programming, H() can be any combination of linear and logical
constraints and X0, T0 can be any union of polyhedra. The event-horizon on
which the property is verified is defined by the constant N . If Problem (26)
admits a feasible solution, then there exists a trajectory departing from a valid
initial state that violates the query to be verified, thus, the query is false. Note
that if q = 0, (26d) ensures safety ∀k = 1, . . . , N , even if it is formulated only
with respect to the N th step. In fact, if a feasible solution to Problem (26) for
a horizon k < N exists, then a feasible solution of (26) also exists, by extending
the solution on k steps by “fictitious” events separated by q = 0 time units.
Thus, the infeasibility implies that at any event instant constraint (26d) is un-
satisfied. This implies also the safety of the whole trajectory, since trajectories
are piecewise-linear because of the integral dynamics [7]. An intuitive explana-
tion of this property is the following. In order to reach an interior point of the
unsafe region, one of the thresholds delimiting such a region must be crossed.
However, every time a threshold is crossed an event occurs and the state at such
instant is inside the new region. If no state values at the event instants reside
in the unsafe region, then the thresholds delimiting such a region cannot have
been crossed. Note that if this approach is applied to standard discrete-time
models, the infeasibility of the mixed-integer program would only ensure safety
at sampling instants.

It is easy to recognize similarities between the icHA and the Linear Hybrid
Automaton (LHA) [1, 10], a model which has been widely exploited for verifica-
tion of hybrid systems [10]. The LHA considers discrete and continuous states,
the continuous dynamics are defined by discrete state dependent differential in-
clusions in the form

∑
i aj

i ẋi ∈ [bj , cj], where j is the discrete state index, i is the
continuous state index, aj

i , bj, cj are constants and xi are the continuous state
variables. The discrete states have associated invariant sets, defined by linear
constraints over continuous state variables, the discrete state transitions are en-
abled by linear conditions over continuous state variables and after each of them
the continuous state can be reset. The discrete state dynamics are defined by an
aFSM with resets in both models, and the equations of the continuous dynamics
switch according to the discrete state. For any given discrete state, all admissible
continuous state trajectories of an LHA can be produced by an icHA by a proper
selection of the input functions u ∈ PC and, viceversa, all icHA trajectories can

be generated by an LHA by appropriately choosing the ranges of the differential
inclusion. For instance, the dynamics a ≤ ẋ(t) + ẏ(t) ≤ b can be modeled as
ẋ = u1(t), ẏ = u2(t) along with a ≤ u1(t) + u2(t) ≤ b. The discrete state transi-
tions of icHA are deterministic, those of LHA are not. However, in an icHA the
non-determinism can be modeled by adding external signals η(k)5 in (13). For
instance, a transition of an LHA that can be fired whenever a ≤ x(t) ≤ b can be
modeled by adding the input − b−a

2 ≤ η(k) ≤ b−a
2 and by setting the transition

to occur when x(k) + η(k) = b+a
2 .

The practical consequence of the similarities between LHA and icHA is that
many systems that are modeled as LHA can be modeled also as icHA and ver-
ified by solving problem (26) by mixed integer programming for which efficient
algorithms and tools exist. A formal proof of equivalence between subclasses of
LHA and of icHA is beyond the scope of this paper.

5.1 Verification Example

Consider the “train-gate” system [10], with small modifications. The system
consists of a train that must safely cross a gate, meaning that when the train
is crossing the gate, this must be closed. The gate can be idle (I), closing (Cl),
closed (C) or opening (O). A train can be arriving (Ar), crossing (Cr), leaving (L)
or far (F), depending on its position with respect to the gate. The corresponding
automata with continuous-time differential inclusions are reported in Figure 3,
where x is the train position and y is the gate position. Note that the signal
app forces a transition in which x is reset. We performed the tests on a Pentium
IV-M 2 GHz, equipped with 1 GB Ram, running Matlab 6.5 and Cplex 9.0.

Ar

Cr

L

F

x ≥ −10 x > 10

x > 40

app,

x → [−30,−20]

ẋ ∈ [.45, .55]

ẋ ∈ [.50, .34]

ẋ ∈ [.45, .55]

ẋ = 1

(a) Train Automaton.

I Cl

CO

app

y ≤ 10−2

x > 10

y = 1

ẏ = 0 ẏ ∈ [−.165,−.6]

ẏ = 0ẏ ∈ [.045, .15]

(b) Gate Automaton.

Fig. 3. Train-Gate system

The system is modeled as an icHA and converted to eMLD form. Let the ini-
tial state be (x0, y0), where x0 ∈ [−25,−20] and y0 = 1, and (Ar,Cl) as discrete
5 η(k) is added in (13) as an additional component of v(k).

state, and the query be: “Does the system always stay out of the unsafe state
(Cr, Cl)?′′. Problem (26) is solved for N = 6 proving its infeasibility, meaning
that an unsafe trajectory does not exist. The computation required 0.984 sec-
onds. If the differential inclusion in state Cl is changed to ẏ = [−0.145,−0.4] a
solution is found, meaning that the gate is closing too slowly.

Another query that can be verified is the following: “Does the train always
reach the state F in less than 100 time units, when departing from x0?”. The
answer is no, since there exists a feasible solution to problem (26) in which (26d)
is x ≤ 40 and −t ≤ −100. This query was tested in 0.312 seconds. Differently
from the previous one, this query involves the capability of the system to reach
its objective, thus it is related to the system liveness.

6 Conclusions

In this paper we have shown how to obtain an event-driven representation of an
integral continuous-time hybrid automaton and we have analyzed model predic-
tive control and verification schemes for such systems. The main advantage is
that a continuous-time hybrid system can be analyzed as a discretely evolving
one, so that MIP techniques can be exploited for computing the eMPC control
action and for verification of safety properties. In addition, a lighter computa-
tional burden may be result with respect to the discrete-time approach.

References

1. Henzinger, T.A.: The theory of hybrid automata. In: Proceedings of the 11th
Annual IEEE Symposium on Logic in Computer Science, New Brunswick, New
Jersey (1996) 278–292

2. Lygeros, J., Johansson, K.H., Simic, S.N., Zhang, J., Sastry, S.: Dynamical prop-
erties of hybrid automata. IEEE Tr. Automatic Control 48 (2003) 2–17

3. Gokbayrak, K., Cassandras, C.: Hybrid controllers for hierarchically decomposed
systems. In Krogh, B., Lynch, N., eds.: Hybrid Systems: Computation and Control.
Springer-Verlag (2000) 117–129

4. Shaikh, M.S., Caines, P.E.: On the optimal control of hybrid systems: Optimiza-
tion of trajectories, switching times, and location schedules. In: Hybrid Systems:
Computation and Control, Springer-Verlag (2003) 466–481

5. Xu, X., Antsaklis, P.J.: Results and perspectives on computational methods for op-
timal control of switched systems. In: Hybrid Systems: Computation and Control,
Springer-Verlag (2003) 540–555

6. Bemporad, A., Morari, M.: Control of systems integrating logic, dynamics, and
constraints. Automatica 35 (1999) 407–427

7. Bemporad, A., Di Cairano, S., Júlvez, J.: Event-driven optimal control of integral
continuous-time hybrid automata. In: Proc. 44th IEEE Conf. on Decision and
Control, Seville, Spain (2005) To Appear.

8. Maciejowski, J.: Predictive control with constraints. Englewood Cliffs, NJ: Prentice
Hall. (2002)

9. Qin, S., Badgwell, T.: A survey of industrial model predictive control technology.
Control Engineering Practice 11 (2003) 733–764

10. Henzinger, T.A., Ho, P.H., Wong-Toi, H.: HyTech: A model checker for hybrid
systems. Int. J. on Software Tools for Technology Transfer 1 (1997) 110–122

11. Torrisi, F.D., Bemporad, A.: HYSDEL — A tool for generating computational
hybrid models. IEEE Tr. Contr. Systems Technology 12 (2004) 235–249

12. Bemporad, A.: Efficient conversion of mixed logical dynamical systems into an
equivalent piecewise affine form. IEEE Tr. Automatic Control 49 (2004) 832–838

13. Lazar, M., Heemels, W., Weiland, S., Bemporad, A.: Stability of hybrid model
predictive control. In: Proc. of Int. Workshop on Assessment and Future Directions
of NMPC, Germany (2005)

14. Lazar, M., Heemels, W., Weiland, S., Bemporad, A.: Stability of hybrid model
predictive control. In: Proc. 43th IEEE Conf. on Decision and Control, Paradise
Island, Bahamas (2004) 4595–4560

15. Ferrari-Trecate, G., Cuzzola, F.A., Morari, M.: Lagrange stability and performance
analysis of discrete-time piecewise affine systems with logic states. Int. J. Control
76 (2003) 1585–1598

