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Abstract. In this paper we develop a priori stabilization conditions for
infinity norm based hybrid MPC in the terminal cost and constraint set
fashion. Closed-loop stability is achieved using infinity norm inequalities
that guarantee that the value function corresponding to the MPC cost is
a Lyapunov function of the controlled system. We show that Lyapunov
asymptotic stability can be achieved even though the MPC value func-
tion may be discontinuous. One of the advantages of this hybrid MPC
scheme is that the terminal constraint set can be directly obtained as a
sublevel set of the calculated terminal cost, which is also a local piecewise
linear Lyapunov function. This yields a new method to obtain positively
invariant sets for PWA systems.

1 Introduction

Hybrid systems provide a unified framework for modeling complex processes
that include both continuous and discrete dynamics. The large variety of prac-
tical situations where hybrid systems are encountered (e.g., physical processes
interacting with discrete actuators) led to an increasing interest in modeling and
control of hybrid systems. Several modeling formalisms have been developed for
describing hybrid systems, such as Mixed Logical Dynamical (MLD) systems [1]
or Piecewise Affine (PWA) systems [2], and several control strategies have been
proposed for relevant classes of hybrid systems. Many of the control schemes for
hybrid systems are based on optimal control, e.g., like the ones in [3], [4], or
on Model Predictive Control (MPC), e.g., as the ones in [1], [5], [6], [7]. In this
paper we focus on the implementation of MPC for constrained PWA systems.
This is motivated by the fact that PWA systems can model a broad class of
hybrid systems, as shown in [8].
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The implementation of MPC for hybrid systems faces two difficult problems:
how to reduce the computational complexity of the constrained optimization
problem that has to be solved on-line and how to guarantee closed-loop stability.
Most of the MPC algorithms are based on the optimization of a cost function
which is defined using either quadratic forms or infinity norms. If a quadratic
form is used to define the cost function, the MPC constrained optimization
problem becomes a Mixed Integer Quadratic Programming (MIQP) problem,
e.g., see [1] for details. This choice has led to fruitful results with respect to the
stability problem of hybrid MPC, mainly due to the fact that in this case, the
stabilization conditions can be reduced to a set of Linear Matrix Inequalities
(LMI). Such results have been initially derived in the context of state feedback
stabilization of PWA systems, as done in [3], [9]. The extension of the terminal
cost and constraint set method for guaranteeing stability in MPC (e.g., see [10]
for details) to the class of constrained PWA systems has been worked out in [7].
The terminal weight is calculated in [7] using semi-definite programming and
the terminal state is constrained to a polyhedral positively invariant set in order
to guarantee stability.

In the case when the infinity norm is used to define the cost function, the MPC
constrained optimization problem leads to a Mixed Integer Linear Programming
(MILP) problem, as pointed out in [5]. A piecewise affine explicit solution to
this problem can be obtained using multi-parametric programming, as shown
in [5], [6], [11], which may result in a reduction of the on-line computational
complexity (one still has to check in which state space region the measured
state resides). Regarding the stability problem, an a priori heuristic test for
guaranteeing stability of infinity norm based MPC of PWA systems has been
developed in [5]. Recently, an a posteriori procedure for guaranteeing stability
of hybrid systems with a linear performance index has been derived in [12] by
analyzing the explicit PWA closed-loop system. Another option to guarantee
stability is to impose a terminal equality constraint, as done in [1] for hybrid MPC
based on a quadratic form. However, this method has the disadvantage that the
system must be brought to the origin in finite time, over the prediction horizon
(this requires that the PWA system is controllable, while stabilizability should be
sufficient in general). As a result, a longer prediction horizon may be needed for
ensuring feasibility of the MPC optimization problem (fact which increases the
computational burden). Also, the terminal equality constraint is only proven to
guarantee attractivity. Lyapunov stability [13], next to attractivity, is a desirable
property from a practical point of view.

In this paper we guarantee asymptotic stability (including Lyapunov stabil-
ity) for infinity norm based hybrid MPC in the terminal cost and constraint
set fashion. A priori stabilization conditions are developed using infinity norm
inequalities, in contrast with the a posteriori verification proposed in [12]. If
the considered infinity norm inequalities are satisfied, then the value function of
the MPC cost is a Lyapunov function of the controlled PWA system. We show
that Lyapunov asymptotic stability can be achieved even though the MPC value
function may be discontinuous. This fact has been pointed out in [14] for nonlin-
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ear discrete-time systems and it has been used in [9] to derive a state-feedback
based stabilizing controller for discrete-time PWA systems. We calculate the
terminal weight by solving off-line an optimization problem. Several two-step
methods to transform this problem into a Linear Programming (LP) problem
are also presented. The terminal constraint set can be automatically obtained
as a polyhedron (or as a finite union of polyhedra) by simply taking one of the
sublevel sets of the calculated terminal cost, which is a local piecewise linear
Lyapunov function. Then the MPC constrained optimization problem that has
to be solved on-line still leads to a MILP problem.

The paper is organized as follows. Section 2 deals with preliminary notions
and Section 3 provides a precise problem formulation. The main result concerning
infinity norms as Lyapunov functions for MPC of constrained PWA systems
is presented in Section 4. Several possibilities to obtain the terminal weight
matrix are indicated in Section 5 and relaxations are developed in Section 6.
The conclusions are summarized in Section 7.

2 Preliminaries

Consider the time-invariant discrete-time autonomous nonlinear system described
by

xk+1 = g(xk), (1)

where g(·) is an arbitrary nonlinear function.

Definition 1. Given λ, 0 ≤ λ ≤ 1, a set P ⊂ R
n is a λ-contractive set for

system (1) if for all x ∈ P it holds that g(x) ∈ λP. For λ = 1 a λ-contractive
set is called a positively invariant set.

A polyhedron is a convex set obtained as the intersection of a finite number of
open and/or closed half-spaces. Moreover, a convex and compact set in R

n that
contains the origin in its interior is called a C-set [15].

For a vector x ∈ R
n we define ‖x‖∞ := maxi=1,...,n |xi|, where xi is the i -th

component of x, and for a matrix Z ∈ R
m×n we define

‖Z‖∞ � sup
x�=0

‖Zx‖∞
‖x‖∞

.

It is well known [16] that ‖Z‖∞ = max1≤i≤m

∑n
j=1 |Z{ij}|, where Z{ij} is the

ij -th entry of Z. Also, for a matrix Z ∈ R
m×n with full-column rank we define

Z−L := (Z�Z)−1Z�, which is a left inverse of Z (i.e. Z−LZ = In).

3 Problem Statement

Consider the time-invariant discrete-time PWA system [2] described by equations
of the form

xk+1 = Ajxk + Bjuk + fj when xk ∈ Ωj . (2)
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Here, xk ∈ X ⊆ R
n is the state and uk ∈ U ⊆ R

m is the control input
at the discrete-time instant k ≥ 0. Aj ∈ R

n×n, Bj ∈ R
n×m, fj ∈ R

n, j ∈ S
with S := {1, 2, . . . , s} and s denoting the number of discrete modes. The sets
X and U specify state and input constraints and it is assumed that they are
polyhedral C-sets. The collection {Ωj | j ∈ S} defines a partition of X, meaning
that ∪j∈SΩj = X and Ωi ∩ Ωj = ∅ for i 
= j. Each Ωj is assumed to be a
polyhedron (not necessarily closed). Let S0 := {j ∈ S | 0 ∈ cl(Ωj)} and let
S1 := {j ∈ S | 0 
∈ cl(Ωj)}, where cl(Ωj) denotes the closure of Ωj . Note that
S = S0 ∪ S1. In the sequel we assume that the origin is an equilibrium state for
(2) with u = 0, and therefore, we require that

fj = 0 for all j ∈ S0. (3)

Note that the class of hybrid systems described by (2)-(3) contains PWA
systems which may be discontinuous over the boundaries and which are PWL
in the regions whose closure contains the origin. The goal of this paper is to
develop for system (2) an asymptotically stabilizing infinity norm based MPC
scheme that leads to a MILP problem. For a fixed N ∈ N, N ≥ 1, let xk(xk,uk) =
(xk+1, . . . , xk+N ) denote a state sequence generated by system (2) from initial
state xk and by applying the input sequence uk := (uk, . . . , uk+N−1) ∈ U

N .
Furthermore, let XN ⊆ X denote a desired target set that contains the origin.

Definition 2. The class of admissible input sequences defined with respect to
XN and state xk ∈ X is UN (xk) := {uk ∈ U

N | xk(xk,uk) ∈ X
N , xk+N ∈ XN}.

Stated differently, the input sequence uk ∈ U
N is admissible with respect to

XN and xk ∈ X if the following conditions are satisfied:

xk+1+i = Ajxk+i + Bjuk+i + fj when xk+i ∈ Ωj , (4a)
uk+i ∈ U, xk+i ∈ X for i = 0, . . . , N − 1, (4b)
xk+N ∈ XN . (4c)

Now consider the following problem.

Problem 1. At time k ≥ 0 let xk ∈ X be given. Minimize the cost function

J(xk,uk) � ‖Pxk+N‖∞ +
N−1∑
i=0

‖Qxk+i‖∞ + ‖Ruk+i‖∞ (5)

over all input sequences uk ∈ UN (xk).

Here, N denotes the prediction horizon, and P ∈ R
p×n, Q ∈ R

q×n and
R ∈ R

r×m are matrices which have full-column rank. The rank condition is
necessary in order to ensure that ‖Px‖∞ 
= 0 for x 
= 0. We call an initial state
xk ∈ X feasible if UN (xk) 
= ∅. Similarly, Problem 1 is said to be feasible (or
solvable) for xk ∈ X if UN (xk) 
= ∅. Let

VMPC(xk) � min
uk∈UN (xk)

J(xk,uk) (6)
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denote the value function corresponding to (5) and consider an optimal sequence
of controls calculated for state xk ∈ X by solving Problem 1, i.e.,

u∗
k � (u∗

k, u∗
k+1, . . . , u

∗
k+N−1), (7)

which minimizes (5). Let u∗
k(1) denote the first element of the sequence (7).

According to the receding horizon strategy, the MPC control law is defined as

uMPC
k = u∗

k(1); k ∈ Z+. (8)

A more precise problem formulation can now be stated as follows.

Problem 2. Given Q, R and system (2) the objective is to determine P , N and
XN such that system (2) in closed-loop with the MPC control (8) is asymptoti-
cally stable in the Lyapunov sense and Problem 1 leads to a MILP problem.

Note that many of the hybrid MPC schemes only guarantee attractivity, e.g.,
see [1], [5], and not Lyapunov stability, which is important in practice (we thank
the reviewer for this remark).

Remark 1. A partial solution to Problem 2 has been presented in [5], where
a test criterion has been developed to a priori guarantee attractivity of the
origin for the closed-loop system. Unfortunately, the results of [5] did not yield
a systematic way for calculating the matrix P , but only a heuristic procedure.
Another option to guarantee stability in infinity norm based hybrid MPC is to
perform an a posteriori check of stability, after computing (8) as an explicit
PWA control law, as it has been done in [12].

4 Infinity Norms as Lyapunov Functions for Hybrid
MPC

In order to solve Problem 2 we aim at using the value function (6) as a candidate
Lyapunov function for the closed-loop system (2)-(8) and we employ a terminal
cost and constraint set method [10]. We also consider an auxiliary PWL control
action of the form

ũk � Kjxk, xk ∈ Ωj , k ∈ Z+, Kj ∈ R
m×n, j ∈ S. (9)

Let XU := ∪j∈S{x ∈ Ωj | Kjx ∈ U} denote the safe set with respect to state and
input constraints for this controller and let XN ⊆ XU be a positively invariant
set for the PWA system (2) in closed-loop with (9). In the sequel we require that
XN contains the origin in its interior. Now consider the following inequalities:

‖P (Aj + BjKj)P−L‖∞ + ‖QP−L‖∞ + ‖RKjP
−L‖∞ ≤ 1 − γj , j ∈ S (10)

and
‖Pfj‖∞ ≤ γj‖Px‖∞, ∀x ∈ XN ∩ Ωj , j ∈ S, (11)

where {γj | j ∈ S} are scaling factors that satisfy 0 ≤ γj < 1 for all j ∈ S. Note
that, because of (3), (11) trivially holds if S = S0.
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Theorem 1. Suppose (10)-(11) is solvable in (P, Kj , γj) for P with full-column
rank and j ∈ S, XN ⊆ XU is a positively invariant set for the closed-loop system
(2)-(9) that contains the origin in its interior and fix N ≥ 1. Then it holds that

1. If Problem 1 is feasible at time k ∈ Z+ for state xk ∈ Ωj, then Problem 1 is
feasible at time k + 1 for state xk+1 = Ajxk + Bju∗

k(1) + fj.
2. The MPC control (8) asymptotically stabilizes the PWA system (2) for all

feasible initial states (including the set XN ), while satisfying the state and
input constraints (4).

3. The origin of the PWA system (2) in closed-loop with feedback (9) is locally
asymptotically stable, while satisfying the state and input constraints (4).

4. If X = R
n, U = R

m and (11) holds for XN = R
n, then the origin of the

PWA system (2) in closed-loop with feedback (9) is globally asymptotically
stable.

In order to prove Theorem 1 we will need the following result, the proof of which
can be found in the appendix.

Lemma 1. Consider the closed-loop PWA system (2)-(9):

xk+1 = (Aj + BjKj)xk + fj when xk ∈ Ωj , j ∈ S. (12)

Assume that (11) is solvable for some P with full-column rank. Then for any
l = 0, 1, 2, . . . there exists an αl > 0 such that for all xk ∈ XN

‖xk+l‖∞ ≤ αl‖xk‖∞, (13)

if (xk, xk+1, . . . , xk+l) is a solution of (12).

Now we prove Theorem 1.

Proof. Consider (7) and the shifted sequence of controls

uk+1 � (u∗
k+1, u

∗
k+2, . . . , u

∗
k+N−1, ũk+N ), (14)

where the auxiliary control ũk+N denotes the control law (9) at time k + N .
1) If Problem 1 is feasible at time k ∈ Z+ for state xk ∈ Ωj then there

exists u∗
k ∈ UN (xk) that solves Problem 1. Then xk+N satisfies constraint (4c).

Since XN ⊆ XU is positively invariant for system (2) in closed-loop with (9), it
follows that uk+1 ∈ UN (xk+1). Hence, Problem 1 is feasible for state xk+1 =
Ajxk + Bju∗

k(1) + fj . Moreover, all states in the set XN ⊆ XU are feasible with
respect to Problem 1, as the PWL feedback (9) can be applied for any N .

2) In order to achieve stability we require for all feasible initial conditions
x0 ∈ X\{0} that the forward difference ∆VMPC(xk) := VMPC(xk+1) − VMPC(xk)
is strictly negative for all k ∈ Z+, which can be written as:

∆VMPC(xk) = J(xk+1,u∗
k+1) − J(xk,u∗

k) ≤ J(xk+1,uk+1) − J(xk,u∗
k) =

= −‖Qxk‖∞ − ‖Ru∗
k‖∞ + ‖Pxk+N+1‖∞ + ‖Rũk+N‖∞

+ ‖Qx∗
k+N‖∞ − ‖Px∗

k+N‖∞ < 0, ∀x∗
k+N ∈ XN\{0}. (15)
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Here, xk ∈ Ωj is the measured state at the sampling instant k and x∗
k+1 =

Ajxk + Bju
∗
k + fj . Hence, it suffices to determine the matrix P such that there

exists ũk+N with

‖Pxk+N+1‖∞ + ‖Rũk+N‖∞ + ‖Qx∗
k+N‖∞ − ‖Px∗

k+N‖∞ ≤ 0, ∀x∗
k+N ∈ XN ,

(16)

in order to guarantee that ∆VMPC(xk) ≤ −‖Qxk‖∞ for all feasible initial condi-
tions x0 ∈ X\{0}. Since Q has full-column rank, there exists a positive number
τ such that ‖Qx‖∞ ≥ τ‖x‖∞ for all x ∈ X. Hence, it follows that (16) implies
that VMPC possesses a negative definite forward difference (see [13] for details).
Substituting (9) at time k + N and (2) in (16) yields the equivalent

‖P (Aj + BjKj)x∗
k+N + Pfj‖∞ + ‖RKjx

∗
k+N‖∞

+ ‖Qx∗
k+N‖∞ − ‖Px∗

k+N‖∞ ≤ 0, ∀x∗
k+N ∈ XN ∩ Ωj , j ∈ S. (17)

Now we prove that if (10)-(11) holds, then (17) holds. Since P and {Kj | j ∈ S}
satisfy (10) we have that

‖P (Aj + BjKj)P−L‖∞ + ‖QP−L‖∞ + ‖RKjP
−L‖∞ + γj − 1 ≤ 0, j ∈ S.

(18)

Right multiplying the inequality (18) with ‖Px∗
k+N‖∞ and using the inequality

(11) yields:

0 ≥ ‖P (Aj + BjKj)P−L‖∞‖Px∗
k+N‖∞ + ‖QP−L‖∞‖Px∗

k+N‖∞
+ γj‖Px∗

k+N‖∞ + ‖RKjP
−L‖∞‖Px∗

k+N‖∞ − ‖Px∗
k+N‖∞ ≥

≥ ‖P (Aj + BjKj)P−LPx∗
k+N‖∞ + ‖QP−LPx∗

k+N‖∞
+ ‖Pfj‖∞ + ‖RKjP

−LPx∗
k+N‖∞ − ‖Px∗

k+N‖∞ ≥
≥ ‖P (Aj + BjKj)x∗

k+N + Pfj‖∞ + ‖RKjx
∗
k+N‖∞

+ ‖Qx∗
k+N‖∞ − ‖Px∗

k+N‖∞. (19)

Hence, inequality (17) holds and consequently ∆VMPC(xk) ≤ −τ‖xk‖∞. Next,
we show that VMPC(xk) is a positive definite, radially unbounded and decrescent
function [13]. From (6) and (5) we have that

VMPC(xk) ≥ ‖Qxk‖∞ ≥ τ‖xk‖∞, ∀N ≥ 1, ∀x ∈ X. (20)

Hence, VMPC(xk) is a positive definite and radially unbounded function.
For xk ∈ XN we have that the control law ũk = Kjxk when xk ∈ XN ∩ Ωj is

admissible. Then it follows that the control sequence ũk := (ũk, . . . , ũk+N−1) ∈
U

N is contained in UN (xk). Since there always exist some positive constants
γP and γQ such that ‖Pxk‖∞ ≤ γP ‖xk‖∞ and ‖Qxk‖∞ ≤ γQ‖xk‖∞ (e.g.,
γP = ‖P‖∞ and γQ = ‖Q‖∞), we have that
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VMPC(xk) ≤ J(xk, ũk) = ‖Pxk+N‖∞ +
N−1∑
i=0

‖Qxk+i‖∞ + ‖RKji
xk+i‖∞ ≤

≤ γP ‖xk+N‖∞ + (γQ + κ)
N−1∑
i=0

‖xk+i‖∞, ∀xk ∈ XN , (21)

where κ = maxj∈S ‖RKj‖∞ and ji ∈ S is such that xk+i ∈ Ωji . From Lemma
1 it follows that there exist constants αi > 0 such that ‖xk+i‖∞ ≤ αi‖xk‖∞,
i = 1, . . . , N , and by letting β := γP αN + (γQ + κ)(1 +

∑N−1
i=1 αi) it follows that

VMPC(xk) ≤ β‖xk‖∞, ∀xk ∈ XN .

Hence, VMPC(xk) is a decrescent function [13] on XN (note that XN contains the
origin in its interior). Since VMPC(xk) is also positive definite it follows that

τ‖xk‖∞ ≤ VMPC(xk) ≤ β‖xk‖∞, ∀xk ∈ XN . (22)

Then, by applying the reasoning used in the proof of Theorem 3 and Theorem
4 from [9] (note that for any ε > 0 we can choose δ = (τ/β)ε < ε and hence,
continuity of VMPC(xk) is not necessary, see [9] and [13] for details) it follows that
the infinity norm inequalities (10)-(11) are sufficient for guaranteeing Lyapunov
asymptotic stability [13] for the PWA system (2) in closed-loop with the MPC
control (8).

3) Since {(P, Kj) | j ∈ S} satisfy (17) we have that

‖P (Aj+BjKj)xk+Pfj‖∞−‖Pxk‖∞ ≤ −‖Qxk‖∞ < 0, ∀xk ∈ XN \{0}, j ∈ S.
(23)

Then it follows that V (x) := ‖Px‖∞, which is a radially unbounded, positive
definite and decrescent function, possesses a negative definite forward differ-
ence. Hence, V (xk) is a common polyhedral Lyapunov function for the dynamics
xk+1 = (Aj + BjKj)xk + fj , j ∈ S. Then, the origin of the PWA system (2)
with feedback (9) is asymptotically stable on some region of attraction, e.g., the
polyhedral sublevel set given by the largest ϕ > 0 for which {x ∈ X | V (x) ≤ ϕ}
is contained in XU.

4) For the PWA system (2) with X = R
n and U = R

m we have that XU = R
n.

Since (23) holds for XN = R
n, it follows that the origin of the PWA system (2)

with feedback (9) is globally asymptotically stable. �

It follows from Theorem 1 that a terminal set XN can be easily obtained as
a sublevel set

XN � {x ∈ X | ‖Px‖∞ ≤ ϕ∗}, (24)

where ϕ∗ = supϕ{{x ∈ X | ‖Px‖∞ ≤ ϕ} ⊂ XU}. Since this set is a polyhedron,
Problem 1 leads to a MILP problem, which can be solved by standard tools
developed in the context of infinity norm based hybrid MPC [4].

Remark 2. We have shown that Lyapunov asymptotic stability can be guaran-
teed for the closed-loop system (2)-(8) and all feasible initial states, even though
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the MPC value function and the PWA dynamics (2) may be discontinuous.
This results from the fact that VMPC is radially unbounded, it possesses a neg-
ative definite forward difference and the inequality (22) holds on XN (note that
VMPC(0) = 0 and (22) implies that VMPC(x) is continuous at x = 0). Moreover,
it follows from Theorem 2 of [14] that the origin of the closed-loop system (2)-(8)
is locally exponentially stable (i.e. this property holds for all states in XN ).

Remark 3. The set of feasible initial states with respect to Problem 1 depends on
the value of the prediction horizon N , due to the terminal constraint (4c). The
larger N , the larger the set of feasible states is. For a given terminal constraint
set XN and an assigned set of initial conditions, one can perform a reachability
(controllability) analysis in order to obtain the minimum prediction horizon
needed to achieve feasibility of Problem 1 for the desired set of initial states.
A procedure that can be employed to solve this problem for constrained PWA
systems is given in [6].

Finding the matrix P and the feedback matrices {Kj | j ∈ S} that satisfy
the infinity norm inequality (10) amounts to solving an optimization problem
subject to the constraint rank(P ) = n. Note that this constraint can be replaced
by the convex constraint P�P > 0. Once a matrix P satisfying (10) has been
found, one still has to check that P also satisfies inequality (11), provided that
S 
= S0. For example, this can be verified by checking the inequality

‖Pfj‖∞ ≤ γj min
x∈XN ∩Ωj

‖Px‖∞, j ∈ S(XN ),

where S(XN ) := {j | XN ∩ Ωj 
= ∅} ∩ S1. In order not to perform this additional
check, the inequality (11) can be removed by requiring that XN ⊆ ∪j∈S0Ωj is
a positively invariant set only for the PWL sub-system of the closed-loop PWA
system (2)-(9), i.e., for the system xk+1 = (Aj +BjKj)xk when xk ∈ Ωj , j ∈ S0,
as done in [7] for hybrid MPC based on quadratic forms. Note that the auxiliary
control action (9) defines now a local state feedback, instead of a global state
feedback, as in Theorem 1. In this case Theorem 1 can be reformulated as follows.

Corollary 1. Suppose that the inequality

‖P (Aj + BjKj)P−L‖∞ + ‖QP−L‖∞ + ‖RKjP
−L‖∞ ≤ 1 (25)

is solvable in (P, Kj) for P with full-column rank and j ∈ S0. Let XN ⊆ XU ∩
{∪j∈S0Ωj} be a positively invariant set for the closed-loop system xk+1 = (Aj +
BjKj)xk when xk ∈ Ωj, j ∈ S0 and assume that XN contains the origin in its
interior. Fix N ≥ 1. Then the first three statements of Theorem 1 hold.

Proof. From the fact that the terminal state is constrained to lie in XN ⊆ XU ∩
{∪j∈S0Ωj} and from (3) we have that fj = 0 for all j ∈ S0. Then it follows that
(11) holds with equality for γj = 0, ∀j ∈ S0. Since (P, Kj) satisfy (25) for all
j ∈ S0 it follows that (P, Kj) satisfy (10)-(11) for all j ∈ S0. Then the results
follow from Theorem 1. �
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Example 1. Consider the following third order chain of integrators with a varying
sampling rate:

xk+1 =

⎧⎪⎨
⎪⎩

A1xk + B1uk if [0 1 1]xk ≤ 0 , [1 0 0]xk < 4 , [−1 0 0]xk < 4
A2xk + B2uk if [0 1 1]xk > 0 , [1 0 0]xk < 4 , [−1 0 0]xk < 4
A3xk + B3uk + f otherwise

(26)
subject to the constraints xk ∈ X = [−15, 15]3 and uk ∈ U = [−1, 1], where

A1 =

⎡
⎣1 0.4 0.08

0 1 0.4
0 0 1

⎤
⎦ , A2 =

⎡
⎣1 0.7 0.245

0 1 0.7
0 0 1

⎤
⎦ , A3 =

⎡
⎣1 0.8 0.32

0 1 0.8
0 0 1

⎤
⎦ ,

B1 =

⎡
⎣0.0107

0.08
0.4

⎤
⎦ , B2 =

⎡
⎣0.0572

0.245
0.7

⎤
⎦ , B3 =

⎡
⎣0.0853

0.32
0.8

⎤
⎦ , f =

⎡
⎣0.3

0.1
0.1

⎤
⎦ .

The MPC tuning parameters are Q = I3 and R = 0.1. The following solution to
the inequality (10) has been found using a min-max formulation and the Matlab
fmincon solver (CPU time was 5.65 seconds on a Pentium III at 700MHz):

P =

⎡
⎣24.1304 20.3234 4.9959

20.3764 35.9684 10.5832
6.3709 9.21 9.9118

⎤
⎦ , K3 =

[−0.8434 −2.063 −1.9809
]
, γ = 0.174,

K1 =
[−2.3843 −4.5862 −3.1858

]
, K2 =

[−0.8386 −2.1077 −2.1084
]
. (27)

XN has been obtained as in (24) for ϕ∗ = 2.64. Due to the input constraints
we have that XN ⊂ ∪j∈S0Ωj for system (26). However, inequality (11) holds for
system (26) and all x ∈ X. The initial state is x0 = [3 −1 2]� and the prediction
horizon of N = 8 is obtained as in Remark 3 for the matrices P , Q and R given
above. The simulation results are plotted in Figure 1 for system (26) in closed-
loop with the MPC control (8). As guaranteed by Theorem 1, the MPC control
law (8) stabilizes the unstable system (26) while satisfying the state and input
constraints. �

5 Solving the Stabilization Conditions

This section gives some techniques to approach the computationally challenging
problem associated with inequality (10). All these methods start from the fact
that if the matrix P is known in (10), then the optimization problem can be
recast as an LP problem. In the sequel we will indicate three ways to find an
educated guess of P . The first two methods are based on the observation that
a matrix P that satisfies (10)-(11) (for some Kj , j ∈ S) has the property that
V (x) = ‖Px‖∞ is a common polyhedral Laypunov function of the PWA system
(2) in closed-loop with some PWL feedback (9). Using this observation, an ed-
ucated guess of P is now based on functions V (x) = ‖Px‖∞ that satisfy this
necessary condition and thus, induce positively invariant sets for the closed-loop
system (2)-(9).
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Fig. 1. Example 1: State trajectory and Input history

5.1 A Quadratic Approach

One possibility to fix the terminal weight matrix is to use the approach of [7]
to calculate a polyhedral positively invariant set for the PWL sub-system of the
PWA system (2)-(9), i.e., for the system xk+1 = (Aj + BjKj)xk when xk ∈
Ωj , j ∈ S0. If the algorithm of [7] terminates in finite time and the resulting
polyhedral set is symmetric, then a good choice for P is the matrix that induces
this polyhedral set, i.e. {x ∈ X | ‖Px‖∞ ≤ c} for some c > 0. Note that this
type of approach to obtain P is based on the fact that the feedback matrices
{Kj | j ∈ S0} are already known, e.g., in [7] they are calculated via semi-
definite programming in order to obtain a common quadratic Lyapunov function.
The approach of [9] can also be used to compute the feedbacks that guarantee
quadratic stability and then, the algorithm of [7] can be employed to obtain a
polyhedral positively invariant set. Fixing P in (10) and solving in {Kj | j ∈ S0}
(and γj) amounts to looking for a different state feedback control law, which not
only renders the employed polyhedral set positively invariant, but also ensures
that VMPC(xk) possesses a negative definite forward difference.

5.2 “Squaring the Circle”

Another way to obtain polyhedral (or piecewise polyhedral) positively invari-
ant sets for closed-loop PWA systems that admit a common (or a piecewise)
quadratic Lyapunov function has been recently developed in [17]. In this ap-
proach, the polyhedral set can be constructed by solving the problem of fitting
a polyhedron in between two ellipsoidal sublevel sets of a quadratic Lyapunov
function, where one is contained in the interior of the other and the states on
the boundary of the outer ellipsoid are mapped by the closed-loop dynamics into
the interior of the inner ellipsoid. This problem can be solved using the recent
algorithm developed in [18] in the context of DC programming. The polyhedral
set is constructed by treating the ellipsoids as sublevel sets of convex functions,
and by exploiting upper and lower piecewise affine bounds on such functions.
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Giving additional structure to the algorithm of [18] such that it generates a
polyhedron with a finite number of facets, a polyhedral positively invariant set
is obtained for system (2) and then P can be chosen as the matrix that induces
this polyhedron.

Example 2. Consider the example proposed in [5], i.e.,

xk+1 =

{
A1xk + Buk if [1 0]xk ≥ 0
A2xk + Buk if [1 0]xk < 0

(28)

subject to the constraints xk ∈ X = [−5, 5] × [−5, 5], uk ∈ U = [−1, 1] and with

A1 =
[

0.35 −0.6062
0.6062 0.35

]
, A2 =

[
0.35 0.6062

−0.6062 0.35

]
, B =

[
0
1

]
.

The common quadratic Lypunov function calculated in [7] for system (28)-(9)
with feedback matrices K1 = [−0.611 − 0.3572], K2 = [0.611 − 0.3572] and the
algorithm of [18] have been used to compute a polyhedral positively invariant
set for system (28). The two ellipsoidal sublevel sets of the quadratic Lyapunov
function plotted in Figure 2 are such that all the states on the boundary of the
outer ellipsoid go inside the inner ellipsoid in one discrete-time step. The matrix
P has been chosen as the matrix that induces the polyhedron plotted in Figure
2. Then (10) has been solved for the MPC tuning parameters Q = diag([0.6 1])
and R = 0.1, yielding the new state feedback matrices K1 = [−0.6897 − 0.1416]
and K2 = [0.1454 − 0.7461]. The simulation results obtained for N = 2 and the
initial states x0 = [1 1.5]� (circle line) and x0 = [−1 1.5]� (star line) are shown
in Figure 2 together with a plot of the polyhedral positively invariant set. �
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5.3 Square Matrices Q and P

If Q is square and invertible, a different way to simplify (10) is to parameterize
the terminal weight as P = 1

ε Q, where 0 < ε < 1.

Lemma 2. Assume that {Kj , γj | j ∈ S} with 0 ≤ γj < 1 and ε satisfy the
inequality

‖Q(Aj + BjKj)Q−1‖∞ + ε‖RKjQ
−1‖∞ ≤ 1 − ε − γj , j ∈ S. (29)

Then P = 1
ε Q and {Kj , γj | j ∈ S} satisfy the inequality (10).

Proof. From the fact that Q is square and invertible it follows that P = 1
ε Q is

square and invertible. Then the inequality (10) can be written as

‖P (Aj + BjKj)P−1‖∞ + ‖QP−1‖∞ + ‖RKjP
−1‖∞ ≤ 1 − γj , j ∈ S.

By replacing P = 1
ε Q and P−1 = εQ−1 in the above inequality yields the

equivalent inequality (29). �

For a fixed ε, finding {Kj , γj | j ∈ S} that satisfy the inequality (29) amounts
to solving an LP problem. Then the matrix P can be simply chosen as P = 1

ε Q.

6 Relaxations

The a priori stabilization conditions for infinity norm based MPC of constrained
PWA systems developed in Section 4 amount to searching for a common Lya-
punov function and a common polyhedral positively invariant set for all sub-
systems of (2). Since in general there is no guarantee that such a function and
such a set exist, in the sequel we relax the conditions of Section 4 by employ-
ing different terminal weight matrices in cost (5), depending on the state space
region where the terminal state resides. Now consider the following problem.

Problem 3. At time k ≥ 0 let xk ∈ X be given. Minimize the cost function

J(xk,uk) � ‖Pjxk+N‖∞ +
N−1∑
i=0

‖Qxk+i‖∞ + ‖Ruk+i‖∞ when xk+N ∈ Ωj , j ∈ S

(30)

over all input sequences uk ∈ UN (xk).

Let Qji := {x ∈ Ωj | ∃u ∈ U : Ajx+Bju+fj ∈ Ωi}, (j, i) ∈ S×S and let X :=
{(j, i) ∈ S×S | Qji 
= ∅}. The set of pairs of indices X can be determined off-line
by performing a one-step rechability analysis for the PWA system (2) (note that
the one-step rechability analysis does not yield a combinatorial drawback). The
set X contains all discrete mode transitions that can occur in the PWA system
(2), i.e. a transition from Ωj to Ωi can occur if and only if (j, i) ∈ X . The infinity
norm inequalities (10) and (11) become:

‖Pi(Aj + BjKj)P−L
j ‖∞ + ‖QP−L

j ‖∞ + ‖RKjP
−L
j ‖∞ ≤ 1 − γji, (j, i) ∈ X

(31)

and
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‖Pifj‖∞ ≤ γji‖Pjx‖∞, ∀x ∈ XN ∩ Ωj , (j, i) ∈ X , (32)

where γji are scaling factors that satisfy 0 ≤ γji < 1, (j, i) ∈ X . Now Theorem
1 can be extended as follows.

Theorem 2. Suppose (31)-(32) is solvable in (Pj , Kj , γji) for Pj with full-
column rank and (j, i) ∈ X . Let XN ⊆ XU be a positively invariant set for
the closed-loop system (2)-(9) that contains the origin in its interior. Fix N ≥ 1
and calculate the MPC control (8) by solving at each sampling instant Problem
3 instead of Problem 1. Then the four statements of Theorem 1 hold for Problem
3.

The proof is similar to the proof of Theorem 1 and is omitted here for brevity.
Since {(Pj , Kj) | j ∈ S} satisfy (31) and (32) we have that

‖Pi(Aj + BjKj)xk + Pifj‖∞ − ‖Pjxk‖∞ ≤ −‖Qxk‖∞ < 0,

∀xk ∈ XN \ {0}, (j, i) ∈ X .
(33)

Then, it can be proven along the lines of the proof of Theorem 1 that the
discontinuous function V (x) := ‖Pjx‖∞ when x ∈ Ωj is a (piecewise linear)
Lyapunov function for the dynamics xk+1 = (Aj + BjKj)xk + fj , j ∈ S. Hence,
the origin of the PWA system (2) with feedback (9) is asymptotically stable on
some region of attraction, e.g., the piecewise polyhedral sublevel set given by the
largest ϕ > 0 for which {x ∈ X | V (x) ≤ ϕ} is contained in XU. The terminal
set XN can be obtained in this case as

XN � ∪j∈S{x ∈ Ωj | ‖Pjx‖∞ ≤ ϕ∗}, (34)

where ϕ∗ = supϕ{{x ∈ Ωj | ‖Pjx‖∞ ≤ ϕ} ⊂ XU}. Since this set is a finite union
of polyhedra, Problem 3 still leads to a MILP problem, which is a standard tool
in the context of infinity norm based hybrid MPC [4].

Note that the methods of Section 5.2 and Section 5.3 can also be applied
to reduce the optimization problem associated with the infinity norm inequality
(31) to an LP problem.

Remark 4. The sublevel sets of the Lyapunov function V (x) = ‖Pjx‖∞ when
x ∈ Ωj with Pj satisfying (33) are λ-contractive sets [15] and they are finite
unions of polyhedra (i.e. they are represented by a polyhedron in each region of
the PWA system). Hence, this yields a new method to obtain (in finite time) a
piecewise polyhedral λ-contractive set for the class of PWA systems, which takes
into account also the affine terms fj for j ∈ S1. If we set Pj = P for all j ∈ S
(as done in Section 4), this yields a new way to obtain polyhedral λ-contractive
sets for PWA systems.

7 Conclusions

In this paper we have developed a priori stabilization conditions for infinity
norm based MPC of constrained PWA systems. Stability has been achieved using
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infinity norm inequalities. If the considered inequalities are satisfied, then the
possibly discontinuous value function of the MPC cost is a Lyapunov function
of the controlled PWA system. The terminal weight(s) are obtained by solving
off-line an optimization problem. Several possibilities to reduce this problem
to an LP problem via a two-step procedure have been indicated. The terminal
constraint set is simply obtained by taking one of the sublevel sets of the terminal
cost, which is a local piecewise linear Lyapunov function. As a by-product we
have also obtained a new approach for the calculation of positively invariant sets
for PWA systems.
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A Proof of Lemma 1

We will use induction to prove Lemma 1. For l = 0, the inequality (13) holds
for any α0 ≥ 1. Suppose (13) holds for some l ≥ 0. Now we will prove that (13)
holds for l + 1. We have that

‖xk+l+1‖∞ = ‖(Aj + BjKj)xk+l + fj‖∞ when xk+l ∈ XN ∩ Ωj .

Due to the full-column rank of P , there exist positive numbers µP and γP such
that µP ‖z‖∞ ≤ ‖Pz‖∞ ≤ γP ‖z‖∞ for all z ∈ R

n. Then it follows that

‖xk+l+1‖∞ ≤ ‖(Aj + BjKj)xk+l‖∞ + ‖fj‖∞ ≤
≤ η‖xk+l‖∞ + µ−1

P ‖Pfj‖∞ ≤ η‖xk+l‖∞ + µ−1
P ‖Pxk+l‖∞,

where η = maxj∈S ‖Aj + BjKj‖∞ and in the last inequality we used (11) and
0 ≤ γj < 1 for all j ∈ S. The above inequality yields

‖xk+l+1‖∞ ≤ (η + µ−1
P γP )‖xk+l‖∞.

By the induction hypothesis there exists αl > 0 such that (13) holds for xk+l

and by letting αl+1 := (η + µ−1
P γP )αl > 0 it follows that

‖xk+l+1‖∞ ≤ αl+1‖xk‖∞.

�
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