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Abstract. This paper focuses on hybrid systems whose discrete state
transitions depend on both deterministic and stochastic events. For such
systems, after introducing a suitable hybrid model called Discrete Hy-
brid Stochastic Automaton (DHSA), different finite-time optimal con-
trol approaches are examined: (1) Stochastic Hybrid Optimal Control
(SHOC), that “optimistically” determines the trajectory providing the
best trade off between the tracking performance and the probability that
stochastic events realize as expected, under specified chance constraints;
(2) Robust Hybrid Optimal Control (RHOC) that, in addition, less op-
timistically, ensures that the system remains within a specified safety
region for all possible realizations of stochastic events. Sufficient condi-
tions for the asymptotic convergence of the state vector are given for
receding-horizon implementations of the above schemes. The proposed
approaches are exemplified on a simple benchmark problem in produc-
tion system management.

1 Introduction

Hybrid systems were proved to be a powerful framework for the analysis and
synthesis of embedded systems, as they provide a model in which continuous and
discrete behaviors coexist [1]. Several mathematical models were proposed in the
last years for deterministic hybrid systems, for the analysis of their structural
properties, and for controller synthesis. However, there are relatively few studies
regarding stochastic hybrid systems, except the remarkable results presented
in [2, 3] regarding modeling aspects, the ones in [4, 5, 6] regarding structural
properties, and important results in applications, such as air traffic control [7],
manufacturing systems [8], and communication networks [9].

In this paper we introduce a discrete-time model and suitable control algo-
rithms based on optimization techniques for a class of stochastic hybrid systems,
denoted as Discrete Hybrid Stochastic Automata (DHSA), in which the uncer-
tainty appears on the discrete component of the hybrid dynamics, in the form
of stochastic events that, together with their deterministic counterparts, deter-
mine the transition of the discrete state. As a consequence, mode switches of the
continuous dynamics become non-deterministic and uncertainty propagates also
to the continuous states.
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Unpredictable behaviors such as delays or faults in digital components and
discrete approximations of continuous input disturbances can be both modeled
by DHSA. The main advantage of DHSA is that the number of possible values
that the overall system state can have at each time instant is finite (although
it may be large), so that the problem of controlling DHSA can be conveniently
treated by numerical optimization.

The paper is organized as follows. Section 2 is concerned with modeling as-
pects. In Section 3 we present a control approach that uses stochastic information
about the uncertainty to obtain an optimal trajectory whose probability of real-
ization is known and in Section 4 we extend the approach to ensure also robust
safety properties. Finally, after presenting an application example in Section 5,
in Section 6 we provide sufficient conditions for the asymptotic convergence of
the state in case of receding-horizon implementations of the proposed optimal
control schemes.

2 Discrete Hybrid Stochastic Automaton

A model for deterministic hybrid systems called Discrete Hybrid Automaton
(DHA) was introduced in [10]. We introduce here the Discrete Hybrid Stochas-
tic Automaton (DHSA), that in addition takes into account possible stochastic
discrete state transitions.

2.1 Model Formulation

A DHSA is composed by four components: a Switched Affine System (SAS), an
Event Generator (EG), a stochastic (non-deterministic) Finite State Machine
(sFSM) and a Mode Selector (MS). The switched affine system satisfies the
equations

xr(k + 1) = Ai(k)xr(k) +Bi(k)ur(k) + fi(k),
yr(k) = Ci(k)xr(k) +Di(k)ur(k) + gi(k),

(1)

in which k ∈ K = {0, 1, . . . , } is the time index, i ∈ I = {1, 2, . . . , s} is the
current mode of the system, xr ∈ Xr ⊆ R

n is the continuous component of the
state, ur ∈ Ur ⊆ R

m is the continuous input vector, yr ∈ Yr ⊆ R
p is the output

vector and {Ai, Bi, fi, Ci, Di, gi}i∈I , are matrices of suitable dimensions. The
EG produces event signals δe(k) ∈ {0, 1}ne , that we consider as the endogenous
discrete input signals, defined as

δe(k) = fH(xr(k), ur(k), k), (2)

where fH : Xr ×Ur ×K → {0, 1}ne is the event generator function [10]. The mode
selector is defined by a discrete function fM : {0, 1}nb ×{0, 1}mb ×{0, 1}ne → I

i(k) = fM(xb(k), ub(k), δe(k)), (3)

where xb ∈ {0, 1}nb is the discrete state and ub ∈ {0, 1}mb is the discrete exoge-
nous input.
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Fig. 1. Stochastic Finite State Machine: 3 states, 2 events and 2 stochastic transitions

The above three building elements are the same as presented in [10] for DHA.
The difference between DHA and DHSA1 is in the element defining the discrete
state dynamics: a Finite State Machine (FSM) in DHA, a stochastic FSM (sFSM)
in DHSA. While a FSM is defined by the purely discrete difference equation

xb(k + 1) = fB(xb(k), ub(k), δe(k)), (4)

where fB : {0, 1}nb × {0, 1}mb × {0, 1}ne → {0, 1}nb , a sFSM is defined by the
probability that the discrete state will take a given value at the next step, given
the actual state and inputs:

P [xb(k + 1) = x̄b] = fb(xb(k), ub(k), δe(k), x̄b), (5)

where fb : {0, 1}nb × {0, 1}mb × {0, 1}ne × {0, 1}nb → [0, 1]. The information
contained in the stochastic finite state machine is the following: Given the state
value at step k and the inputs δe(k), ub(k), the probability that the next discrete
state takes a certain value is known. An example of sFSM is reported in Figure 1.

Definition 1. Given a binary state xb(k) = x̄b, an exogenous binary input
ub(k) = ūb, an endogenous vector of events δe(k) = δ̄e, we say that a discrete
transition x̄b → x̂b to the successor state xb(k+1) = x̂b is enabled for (x̄b, ūb, δ̄e),
if the probability Px̄b→x̂b

= fb(x̄b, ūb, δ̄e, x̂b) > 0. An enabled transition is said
stochastic if Px̄b→x̂b

< 1.

Definition 2. Given a triple (x̄b, ūb, δ̄e), two or more enabled transitions are
called conflicting on (x̄b, ūb, δ̄e).

A more formal definition of conflicting transitions is given in [11], we just note
here that for a correctly defined sFSM the sum of the probabilities of conflicting
transitions at every given (x̄b, ūb, δ̄e) must be 1.

1 The resets maps introduced in [10] can be straightforwardly included also in DHSA,
so they are not explicitly considered in this paper.
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2.2 Computational Model

The DHSA formulation (1), (2), (3), (5) is good for modeling stochastic discrete
effects (such as stochastic delays, failures, unpredictable or external decisions),
but not conveniently exploitable for control design, as we will more clearly justify
in the beginning of Section 3. For this reason, we need rephrase the DHSA into
an equivalent model that is easier to manage in computations.

The key idea is that a sFSM having stochastic conflicting transitions can be
equivalently represented by a deterministic FSM having additional exogenous
random binary inputs w1 ,w2, . . ., wl, that we call uncontrollable events, where
if wi = 1 the corresponding stochastic transition, if enabled, is taken. Given a
system with l stochastic transitions, we denote by W ⊆ {0, 1}l the set of vectors
w = [w1(k) . . . wl(k)]T that satisfy the conditions[

(xb = x̄b) ∧ (ub = ūb) ∧ (δe = δ̄e)
]

→
[∑

i∈I(x̄b,ūb,δ̄e) wi = 1
]
,

∀(x̄b, ūb, δ̄e) ∈ {0, 1}nb × {0, 1}mb × {0, 1}ne : |I(x̄b, ūb, δ̄e)| > 1
(6)

where I(x̄b, ūb, δ̄e) ⊆ {1, . . . , l} is the subset of indices of the uncontrollable
events associated with the conflicting transitions on (x̄b, ūb, δ̄e) and | · | denotes
cardinality.

As an example, the sFSM represented in Figure 1 can be associated with
a FSM having additional uncontrollable events w1, w2 ∈ {0, 1} that affect the
stochastic transitions: transition Dn → Dn happens when e1 ∧ w2

2 is true,
while transition Dn → Dmg when e1 ∧ w1 is true, w1 and w2 are mutually
exclusive, and P[w1 = 1] = p1 and P[w2 = 1] = p2. More generally, a sFSM hav-
ing l stochastic transitions can be transformed into a deterministic automaton,
denoted as uncontrollable-events FSM (ueFSM), defined by the state-update
function:

xb(k + 1) = fB(xb(k), ub(k), δe(k), w(k)), (7)

where w(k) = [w1(k) . . . wl(k)]T ∈ W is the random vector of uncontrollable
events at time k and fB : {0, 1}nb × {0, 1}mb × {0, 1}ne ×W → {0, 1}nb .

An uncontrollable-events Discrete Hybrid Automaton (ueDHA) is obtained
from a DHSA by substituting the sFSM with its corresponding ueFSM (7),
leaving the switched affine system, the mode selector and the event generator
unchanged.

An ueDHA obtained from a DHSA is equivalent to the DHSA itself when
the additional exogenous variables w are produced by a random binary number
generator under the conditions

P[wi = 1] = pi, i = 1, . . . , l, w ∈ W, (8)

that ensure that the uncontrollable events take value 1 with probability equal
to the one associated with the corresponding stochastic transition.

2 “∧” denote logic “and”.
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The advantages of transforming a DHSA into the related ueDHA are three:

1. Uncertainty is now associated with binary signals w(k).
2. The ueDHA is an extended DHA model, thus it can be converted into equiv-

alent hybrid models, and in particular into Mixed Logical Dynamical (MLD)
systems [12] for solving optimization problems.

3. The probability of a given discrete state trajectory can be obtained as a
function of the uncontrollable event vector {w(k)}N−1

k=0 , as explained in the
following paragraphs.

The uncontrollable events contain the whole information about stochastic tran-
sitions, thus, when vectors {w(k)}N−1

k=0 are known, the probability of the state
trajectory {x(k)}N

k=0 can be computed once {u(k)}N−1
k=0 and x(0) are also given.

Consider a system with l uncontrollable events and let w(k) = [w1(k) . . . wl(k)]T

be the uncontrollable event vector at step k. Consider an additional wl+1(k)
taking value 1 when the transition taken by the DHSA at step k is deterministic
and extend conditions (6) with this. Consider the vector p = [p1 . . . pl 1]T con-
taining the probability coefficients of the stochastic transitions. Then, consider
the products⎡⎢⎣ π(0)

...
π(N − 1)

⎤⎥⎦ =

⎡⎢⎣ wT (0)
...

wT (N − 1)

⎤⎥⎦·p, π = π(w(0), . . . , w(N−1)) =
N−1∏
k=0

π(k). (9)

The coefficient π(k) contains the probability of transition at step k, π the
probability of the complete trajectory. In this way it is possible to know the
probability to have a certain trajectory given the initial condition and input
signals.

Finally we mention that the well posedness of a DHSA is ensured if its related
ueDHA is a well posed DHA [10], if conditions (6) hold, and if the probability
coefficients of stochastic transitions are correctly defined as proven in [11], where
it is also shown the existing relations between DHSA, Markov Chains and Piece-
wise Deterministic Markov Processes [2, 13].

Thanks to the uncontrollable events, the whole statistical information about
transitions is removed from the system structure and associated to the stochastic
properties of the binary signals. In the following sections we will show how
the ueDHA can be used to formulate optimization problems that consider the
information regarding trajectory probability in the objective function and in the
constraints.

3 Stochastic Hybrid Optimal Control

In [11] we showed that it is not possible to obtain average state optimal control
of DHSA by exploiting similarities with Markov Chains average state optimal
control [14], as some of the control signals of the discrete dynamics are not exoge-
nous and they depend on the continuous dynamics. The only way to optimally



156 A. Bemporad and S. Di Cairano

control the average state is to use a “scenario enumeration” approach [15], which
however generates a numerically intractable problem as the optimal control hori-
zon N gets large. In this paper we take a different approach and consider the
problem of choosing the input profile that optimizes the most favorable situa-
tion, under penalties and hard constraints on the probability of the disturbance
realization that determines such a situation. Given a DHSA, by exploiting the
equivalent ueDHA and the probability computed in (2), we can formulate such
an optimal control problem as an MIP.

3.1 Problem Setup

Consider the convex performance index

Cd =
N−1∑
k=0

�k(x(k + 1) − rx(k + 1), u(k) − ru(k)), (10)

which is a function of x(k), u(k), k = 0, . . . , N − 1. Typically �k(x, u) = ‖Q(x−
rx)‖∞ + ‖R(u− ru)‖∞ where Q,R full rank or �k(x, u) = (x− rx)TQ(x− rx) +
(u− ru)TR(u− ru) where Q ≥ 0, R > 0, in which rx and ru are given references
on the state and on the input, respectively.

Next, consider the probability cost

Cp = ln
1

π(w(0), . . . , w(N − 1))
= − ln (π(w(0), . . . , w(N − 1))) , (11)

which is a function of w(k), k = 0, . . . , N − 1. The smaller is the probability
of a trajectory, the larger is the probability cost, so that the trajectories that
realize rarely are penalized. The most desirable situation is to obtain a trajectory
with good performance and high probability. For this reason, we define as the
objective function the cost

C = Cd + qpCp , (12)

in which qp ∈ (0,+∞) is a trade off coefficient called probability coefficient.
In order to hardly eliminate trajectories that realize rarely, we also wish to

impose the chance constraint

π(w(0), . . . , w(N − 1)) ≥ p̃ , (13)

where the coefficient p̃ ∈ (0, 1] is called probability limit.
The chance constraint (13) ensures that when the chosen input profile

{u(k)}N−1
k=0 is applied to the system, the corresponding trajectory {x(k)}N

k=0
realizes with probability greater or equal to p̃. Other constraints on probabilities
may be imposed, such as constraints defining the minimum allowed probability
at every single step.

The problem of optimally control a DHSA in respect to the cost function
(12), considering (13) as additional constraint is then formulated as:
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Problem 1 (Stochastic Hybrid Optimal Control, SHOC).

min
{w(k),u(k)}N−1

k=0

Cd + qpCp (14a)

s.t. DHSA dynamics (1), (2), (3), (7), (6) (14b)
chance constraint (13) . (14c)

3.2 Optimization Problem

In order to cast problem (14) as a mixed-integer linear or quadratic problem, we
need to transform (11) and (13) into linear functions of the uncontrollable event
values w. The performance index in (10) can be dealt with as described in [16]
for deterministic hybrid systems.

Consider a DHSA with l stochastic transitions whose probabilities are col-
lected in vector p = [p1 . . . pl]T , and consider the equivalent ueDHA with uncon-
trollable events w = [w1 . . . wl]T 3. The probability of a trajectory depends only
on the transitions, thus it can be computed as a function of the uncontrollable
events as π(w(0), . . . , w(N − 1)) =

∏N−1
k=0

∏l
i=1 πi(k) where πi(k) represents the

contribution of the stochastic transition i at step k on the trajectory probability,

πi(k) =
{

1 if wi(k) = 0
pi if wi(k) = 1. (15)

Equivalently, πi(k) = 1+(pi − 1)wi(k), wi(k) ∈ {0, 1}. The probability cost (11)
is equal to

−
N−1∑
k=0

l∑
i=1

lnπi(k). (16)

With an exp-log transformation, provided that π(w(0), . . . , w(N − 1)) > 0,
π(w(0), . . . , w(N − 1)) = exp(ln

∏
i,k πi(k)), thus lnπ(w(0), . . . , w(N − 1)) =

ln
∏

i,k πi(k) =
∑

i,k lnπi(k) =
∑

i,k ln(1 + (pi − 1)wi(k)). Although this ex-
pression is still nonlinear in wi(k) because of the logarithms, we note that
lnπi(k) = wi(k) ln (pi) for wi(k) ∈ {0, 1}. Hence, the logarithm of the trajectory
probability lnπ(w(0), . . . , w(N − 1)) =

∑N−1
k=0

∑l
i=1 wi(k) ln (pi), and therefore

the probability cost (16) can be expressed as a linear function of the uncontrol-
lable events wi(k) ∈ {0, 1}, so that the chance constraint (13) becomes a linear
constraint on wi(k) ∈ {0, 1}.

By converting the ueDHA into MLD form [10], the optimal control prob-
lem (14) can be solved by standard mixed integer programming solvers [17].

The solution of (14) is a couple (u∗, w∗), where u∗ is the optimal control se-
quence and w∗ is the desired uncontrollable events sequence. Only u∗ is actuated,
thus the actual trajectory may be different from the expected one. However, if
the realization of the stochastic events is equal to w∗ the actual trajectory is

3 This can be extended by considering the fictitious event for deterministic transitions
having pd = 1. As explained below its contribution will disappear because log pd = 0.
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equal to the one obtained from (14). The largest qp is, the most likely the actual
w will coincide with w∗, and the most cautious will be the control action.

In [11] it is shown that several DHA can be extracted from a single DHSA
by fixing a nominal behavior for the uncertain transitions, that is, by fixing
w = w̄ ∈ W in the equivalent ueDHA. The Stochastic Hybrid Optimal Control
problem solved on the DHSA will always give a better solution than the optimal
control problem formulated on an extracted DHA having Cd as cost function:
the solution of the SHOC has either higher probability or better performance.

4 Robust Hybrid Optimal Control of DHSA

The approach of Section 3 does not ensure that the behavior of the system
is correct when the actual w is different from w∗, as some constraints may
be violated for particular realizations. Therefore, this approach can be used
only if possible deviations from the desired trajectory are not critical. However,
considering those situations in which constraint violation is critical, we define
another control approach that considers not only the desired trajectory, but also
the possible deviations from it, due to unexpected stochastic transitions.

Definition 3. Given a stochastic system x(k+1) = f(x(k), u(k), φ(k)) in which
φ(k) ∈ Φ is a stochastic disturbance, the constraint h(x(k), u(k), φ(k)) < 0 is
robustly satisfied at time k if h(x(k), u(k), φ(k)) < 0, ∀φ(k) ∈ Φ.

Problem 2 (Robust Hybrid Optimal Control, RHOC).

min
{w(k),u(k)}N−1

k=0

Cd + qpCp (17a)

s.t. DHSA dynamics (1), (2), (3), (7), (6) (17b)
chance constraint (13) (17c)
constraint h(·) ≤ 0 is robustly satisfied, ∀k ∈ [0, N − 1] . (17d)

Compared to Problem 1, Problem 2 (RHOC) also requires that the optimal
input u∗ is such that a set of constraints h(·) ≤ 0 is always satisfied for all the
admissible values of stochastic events w that may realize.

By exploiting the techniques developed in Section 3 and in [12], problem (17)
can be rephrased as:

min
u,w,ξ

f(u,w, ξ) (18a)

s.t. Au u+Aw w +Aξ ξ ≤ b (18b)
P[w] ≥ p̃ (18c)
h(u,w, ξ) ≤ 0, ∀w ∈ W such that P[w] > ps, (18d)

where u is the vector of deterministic decision variables, w is the vector of uncon-
trollable events, ξ is the vector of auxiliary variables (z, δ) obtained by translat-
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ing the ueDHA into MLD form4 and P[·] denotes the probability of its argument.
Cost function (18a), system dynamics/operation constraints (18b), and chance
constraint (18c) are the same of the SHOC problem (14). The quantified con-
straints (18d) are safety constraints that must be robustly enforced with respect
to stochastic events having at least probability ps ≥ 0: (18d) is the implicit
expression extended along the whole control horizon k ∈ [0, N − 1] on ueDHA
of h(x, u, φ) ≤ 0 in Definition 3, where the role of φ is taken by w. If ps = 0,
safety with respect to all trajectories having finite probability is ensured, hence
obtaining a complete robustness. Robustness in probability is otherwise enforced.

4.1 Robust Optimal Control Algorithm

Because of the quantified constraints (18d), problem (18) cannot be directly
formulated as an MIP. As the feasible values of (w, ξ) are finite, in principle it
is possible to explode the quantified constraints in several groups of constraints,
one for each realization of stochastic events, according to the so called “scenario
enumeration” approach of stochastic optimization [15]. However, the number of
scenarios is combinatorial with respect to the number of stochastic events and
control horizon, so that the numerical problem is intractable in most practical
cases.

On the other hand, one only needs to ensure robust safety of the optimal
sequence u∗, thus only the stochastic event sequences potentially unsafe and
enabled by u∗ must be considered. Following this consideration we can apply
a strategy based on the interaction between a “partially” robustly safe control
problem and a reachability analysis problem, described in Algorithm 4.1.

The algorithm is based on the iterative solution of an optimal control prob-
lem, whose dimension increases at each iteration of step 3.3.1., and that looks
for a candidate solution ũi, and a verification problem, whose dimension re-
mains constant, and that looks for an unsafe5 stochastic event sequence for
u = ũi. Both problems can be solved via MIP. The dimension of the control
problem keeps increasing as long as an unsafe stochastic sequence w̃i is found.
The ξ variables and the constraints are duplicated to explicitly enforce safety
with respect to the trajectory generated by w̃i while optimizing a different tra-
jectory: in this way we request that the trajectory generated by w̃i satisfies
h(x(k), u(k), w̃i(k)) ≤ 0, ∀k ∈ [0, N−1]. Algorithm 4.1 terminates in finite time
because the number of admissible stochastic event sequences w is finite.

Let V be the set of input sequences that fulfils constraints (18b), (18c) and
(18d) without quantification, and S be the set of input sequences that fulfils
(18b), (18c), (18d). V is the feasible input set for the SHOC problem, S is the
feasible input set for the RHOC problem, and S ⊆ V. The behavior of Algo-
rithm 4.1 is the following. At the beginning V is known, since it is defined by
the constraints of the optimal control problem, while S is not. The information

4 Possibly ξ also includes slack variables required to optimize infinity norms, unless
2-norms are used.

5 In case a set of robust constraints is considered, it is sufficient that one is violated.
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1. Let the control problem be (18) after removing quantification from (18d);
2. Set i = 0;
3. do
3.1. i← i + 1
3.2. Solve the control problem and get a candidate solution ũi;
3.3. if ũi �= ∅

Solve a reachability problem for ũi and find w̃i : ∃k : h(x(k), ũi(k), w̃i(k)) > 0
3.3.1. if w̃i �= ∅

Add to the control problem variables ξi and constraints Au u + Aw w̃i +
Aξ ξi ≤ b and h(u, w̃i, ξi) ≤ 0 that enforce safety with respect to w̃i;

while ũi �= ∅ and w̃i �= ∅

4. if ũi = ∅

4.1. Problem (18) is unfeasible.
else

4.2. Set u∗ = ũi.

Algorithm 4.1: Robust hybrid optimal control algorithm

obtained from the verification problem is used to cut a part of V while maintain-
ing S ⊆ V. This procedure continues until the optimal point computed at step
3.2 belongs to S, and therefore the RHOC problem is solved, without in most
cases explicitly characterizing S.

Usually, only a small fraction of stochastic events affects the evolution of
the system when a particular control sequence is chosen, and an even smaller
fraction brings the system to the unsafe region. The iterative approach aims at
considering only these stochastic event sequences among all the possible ones,
thus solving many smaller problems rather than one large MIP in which all
possible realizations of stochastic events are enumerated. Nevertheless, it must
be noted that in the worst case Algorithm 4.1 still has a combinatorial complexity
with respect to the control horizon and the number of uncontrollable events.

Remark 1. The SHOC and RHOC approaches are different from the more com-
mon control approach for stochastic systems, where the average state is con-
trolled. In our setting, the uncertainty affecting DHSA has a discrete nature, so
that taking averages may lead to unsatisfactory solutions. Consider the following
problem: control to the origin the state of the system having three modes with
dynamics x(k+1) = x(k), x(k+1) = x(k)+u(k)−1, x(k+1) = x(k)+u(k)+1,
respectively mode 1, 2, 3. Consider the system starting in x(0) = 0 in mode 1 and
assume at time k̄ the mode switches to state 2 or 3, both with probability 0.5.
An average state control policy would choose u(k) = 0, ∀k, with the consequence
that the trajectories of the system will always diverge from the desired state.
On the other hand, SHOC and RHOC would choose one of the two possible
behaviors and optimize the system for that situation, e.g. by setting u(k) = 1 if
the system is predicted to switch to mode 2. In 50% of the cases the state would
be brought to the origin (clearly, in the remaining 50% the error would be larger
than in the case of the average control policy).
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5 Application Example

As a benchmark test we consider a problem in production systems where the
goal is to control a small factory production facility subject to random failures
depending on wear.

5.1 Modeling

The considered production facility is constituted by two lines having different
fixed production rates. The factory production rate must track a given reference
forecasted demand.

The production system accumulates wear. When the wear is above a certain
level, there is a probability pbreak that the system breaks. Maintenance can be
decided and executed to reduce wear, at the price of stopping the production.
Production is interrupted when the system is damaged and the system must be
repaired before production starts again.

The production rate dynamics ψ(k) is modeled as a first order asymptotically
stable linear system, the wear dynamics ν(k) as an integrator. The production
facility can be in three discrete states: Normal, Danger (=risk of damage) and
Damaged. The sFSM describing the possible discrete state transitions is pre-
sented in Figure 1, where the events e1, e2 represents the risky threshold cross-
ing (ν(k) ≥ 5.1) and the completion of the repairing (ν(k) ≤ 0.1), respectively.
There are three binary control commands, two for activating independently the
production lines and the third, mutually exclusive with the others, activating
maintenance. A more detailed description of the system can be found in [11].

5.2 Control Design and Results

All the tests presented here have been performed on an Intel Pentium Xeon
2.8 MHz running Matlab 6.5 and Cplex 9.0. We set N = 8, p̃ = 0.4 and the
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Fig. 2. Stochastic control of a production system
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objective function
∑N

i=0 |(ψ(k) − r(k))|, in which r is the forecasted demand,
r(k) = 2,∀k ∈ [0, 8]. The constraints involve the discrete and continuous dy-
namics of the system and the additional mutual exclusivity constraint among
production line activation signals and maintenance execution signal. The trade
off coefficient qp is used as a tuning parameter and set either to 10 or to 10−3,
while pbreak = 0.1. The initial state is ψ(0) = 1.5, ν(0) = 3 and the discrete
state is Normal. The optimal control sequence found is applied in open loop.

The expected trajectory for qp = 10 has probability 0.66 and it is shown
in Figure 2(a). Note that the probability is higher than the limit p̃ because of
the probability cost Cp. In Figure 2(b) the expected trajectory for qp = 10−3 is
reported: it has higher performance but the probability of the optimal trajectory
decreases to 0.53. In both cases the computation time to solve the associated
MIP is less than 0.1 seconds.

The stochastic control does not ensure that constraints will be met when u∗

is implemented. If we require that the production rate remains above a certain
threshold ψ̄m = 0.92 items per time unit in all possible situations during the
whole horizon, a RHOC approach must be used. For qp = 10−3, the robust algo-
rithm requires two additional iterations to solve the problem and a computation
time of 0.68 seconds. The predicted trajectory is reported in Figure 3(a).

In Figure 3(b) the robust control solution is reported for qp = 10. In this case
only one additional iteration is required with respect to the stochastic control
under the same conditions and the computation time is 0.49 seconds.

Figures 3(c), 3(d) depict the worst case situation in which the system sud-
denly breaks down when it is in danger, in order to compare SHOC and RHOC.
Probability coefficients qp = 10−3 (Figure 3(c)) and qp = 10 (Figure 3(d)) are
tested in both approaches. The trajectory obtained by stochastic control (dashed
line) is initially closer to the desired production rate, but it crosses the line of
minimum desired rate. Instead, when the input profile obtained by robust con-
trol algorithm (solid line) is applied, the production rate remains in the desired
region during the whole control horizon.

6 Actuation Policies and Convergence Results

So far we have considered open loop optimal control problems. Feedback control
can be achieved through repeated optimization schema, such as Model Predic-
tive Control strategies. In this section we provide preliminary results on sufficient
conditions for asymptotic convergence of the state vector when SHOC/RHOC is
applied repeatedly. In order to prove convergence of the SHOC/RHOC control
of DHSA we separated the problem of obtaining convergence of a determinis-
tic system and the problem of obtaining convergence of a system affected by
stochastic disturbances. The first is solved using well known results of receding
horizon asymptotic convergence [12, 18], the second using techniques of Markov
Chain convergence theory [14].
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Fig. 3. Robust control (solid) and comparison with stochastic control (dashed)

6.1 Repeated Open-Loop Optimal Control

The simpler policy is Repeated Open-Loop Optimal Control (ROLOC): from
a given state x(0) an SHOC/RHOC problem is solved and the whole input
sequence u∗ = {u∗(i)}N−1

i=0 is applied. Then, a new problem is solved from x(N),
and so on.

Since the system is stochastic, asymptotic convergence in probability is con-
sidered here. A sequence of random variables {φ(i)}∞

i=0 converges in probability
to a random variable φ̄ if ∀ε > 0, limi→∞ P[|φ(i) − φ̄| > ε] = 0 (see [19]).

Consider a DHSA in initial state x0, stochastic hybrid optimal control with
ROLOC policy and a target state x̄. Let X = Xr × {0, 1}nb be the full (con-
tinuous and discrete) state set and let R(x̄, N) ⊆ X be the set of states from
which the state x̄ is reachable within N steps. Define p̃ such that 0 < p̃ ≤
minx∈R(x̄,N){P [T (x, x̄)]} < 1, where T (x, x̄) is the trajectory with maximum
probability from state x to x̄. Let Xs ⊆ X be the set of states x0 for which prob-
lem (14) is feasible from x(0) = x0 and let the initial state be x0 ∈ R(x̄, N)∩Xs.
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Proposition 1. Consider the stochastic hybrid optimal control (14) applied in
ROLOC policy with horizon N from initial state x0 �= x̄. If:

1. the terminal state constraint x(N) = x̄ is used as an additional constraint
in the optimization,

2. the probability limit is fixed to p̃ and 0 < p̃ ≤ minx∈R(x̄,N){P [T (x, x̄)]} < 1,
3. ∀x ∈ R(x̄, N) ∩ Xs,∀w ∈ WN , x̃ = F (x, u∗, w) ∈ R(x̄, N) ∩ Xs, where u∗

is the deterministic component of the optimal solution and F is the function
that maps the initial state x, the input sequence u∗ and the stochastic event
sequence w in the final state x̃,

4. the objective state x̄ is an equilibrium point of the system, it is not affected
by stochastic events and the optimal performance index is zero for x = x̄,

then the state x converges asymptotically in probability to x̄.

Proof. Consider a generic instant kN , k ∈ K, k > 0. We are interested in
computing P[x(kN) = x̄].

By applying the total probability theorem we get

P[x(kN) = x̄] =P[x(kN) = x̄|x((k − 1)N) = x̄] P[x((k − 1)N) = x̄]+
P[x(kN) = x̄|x((k − 1)N) �= x̄] P[x((k − 1)N) �= x̄] . (19)

Because of hypothesis 4, P[x(kN) = x̄|x((k − 1)N) = x̄] = 1, and P[x(kN) =
x̄|x((k − 1)N) �= x̄] = p̂k−1 ≥ p̃ because of hypothesis 2. Denoting by Pk =
P[x(kN) = x̄], we can write (19) as Pk = Pk−1 + p̂k−1(1 − Pk−1).
We prove convergence by induction. For k = 1 we have P1 = P0 + p̂0(1 − P0) =
p̂0 ≥ p̃ =

∑0
i=0 p̃(1 − p̃)i where P0 = 0 because x0 �= x̄. Assume that

Pk−1 ≥
k−2∑
i=0

p̃(1 − p̃)i. (20)

Then Pk = Pk−1 + p̂k−1(1 − Pk−1) ≥ Pk−1 + p̃(1 − Pk−1) = Pk−1(1 − p̃) + p̃. By
the induction hypothesis (20), Pk ≥

∑k−2
i=0 p̃(1 − p̃)i+1 + p̃ =

∑k−1
i=1 p̃(1 − p̃)i +

p̃(1 − p̃)0 =
∑k−1

i=0 p̃(1 − p̃)i, and thus we have
∑k−1

i=0 p̃(1 − p̃)i ≤ Pk ≤ 1. Since
limk→∞

∑k−1
i=0 p̃(1 − p̃)i = 1, we conclude that limk→∞ P[x(kN) = x̄] = 1. �

Note that hypothesis 1 forces convergence to x̄, hypothesis 2 ensures feasi-
bility of (13) in optimization and hypothesis 3 ensures not to lose feasibility
because of an unexpected stochastic event; this hypothesis might be difficult to
verify, thus it can be convenient to verify a condition including it (e.g. that the
condition is feasible for each valid input sequence and not only for the optimal
one), and it can be removed if RHOC is used. Hypothesis 4 ensures that the
objective state will never be left, once it is reached. We can note that the larger
is p̃, the faster the probability of reaching the target state converges to one.
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6.2 Model Predictive Control

We now consider a Model Predictive Control (MPC) policy, where an optimal
control problem is repeated at each step k and only u∗(0) is applied as the input
u(k), while {u∗(1), . . . u∗(N − 1)} are discarded. In order to obtain convergence
of such an MPC policy, we make the probability limit p̃ time varying.

Consider solving problem (14) from the initial state x(0) = x0, with proba-
bility limit p̃(0) = p̃ as defined in hypothesis 2. Let (u∗, w∗) be the optimizer,
and let the predicted next state be x̂(1) = f(x(0), u∗(0), w∗(0)). After applying
the first input u∗(0) we get a new state x(1), from which a new optimization
problem is solved with probability limit p̃(1) defined by

p̃(k + 1) =

{
p̃(k)

P[w∗(k)] if xb(k + 1) = x̂b(k + 1)
p̃(0) if xb(k + 1) �= x̂b(k + 1).

(21)

The value P[w∗(k)] represents the probability of the transition predicted at step
k and it is known from the result of the MIP, while xb is the discrete component of
the state. The purpose of updating the probability limit is to force the probability
of a path between two unexpected transitions to be greater or equal than p̃,
therefore avoiding the generation of trajectories having “almost-0” probability.

Assumption 1. The “deterministic behavior” of the MPC closed-loop system,
where both u and w are manipulated variables, is asymptotically stable.

Assumption 1 can be satisfied by using final state constraints and defining cost
weight matrices in the objective function as reported in [12, 18], since the problem
is that of stabilizing a deterministic ueDHA by manipulating the inputs u and w
in a receding horizon fashion. When the above strategy is applied, we can prove
convergence using the same arguments of Proposition 1. A path that reaches
the objective without unexpected transitions in the worst case has probability
p̃, thus the probability of having one or more of them is 1 − p̃.

Proposition 2. The stochastic hybrid optimal control (14) applied to the DHSA
with MPC policy and probability limit update (21), under the same hypotheses of
Proposition 1 and Assumption 1, converges asymptotically in probability to the
objective state x̄.

Proof. The final state constraint and preliminary assumption on ueDHA ensure
that, if there are no unexpected transitions in an interval “long enough”, the
system state converges to the objective, as shown in [18]. The probability of
having no unexpected transitions in the worst case is p̃, and the probability of
having h of them is p̃(1− p̃)h. The probability of converging with not more than
m unexpected transition is

∑m
h=0 p̃(1 − p̃)h. As k → ∞, there might be m → ∞

unexpected transitions, but the probability of converging is
∑∞

h=0 p̃(1− p̃)h. This
series has been shown to converge at value 1, thus limk→∞ P[x(k) = x̄] = 1. �

Even in this case we can relax hypothesis 3 if the RHOC approach is used.
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7 Conclusions

In this paper we have shown that by modeling hybrid systems affected by stochas-
tic uncertainty as DHSA several classes of optimal control problems can be
solved. We have shown how to trade off between performance and probability,
how to impose the chance constraints and how to satisfy constraints robustly.
The approach was exemplified on an application study and a set of sufficient con-
ditions, under which asymptotic convergence of repeated optimization schemes
can be proved, has been given.
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